
Paper ID #29768

Treadstone: A Process for Improving Modeling Prowess Using Validation
Rules

Mr. Michael J. Vinarcik P.E., University of Detroit Mercy

Michael J. Vinarcik is a Chief Systems Engineer at SAIC and an adjunct professor at the University of
Detroit Mercy. He has thirty years of automotive and defense engineering experience. He received a
BS (Metallurgical Engineering) from the Ohio State University, an MBA from the University of Michi-
gan, and an MS (Product Development) from the University of Detroit Mercy. Michael has presented
at National Defense Industrial Association, International Council on Systems Engineering, and Ameri-
can Society for Engineering Education regional and international conferences. He is a regular speaker at
the No Magic World Symposium. Michael has contributed chapters to Industrial Applications of X-ray
Diffraction, Taguchi’s Quality Engineering Handbook, and Case Studies in System of Systems, Enterprise
Systems, and Complex Systems Engineering; he also contributed a case study to the Systems Engineer-
ing Body of Knowledge (SEBoK). He is a licensed Professional Engineer (Michigan) and holds INCOSE
ESEP-Acq, OCSMP: Model Builder – Advanced, Booz Allen Hamilton Systems Engineering Expert Belt,
ASQ Certified Quality Engineer, and ASQ Certified Reliability Engineer certifications. He is a Fellow
of the Engineering Society of Detroit, the President and Founder of Sigma Theta Mu, the systems honor
society, and the current Treasurer of INCOSE.

c©American Society for Engineering Education, 2020

Treadstone:
A Process for Improving Modeling Prowess

Using Validation Rules

Abstract:

The creation of descriptive models using SysML is a skill-focused discipline; the outcomes of a
modeling effort depend upon the abilities of the modelers contributing to it. Ongoing shortages
of skilled modelers are inhibiting the transition of systems engineering to a model-based
discipline.

This paper illustrates the use of validation rules to support instruction (both stand-alone
modeling exercises and a larger, collaborative modeling project). Validation rules have proven
to be effective in reducing modeler errors when added incrementally in parallel with concepts
introduced in class. The rules simplify grading (since the instructor can focus on value-added
content instead of semantic correctness). In addition, the rules conform to the Seven Keys to
Effective Feedback proposed by Grant Wiggins:

1. Goal-Referenced (Error reduction/style conformance)
2. Tangible and Transparent (Rules clearly explain what is wrong)
3. Actionable (Error messages direct the modeler how to fix the issue)
4. User-Friendly (Private feedback that marks elements with to simplify repair)
5. Timely (On demand and rapid feedback eliminates errors before they accumulate)
6. Ongoing (Available throughout the course of any modeling project)
7. Consistent (All students receive the same feedback) [1].

The rules were continuously updated throughout the term in which they were introduced;
students corrected new errors and improved their model quality as they executed their term
projects. Extracts from six team projects will be presented and contrasted with selected past
projects (subjected to the same validation rules) to demonstrate the efficacy of the approach.
Several models published by notable SysML modelers will also be analyzed.

Systems Engineering in 2020: A Discipline in Flux

At the time of this paper’s publication, systems engineering is undergoing a transformation from
document-intensive systems engineering (DISE) to model-based systems engineering (MBSE).
This shift is driven by the increasing complexity of modern systems; traditional methods that rely
on requirements statements, pictures-as-diagrams, and collections of disconnected artifacts and
documents are not scalable. They are prone to drifting out of synchronization, resulting in errors
and omissions in the communication of design intent that manifest themselves as errors in testing
or failures in usage.

A well-crafted system model is inherently consistent and complete; relevant information can be
readily extracted to serve individual stakeholder’s needs. Unfortunately, many practitioners do
not create well-crafted models. Many superficially replicate DISE artifacts by using modeling
tools as drawing tools (focusing on visual representations instead of model consistency). Others
fail to scrutinize their work to detect errors and omissions. Even skilled modelers disagree on
modeling methodology; each has his own preferred modeling patterns and stylistic
idiosyncrasies. Published textbooks and style guides tend to focus on superficialities (colors,
capitalization of words, and number of elements on a diagram) instead of emphasizing the need
to ensure that model elements, properties, and relationships are complete and consistent.

This paper will focus on how system modeling is a craft (with resulting pedagogical
implications), the creation of descriptive and/or executable models in SysML (the system
modeling language), and how the use of automated validation rules can help teach system
modeling and improve model quality.

System Modeling as a Craft

Model-Based Systems Engineering (MBSE) is a skill-based discipline that shares many
similarities with software development. Crafting descriptive system models in the System
Modeling Language (SysML) is like writing code; models are an expression of intent. Models
are also path dependent, in that the experience of the development team shapes the outcome.
Although good modeling practices and styles can be recognized and applied, alternate
expressions of the same solution (and the existence of multiple solutions in a design set) imply
that, in practice, there is not one, perfect, absolutely correct and optimal representation of a
system. Even if such a construct existed in theory (a matter left for others to debate), the effort
to seek it and develop a model in conformance to it may exceed the benefits of a satisficing
model available rapidly at a lower development cost.

Hillary Sillitto suggests that “Architecting a system is the activity of creating a system
architecture with the aim that the system to be built will do the job it was meant to do – in other
words “will be fit for purpose”…Architecting defines what to design, while design defines what
to build.” [2]

There is significant ongoing work in applying patterns and machine learning to system models
(because the rigor of a purpose-built language enables visibility and analysis techniques
impossible with natural language processing). There is promise in these efforts and they will
likely enable measurable improvements in model quality. However, there is a need to execute
effective systems architecture now, and that means that for the foreseeable future the capabilities
of the humans-in-the-loop will dominate the outcomes of each modeling effort.

Merriam-Webster defines craft as “an occupation or trade requiring manual dexterity or artistic
skill.” [3] Ryan Noguchi of Aerospace Corporation states: “System modeling is not a
conceptually simple or straightforward task. It is like computer programming in many respects,
requires some similar skill sets, and involves similar design tradeoffs…The conceptual model

and the organization of models into modules can significantly impact their usability, consistency,
and maintainability. It is important to have experienced architects familiar with both the problem
space and the capabilities of the tools to lead that effort. Furthermore, building models using
these tools is not always straightforward, and like software programming, is a skill that not
everyone can learn equally well.” [4] In essence, it is a craft.

In Apprenticeship Patterns, Hoover and Oshineye describe the values of craftsmanship as
including (emphasis added by the author):

 An attachment to… a “growth mindset.” This entails a belief that you can be better and
everything can be improved if you’re prepared to work at it…

 A need to always be adapting and changing based on the feedback you get from the
world around you…

 A desire to be pragmatic rather than dogmatic. This involves a willingness to trade off
theoretical purity or future perfection in favor of getting things done today.

 A belief that it is better to share what we know than to create scarcity by hoarding it…

 A willingness to experiment and be proven wrong…

 A dedication to what psychologists call an internal locus of control.
[https://en.wikipedia.org/wiki/Locus_of_control] This involves taking control of and
responsibility for our destinies rather than just waiting for someone else to give us the
answers.

 A focus on individuals rather than groups...

 A commitment to inclusiveness…

 We are skill-centric rather than process-centric. For us, it is more important to be highly
skilled than to be using the “right” process…This idea suggests that no process or tool is
going to make everyone equally successful. Even though we can all improve, there will
always be discrepancies in our skill levels.

 A strong preference for what Etienne Wenger calls “situated learning.”
[http://wiki.c2.com/?LegitimatePeripheralParticipation..Its essence is that the best way to
learn is to be in the same room with people who are trying to achieve some goal using
the skills you wish to learn.” [5]

Teaching a Craft: Learning to Do by Doing

Figure 1: Lintel from A Closed School (Author's Photo)

The maxim in Figure 1 was cut into the lintel above the main entrance to a large, old, closed
school. It is an educational idea that comes into and out of favor in academia but is critically
important to passing on craft skills (consider the difficulties inherent in teaching blacksmithing
solely by drawing diagrams and lecturing instead of giving students access to a forge, anvil,
tools, and steel…and consider the implications if the instructor is not a skilled, practicing
blacksmith).

Acknowledging modeling’s nature as a craft has shaped the author’s pedagogical approach to
teaching system modeling using SysML and MagicDraw from Dassault Systèmes. The
introductory system modeling class currently consists of two phases. In the first, students are
required to construct small models and demonstrate their ability to create simple diagrams using
MagicDraw. They also learn how to edit and submit their work using TeamWork Cloud (the
Dassault Systèmes collaboration server for MagicDraw). This ensures they can perform the
rudiments of system modeling and have overcome any technical challenges in connecting to the
university’s server. In the second phase, teams of students collaboratively model representative
systems. This lets them experience the subtleties of working together on a large system model,
understand and experience best practices for collaboration, and cultivate a visceral understanding
of how modeling tools work and how to make a model serve a systems engineering effort.
Systems-of-interest have included notional nuclear submarines, next generation Mars orbiters,
and simulated Mars rovers.

During the second phase, normal classroom meetings are suspended, and the instructor conducts
weekly meetings with each team to answer questions, provide recommendations, and generally
shepherd each team towards maturing its model. In the past, a significant amount of the
instructor’s time was spent on resolving semantic and structural issues with each model in
addition to suggesting methods and pointing out opportunities for improvement. Resolving these
issues is critical to the creation of well-formed models that can support advanced querying and
tactical analysis…which should be the desired outcome of a modeling effort. Crafting a
beautiful, useless model (or set of diagrams) does a disservice to all stakeholders.

The Burden of Inspection-Based Feedback

As Noguchi states, “Many of the DoDAF architecture description models that have been built to
date have been found to have many syntactical errors that would have been caught had they used
the built-in model validation capabilities of their tools, but the problem would also have been
apparent upon visual inspection by an experienced modeler… When a program cannot afford to
populate their [sic] modeling team completely with experienced modelers, it is critical that model
reviews be performed frequently by experienced modelers, particularly to check for semantic
mistakes—those that won’t be caught by the modeling tools’ validation checks—by providing
the review team with the actual electronic model files for them to review in detail using the
modeling tool. Model reviews performed in a briefing format or through static captures of the
model (typically via PDF files or HTML files) are much less effective at ferreting out errors.” [4]

Unfortunately, this review process is not scalable. The author found that the student models tend
to grow rapidly (105 elements are not uncommon) and it rapidly becomes impossible to conduct
the equivalent of five or more detailed model reviews on a weekly basis. Although students
were expected to use MagicDraw’s built-in validation rules, these checks were not sufficient to
enforce the author’s modeling methodology and style. In addition, they do not completely test
for common modeling patterns and practices.

Automated Reviews via Custom Validation Suites

In 2019, the author attended Approaches to Marking and Validating Sensitive MBSE Models, a
presentation at the 2019 MBSE Cyber Experience Symposium [6]. This presentation, by Veejay
Gorospe of the Johns Hopkins University’s Applied Physics Laboratory, showcased the usage of
customized validation rules to assess security classification issues. Gorospe created validation
rules using the structured expression language built into MagicDraw.

The author is a proponent of using these structured expressions to create purpose-built tables,
matrices, and dynamic legends to extract value from models. The language uses internal
operations (such as union, intersect, isEmpty, etc.) and metachain navigation (MagicDraw’s
attribute, element, and relationship navigation syntax) to extract information from the model.
The structured expression language layers a relatively simple user interface on patterns that
MagicDraw converts into internally executed code.

To craft a validation rule, all that is necessary is to identify the type of element to which it is to
be applied (for example, an object flow) and to develop a structured expression that returns a
Boolean value. Elements for which the expression is true pass validation and those for which it
is false fail validation. Severity level and documentation (which help the modeler correct the
error) should also be created. MagicDraw’s mechanism for executing rules is that they are
constraints with the <<validationRule>> stereotype applied. They must also be resident in a
package with the <<validationSuite>> stereotype applied. This exposes them to the validation
engine.

The author began constructing his own set of validation rules in the fall of 2019. These were
intended to support the transition of the introductory SysML course to asynchronous online
lectures supported with live, weekly lab sessions. These rules were designed to conduct stylistic,
methodological, and semantic error-checking but were built from the perspective of an
experienced modeler. As the author began to grade student models it rapidly became apparent
that novice modelers could build compliant models that still did not conform to the desired style.
These workarounds clearly identified gaps in the rule set and led to the development of more
rules; the implicit and unspoken assumptions made from experience were instantiated in the
expanded ruleset.

This meant that models that passed validation were graded in accordance with the rules as
provided but that the next iteration of the model was expected to conform to the additional rules.
Although the author tested each rule to eliminate false positives and false negatives,

idiosyncrasies in individual approaches highlighted additional adjustments needed to ensure that
the rules functioned as intended.

The rule set began as a solely academic exercise at the University of Detroit Mercy; however,
their utility led the author to integrate them into the models he created for his primary employer
(SAIC). The rules were kept in two separate profiles (one at the university and one resident on
the SAIC server). The author manually kept them in synch until his employer indicated a
willingness to release them publicly as a service to the modeling community. The university
profile was replaced with a pre-release version of the SAIC profile; this allowed more rapid
development as additional errors and corner cases were revealed in both environments.

Testing the Rules: The Mars Society Rover Project

The subject of the Fall 2019 class modeling project was The Mars Society’s 2020 University
Rover Challenge [7]. This competition requires collegiate teams to build functioning rovers for
competing at the Mars Desert Research Station in Utah. The rules are publicly published and
executing a project based on them ensured that the student models do not contain proprietary
information that would preclude their release.

The Challenge contained seventy-six requirements that were divided among the teams to
copy/paste from the source PDF file into Microsoft Excel. They were then imported by the
author to serve as a shared resource. Each team’s model then used a library of common
elements, the common requirements set, and the SAIC DE Profile.

Each team was instructed to singularize the requirements and establish <<satisfy>> and
<<verify>> relationships between the requirements, architectural elements, and test cases. They
refactored the requirements using the extended SysML requirement types (functional,
performance, interface, design constraint, et al.) to leverage the built-in validation rules. They
also established <<trace>> relationships between their requirements and the originals in the used
project.

Student feedback was that this was a tedious process; that was the intent of this portion of the
assignment. By translating the text-based requirements into model elements (and appropriate
test cases), the students gained a visceral understanding of how poorly formed many textual
requirements are. See Table 1 for a summary of the final requirements count for each team.

Requirements Count

Team Initial Final % Increase

Curiosity 76 205 170%

JARS 76 216 184%

Strike Force Alpha 76 142 87%

Team Bolt 76 172 126%

Team Chimps 76 284 274%

Team Voodoo 76 110 45%
Table 1: Requirements Growth

Once the students had completed their analysis of the provided requirements, they were required
to complete a logical architecture for their rover. These included activity diagrams, state
machines, and internal block diagrams (IBDs). The IBDs illustrate the connections between
structural elements of the model and what flows of energy, material, or information are
transferred between each element. The modeling methodology taught in class emphasizes the
harmonization of system behavior and structure; several rules check for consistency (for
example, that an output from one system’s behavior that is consumed as input of another
element’s function is mapped to a connection between them).

The models were graded four times during the term: Initial, Checkpoint, and Final submissions
(as well as end-of-term). Project element counts and final error totals are displayed in Table 2.
Note that three teams had zero errors and zero info (indications of immaturity, typically related
to behavioral/structural disconnects). See Figure 2 and Figure 3 for plots of model elements vs.
team and milestone.

Model Elements Validation

Team Initial Checkpoint Final End of Term Errors Info Pages

Curiosity 8587 22550 17588 21483 0 0 198

JARS 9548 16291 18357 21905 1 214 237

Strike Force Alpha 7070 8963 13351 16204 0 0 193

Team Bolt 8262 19440 15206 17773 0 39 199

Team Chimps 10015 22050 18732 21768 0 0 242

Team Voodoo 5664 8583 9846 11836 0 76 175
Table 2: Model Element Summary

The Pages column in Table 2 is the page count of a Requirements Report generated from
MagicDraw. This standard report includes the requirements as well as diagrams and other model
content. The author generated these to show the students how much material they had developed
and integrated over the course of half of a semester. These reports also gave them an
appreciation of the difficulties in generating artifacts of that size and complexity without using a
model as an authoritative source of truth.

Figure 2: Model Elements by Team

Figure 3: Model Elements by Milestone

Error Rates of Unassisted Modeling

The author applied the validation rules to models created by Lenny Delligatti [8], Sandy
Friedenthal and Christopher Oster [9], and Robert Karban [10], and two other student models
previously published (the NeMO [11] and PRZ-1 [12]). These models, all publicly available,
represent a cross-section of modeling styles and approaches. The intent of this analysis was to
confirm that the rules were broadly applicable and to measure the error rates of student and
experienced modelers. Delligatti, Friedenthal, and Karban are well-regarded professionals; their

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

Model Elements By Team

Initial Checkpoint Final End of Term

0

5000

10000

15000

20000

25000

Team Initial Checkpoint Final End of Term

Model Elements At Milestone

1 2 3 4 5 6

error rate is a good indication of how many errors skilled modelers introduce when modeling
without automated validation (the average practitioner is probably much higher).

Row Labels DellSat Friedenthal TMT NeMO PRZ-1 Grand Total

ACTIVITY 9 129 573 197 97 1005

ACTOR 6 6 5 19 24 60

CONBLOCK 12 4 16

OPERATION 45 18 390 326 119 898

SIGNAL 27 38 285 244 40 634

STATE 20 37 226 235 11 529

USE CASE 14 18 16 182 12 242

Grand Total 121 246 1495 1215 307 3384

Table 3: Undocumented Elements

Table 3: Undocumented Elements summarizes the documentation errors present in the models.
This is a stylistic requirement (and these errors will not be included in the computation of error
rate). However, they are shown here because in the author’s experience properly documenting
these element types prevents confusion downstream when a model has matured, and it is being
actively used to make tactical decisions.

Row Labels DellSat Friedenthal TMT NeMO PRZ-1 Grand Total

ACTIVITYNAME 2 2

ACTORNAME 3 3

BLOCKNAME 1 1

PACKAGENAME 1 1

REGIONNAME 4 46 10 60

STATENAME 1 22 23

Grand Total 1 4 47 34 4 90

Table 4: Unnamed Elements

Unnamed elements of the types listed in Table 4 tend to indicate modeling housekeeping errors;
if an element is created and deleted from a diagram but not from the model it can be difficult to
detect and remove. The rule to name region names in states is good modeling practice and is
included in this set.

DellSat Friedenthal TMT NeMO PRZ-1
Grand
Total

ACCEPTEVENT
TIMEEVENTTRIGGER

1 1

ACTIVITYEDGEGUARD 2 94 6 126 228
ACTIVITYPARAMETERFLOW 9 93 33 15 139 289
BUFFERFLOW 1 3 4
CALLOPERATIONOPERATION 4 2 6
CONSTRAINTPARAM 17 17
CONSTRAINTSPECIFICATION 2 40 338 28 408
CONTROLNODEINCOMING 4 2 6
CONTROLNODEOUTGOING 4 20 3 11 38
EXTENDEXTPOINT 1 1
EXTENSIONPOINTUSE 6 6
INPINSCONN 17 39 49 57 162
MESSAGESIGNATURE 12 10 1 9 32
PARATYPE 233 75 57 365
PARTTYPE 2 5 7
STATEREACHABILITY 2 1 32 2 37
TRANSITIONCHOICE 2 2
TRANSITIONTRIGGER 2 11 23 98 9 143
VALUETYPE 67 15 4 4 90
Grand Total 25 265 805 323 424 1842

Table 5: Omissions

The error totals in Table 5 are related to omissions in model elements; these represent
unconnected elements, missing flows, undefined decision choices, and other content that should
be included in a well-formed model. Some of these errors result from placing information in the
wrong location in the model (for example, placing conditional information in the Name field
instead of the Guard field); others may result from deleting some model elements improperly (a
housekeeping issue).

DellSat Friedenthal TMT NeMO PRZ-1
Grand
Total

CALLBEHAVIORSELF 1 1
PARTLOOP 3 12 15
Grand Total 4 12 16

Table 6: Loops

The loops in Table 6 represent infinite loops of behavior or structure (behaviors that call
themselves and part properties typed by elements that lead to recursive structures).

DellSat Friedenthal TMT NeMO PRZ-1 Grand Total

Unnamed /
Omissions / Loops

26 269 856 357 440 1948

Elements 3542 13187 275256 35293 44265 371543

Errors
Per 1,000 Elements

7.3 20.4 3.1 10.1 9.9 5.9

Table 7: Error Summary

Table 7 lists the error totals for each model (not including documentation errors) and computes
the number of errors per thousand model elements. The average error rate compares favorably
with the industry average for software lines of code (15-50 errors per delivered lines of
code) [13]. The models created by experienced modelers (DellSat/TMT) have a lower error rate
than the student models. The Friedenthal/Oster model was built as a companion to a book and
may not have been built with the same level of rigor as a model-for-use. Karban’s model (TMT)
has a larger fraction of parametric diagrams and elements (which have fewer associated rules);
this may contribute to the proportionally lower number of defects. The two student models made
without the assistance of validation rules have similar error rates.

Note that five of the six models constructed this term, supported by the validation rules, had zero
errors (and the sixth had one error, a defect rate of 0.05 errors per thousand elements). This is a
marked reduction in defects when compared with any of the other models, particularly when one
considers these teams of five or six students learned SysML, MagicDraw, and the modeling
methodology in the same term that they constructed the models. Table 8 illustrates the relative
sizes of the models analyzed in this paper.

Team Elements Relative Size

DellSat 3542 1.3%

Friedenthal 13187 4.8%

TMT 275256 100.0%

NeMO 35293 12.8%

PRZ-1 44265 16.1%

Curiosity 21483 7.8%

JARS 21905 8.0%

Strike Force Alpha 16204 5.9%

Team Bolt 17773 6.5%

Team Chimps 21768 7.9%

Team Voodoo 11836 4.3%

Table 8: Relative Model Sizes

Figure 4: Error Rate

Figure 4 plots the number of errors in each model versus the log10 of the number of elements in
each model. It suggests that the number of errors introduced without validation may be
estimated as a function of the number of elements; it also suggests that the models created with
validation are part of a different population (illustrating the efficacy of the rules in driving the
desired outcomes).

Implementation in a Modeling Course

The use of the validation rules as a pedagogical aid demonstrated significant utility. The
decrease in non-stylistic errors shows the value in detecting semantic and completeness issues;
the lack of stylistic errors shows that the rules are effective in shaping modelers as they develop
skill with the modeling tool, language, and methodology.

The validation rules are also aligned with Wiggin’s Rules for Effective Feedback:

1. Goal-Referenced (Error reduction/style conformance)
2. Tangible and Transparent (Rules clearly explain what is wrong)
3. Actionable (Error messages direct the modeler how to fix the issue)
4. User-Friendly (Private feedback that marks elements with errors to simplify repair)
5. Timely (On demand and rapid feedback eliminates errors before they accumulate)
6. Ongoing (Available throughout the course of any modeling project)
7. Consistent (All students receive the same feedback) [1].

y = 440.05x - 1539.2
R² = 0.9999

0

100

200

300

400

500

600

700

800

900

3 3.5 4 4.5 5 5.5 6

U
n

n
am

ed
/O

m
is

si
o

n
s/

Lo
o

p
s

Log (# Elements)

Experienced Modelers Students w/o Validation

Students with Validation Linear (Experienced Modelers)

In essence, the rules allow students to benefit from the expertise encoded into them by receiving
on-demand, detailed modeling feedback. During the term, students responded well to the use of
the rules; many of them were able to resolve their errors with minimal assistance and the focus of
the lab sessions tended to be on more advanced topics. In addition, the time to grade and assess
the teams’ submissions was greatly reduced. Students learned that creating elements triggered a
cascade of errors until they were documented, traced and/or related, and used properly. The
presence of defects in the model highlighted “hot spots” that required attention and other sections
of the models could receive more cursory inspections. Generic tables and dependency matrices
were also used to conduct quality checks that supplemented detailed review of specific diagrams
and model elements.

Educators wishing to implement this approach may download the rules from SAIC [14]; they
have been made publicly available as a service to the modeling community. As of May 2020,
the rules are also accompanied by an example model, videos explaining some of the
customizations included, and a model-based style guide. This guide provides illustrative
examples and rationales for each rule; the example model, based upon the Ranger lunar probes
of the 1960s, is a complete representation of a system in SysML: requirements, logical and
physical architectures, behavior diagrams, and parametrics. The rules are being ported to the
IBM Rational Rhapsody tool; these will also be released to the modeling community.

Each modeling tool allows the user to tailor which rules are applied to a given model; educators
are encouraged to select the rules from this set that are applicable and to create their own
supplemental rules as needed.

Conclusions and Future Work

The construction and deployment of automated validation rules had a positive impact on the
quality of student models. It also reduced the time needed to review and grade models and
allowed more time to be spent on addressing more advanced modeling issues. Analysis of
models created without automatic validation illustrated that even experienced modelers introduce
errors into models at a rate comparable to authoring software.

It is the author’s hope that widespread adoption of this ruleset will improve the quality of SysML
models created by students and professional practitioners. The model-based style guide and
Ranger model can serve as exemplars to support students as they undertake modeling projects.
This will help accelerate the transformation to a model-based discipline by resolving the current
talent shortage.

The validation ruleset will continue to be expanded and tested in both academic and professional
contexts (as of the v1.5 May 2020 release there are 153 rules). The author intends to re-analyze
these models with the expanded ruleset and explore how rules may be used to assist in
collaboration between organizations (for example, making a set of rules contractually binding so
that any model exchanged between organizations must pass an agreed-upon set of rules).

Acknowledgements

The author would like to thank the Fall 2019 students in MENG 5925 (Modeling of Complex
Systems via SysML Programming) at the University of Detroit Mercy for their enthusiasm and
perseverance during the development of the initial set of validation rules. He would also like to
acknowledge Heidi Jugovic and Pedro Lepe for their contributions and reviews, Richard Parise
and Minh Nguyen for their work on the Ranger model that identified many corner cases, Heidi
Jugovic for her leadership in developing the model-based style guide, Brain Haan for suggesting
the log10 defect plot and testing the rules’ implications for executable models, and Douglas
Orellana for his willingness to publicly release this work to the modeling community.

This ruleset (which includes a profile and additional useful customizations) is available from
SAIC [14] and the student models from this term are published [15]. The author invites
comments about the rules and other feedback from the system modeling community.

References

[1] G. Wiggins, "Seven Keys to Effective Feedback," Educational Leadership, pp. 10-16,
2012.

[2] H. Sillitto, Architecting Systems: Concepts, Principles and Practice, London: College
Publications, 2014.

[3] Merriam-Webster, [Online]. Available: https://www.merriam-webster.com/dictionary/craft.
[Accessed 2 February 2020].

[4] R. A. Noguchi, "Lessons Learned and Recommended Best Practices from Model-Based
Systems Engineering (MBSE) Pilot Projects," Aerospace Corporation, 2016.

[5] D. H. Hoover and A. Oshineye, Apprenticeship Patterns: Guidance for the Aspiring
Software Craftsman, Boston: O'Reilly MEdia, 2009.

[6] V. Gorospe, "Approaches to Marking and Validating Sensitive MBSE Models," in MBSE
Cyber Experience Symposium, Allen, Texas, 2019.

[7] "University Rover Challenge," The Mars Society, [Online]. Available:
http://urc.marssociety.org.

[8] L. Delligatti, "DellSat-77 Model (from SysML Distilled)".

[9] S. Friedenthal and C. Oster, "Spacecraft Model (from Architecting Spacecraft with SysML:
A Model-Based Systems Engineering Approach)".

[10] R. Karban, "Thirty Meter Telescope Model," Jet Propulsion Laboratory / Thirty Meter
Telescope Corporation.

[11] M. J. Vinarcik, "The NeMO Orbiter: A Demonstration Hypermodel," in Ground Vehicle
Systems Engineering and Technology Symposium, Novi, 2018.

[12] M. J. Vinarcik, "A Pragmatic Approach to Teaching Model Based Systems Engineering:
The PRZ-1," in ASEE Annual Conference & Exposition, Columbus, 2017.

[13] S. McConnell, Code Complete (Developer Best Practices), Redmond: Microsoft Press,
2009.

[14] SAIC, "Digital Engineering Validation Tool," [Online]. Available:
https://www.saic.com/digital-engineering-validation-tool.

[15] Systems Architecture Guild, "Hypermodeling," [Online]. Available:
http://hypermodeling.systems.

Appendix 1: Validation Rules Used (circa December 2019)

Name Severity Error Message

ACCEPTEVENTMATCH error
The signal triggering an accept event
action must match the signal typing its
output pin.

ACCEPTEVENTOUTPUT error

Accept Events must own an output pin.
If you are modeling a signal that
triggers a state transition, associate the
object flow with an item flow and
realize the transition.

ACCEPTEVENTPORTMATCH error
The assigned and inferred ports (via
item flow realization) must match.

ACCEPTEVENTTIMEEVENTTRIGGER error
Accept events triggered by time events
must have WHEN defined.

ACCEPTOUTGOING error

If an Accept Event outgoing object
flow is realized by an item flow or flow
set, the signal that triggers the accept
event must be conveyed by the item
flows or flow set.

ACTIVITYACTIONSTM error
All activities owned by state machines
must have at least one action node.

ACTIVITYDOCUMENTATION error All activities must have documentation.

ACTIVITYEDGEGUARD error
All control and object flows exiting a
decision node must have guards
defined.

ACTIVITYEDGEMISMATCH error
Flows into and out of a control node
(join, fork, merge, or decision) must be
of the same type (object or control).

ACTIVITYFINAL error
Activities that own diagrams must own
one final node and it must have one
incoming control flow.

ACTIVITYINITIAL error
Activities that own diagrams must own
one initial node and it must have one
outgoing control flow.

ACTIVITYNAME error Activities must be named.

ACTIVITYOWNS error

Activities must own at least one
diagram or operation. If it will not be
further decomposed, set its "Leaf"
attribute to true.

ACTIVITYPARAMETERFLOW error
All activity parameter nodes must have
incoming or outgoing object flows.

ACTIVITYPARAMETERSTM error
State Machine Entry, Do, Exit, and
Transition activities may not have
parameters.

Name Severity Error Message

ACTORASSOCIATION error
Actors may not be associated with
other actors.

ACTORASSOCIATIONS error
All Actors and other use case elements
must be associated with at least one use
case.

ACTORDOCUMENTATION error All Actors must have documentation.
ACTORNAME error All Actors must have names.

ACTORUSECASE error
All use case elements must be
associated with at least one use case or
be specialized by other actors.

ACTPARTYPE error
All activity parameter nodes must be
typed by signals.

ACTREALIZATION error

All Actors and other use case elements
must be realized by at least one part
property in the structure tree of a
system context block. Environmental
effects may be realized by value
properties in the structure tree of a
system context block.

ALLOCATIONPROHIBIT error

Allocations are prohibited; use
realization (between levels of
abstraction) or satisfy (between
requirements and other model
elements).

BLOCKNAME error Blocks must be named.

BUFFERFLOW error
Buffers and data stores must have at
least one object flow (incoming or
outgoing).

CALLBEHAVIORBEHAVIOR error
Call behavior actions must have the
called behavior specified.

CALLBEHAVIORSELF error
Call behavior actions may not call the
activity that owns them.

CALLOPERATIONOPERATION error
Call operation actions must have the
called operation specified.

CHANGEEVENTEXPRESSION error
All transitions triggered by change
events must have CHANGE
EXPRESSION defined.

CONBLOCKDOCUMENTATION error
All blocks that type part properties of
the system context must have
documentation.

CONNECTIONPOINTCONNECTED error
Connection points must have one
transition (outgoing or incoming).

CONNECTOREND error Connector ends must be proxy ports.

Name Severity Error Message

CONSTRAINTPARAM error
Constraint blocks must own one or
more constraint parameters.

CONSTRAINTSPECIFICATION error
Constraint specifications may not be
empty.

CONTEXTPARTS error
System context blocks must own at
least one part property.

CONTEXTREALIZATION error
All part properties owned by system
context blocks must realize one or more
use case elements.

CONTEXTTYPE error

Part properties may not be typed by
system context blocks; they should
typically be the top-level block that
owns the system context IBD.

CONTROLNODEINCOMING error
Joins and merges must have at least
two incoming flows.

CONTROLNODEOUTGOING error
Forks and decisions must have at least
two outgoing flows.

CONVEYTYPE error Item flows may only convey signals.
DATASTORETYPE error Data stores must be typed by signals.

DECISIONNODENAME error
Decision nodes must have a name (this
is used to specify the decision).

EXTENDEXTPOINT error
Extend relationships must be assigned
to at least one extension point.

EXTENSIONPOINTUSE error
Extension points must be associated
with at least one Extend relationship.

EXTERNALPARTTYPE error
Part properties typed by external blocks
must be owned by system context or
external blocks.

FLOWCONNECTOR error
This flow is not realized by any
connectors.

FLOWDIRECTION error

All flow properties must be out or
inout; this ensures consistent
conjugation (all 1-way in flows are
conjugated).

FLOWFINALINCOMING error
All flow final nodes must have one
incoming flow.

FLOWSETENDS error

If a flow set has individual flows
assigned, the individual flows must
connect the source and target of the
flow set.

FLOWSETSOURCE error

Ports that are the source of a flow set
must have flow properties compatible
with the conveyed signals of the flow
set.

Name Severity Error Message

FLOWSETTARGET error

Ports that are the target of a flow set
must have flow properties compatible
with the conveyed signals of the flow
set.

FLOWTYPE error
All flow properties must be typed by
signals.

IBDOWNER error IBDs must be owned by a block.

IBNOTSPECBLOCK error
Interface blocks may not specialize
non-interface blocks.

IMPITEMFLOWCOMPAT error
Flow properties of proxy ports
connected by flow sets must be
compatible.

INPINCONN error
Input pins must have an incoming
object flow (target pins are exempt
from this rule).

INTBLOCKFLOW error
Interface blocks must own at least one
flow property or port.

INTERFACENEEDED info
The owners of the ends of this object
flow are different and it is not realized
by an item flow.

ITEMFLOWCONVEYED error
All item flows must convey one or
more signals or be part of a flow set.

LIFELINETYPE error All lifelines must be typed by blocks.

LOGICALARCH error

Part properties that are owned by a
block with a logical stereotype must be
typed by a block with a logical
stereotype.

LOGICALCONNFLOWS info
All connectors that connect ports in the
logical architecture must have at least
one flow.

LOGICALPHYSICAL error
Blocks cannot have both logical and
physical stereotypes applied.

LOGICALPORT error

All proxy ports owned by blocks with
the <<logical>> stereotype applied
must be typed by interface blocks with
the <<logical>> stereotype applied.

LOGTERMPARTS error
Logical blocks with ATOMIC = TRUE
may not own part properties.

MESSAGEFLOWNEEDED info
This message signature is a signal and
is not realized by any item flows or
flow sets.

MESSAGEFLOWS error
If a message is associated with item
flows or flow sets, they must convey its
signature signal.

Name Severity Error Message

MESSAGESIGNATURE error
All messages on sequence diagrams
must have signatures assigned (signal
or operation).

NOATTACHMENT error

Embedding files in the model is not
allowed. Use a hyperlink to an
authoritative source instead (use an
artifact if necessary, to represent the
embedded file).

OBJECTFLOWCOMPAT error
If an object flow is realized by an item
flow or flow set, those flows must
convey the signal typing its source.

OBJECTFLOWENDS error
Object flows must have input/output
pins as their source/target (no direct
connection with send or accept events).

OBJFLOWSOURCE error
Object flows must have pins as their
source (not call operations or call
behaviors).

OPAQUEACTIONBODY error
Opaque actions must have a BODY
specified.

OPDOCUMENTATION error
All operations must have
documentation.

OPERATIONNAME error Operations must be named.

OPOWNER error
Operations must be owned by activities
or blocks with context, logical, or
physical stereotypes applied.

OPUSAGE info
This operation is not used (called on an
Activity or Sequence) in the model

OUTPINCONN error
Output pins must have an outgoing
object flow

PACKAGENAME error Packages must be named.

PARATYPE error
All parameters owned by operations
must be typed.

PARTIB error
Part properties may not be typed by
Interface blocks.

PARTLOOP error

There is a part property loop associated
with this block (a block in the structure
owns a part property typed by a block
"upstream," leading to recursion in the
structure tree.

PARTTYPE error All part properties must be typed.

PERFORMANCEFUNCTIONREFINE error
Performance requirements must refine
one or more functional requirements.

PHYSICALARCH error
Part properties that are owned by a
block with a physical stereotype must

Name Severity Error Message
be typed by a block with a physical
stereotype.

PHYSICALPORT error

All proxy ports owned by blocks with
the <<physical>> stereotype applied
must be typed by interface blocks that
have the <<physical>> stereotype
applied.

PHYSTERMPARTS error
Physical blocks with ATOMIC =
TRUE may not own part properties.

PROXYPORT error All ports must be proxy ports.

PROXYPORTTYPE error
Proxy ports must be typed by interface
blocks.

REALIZEDIRECTION error

Realization relationships between
logical and physical elements must
have the physical element as the source
and the logical element as the target.

RECEPTIONPROHIBIT error
Receptions are prohibited; use
operations instead.

REFPROPPROHIBIT error

Reference properties are prohibited.
These may be represented as part
properties at a higher level in the
system model structure.

REGIONNAME error
Regions of orthogonal states must be
named.

REQEXTEND error
Non-extended requirements are
forbidden.

REQTRACE error
Requirements must have at least one
outgoing trace (to artifact) or refine
relationship.

REQUIREMENTSATISFY info

This requirement does not have any
satisfy relationships. (Requirements
that have blank text are exempted from
this rule).

REQUIREMENTVERIFY info

This requirement does not have at least
one verify relationship. (Requirements
that have blank text are exempted from
this rule).

SENDINCOMING error

If incoming object flows to a Send
Signal event are realized by an item
flow or flow set, the signal of the event
must be conveyed by the item flows or
flow set.

Name Severity Error Message

SENDSIGNALMATCH error
The signal sent by a send signal action
must match the signal typing its input
pin.

SENDSIGNALPIN error
Send signal actions must have at least
one input pin.

SENDSIGNALPORTMATCH error
The assigned and inferred ports (via
item flow realization) must match.

SEQUENCELEVEL error
Sequence diagrams may not mix
physical and logical lifeline types.

SIGNALDOCUMENTATION error All signals must have documentation.

SIGNALEVENTSIGNAL error
Signal Events must have a signal
defined.

SIGNALNAME error All signals must be named.

SOFTWAREFUNCTION info
This software element does not own
any operations.

SRCCNT error
All source content elements must have
either a file name or hyperlink.

STATEDOCUMENTATION error All states must have documentation.

STATEMACHINEOPERATIONS error
State machines may not own operations
in their structure (move operation to a
block or activity).

STATENAME error States must be named.

STATEOWNER error
State machines must be owned by
blocks.

STATEREACHABILITY error
All states must have at least one
incoming transition.

STMINTEGRITY error

State machines may only call
operations owned within their owning
block's structural decomposition
(owned by blocks typing its parts).

SUBMACHINECONNECTIONS error
States that are submachines must have
all entry and exit points associated with
connection points.

SWIMLANEPROHIBIT error

Swimlanes are prohibited; see
customizations for operations and flows
that can display part-level ownership if
operations are owned by blocks.
Dynamic legends may also provide
similar functionality to swimlanes in a
more compact representation.

TIMEEVENTWHEN error
All transitions triggered by time events
must have WHEN defined.

TRANSITIONCHOICE error
All transitions exiting a choice must
have guards defined.

Name Severity Error Message

TRANSITIONSOURCE error
No operation owns an output parameter
typed by the signal (or its general
classifier) that triggers this transition.

TRANSITIONTRIGGER error
All transitions (except those exiting
connection points or pseudostates) must
have triggers.

TRANSITIONTRIGGERFLOW info
This transition is triggered by a signal
but is not associated with any item
flows or flow sets.

TRIGGERFLOWMISMATCH error
The signal triggering this transition is
not conveyed on any related item flows
or flow sets.

UCASSOCIATION error
Use cases may not be associated with
other use cases.

UCDOCUMENTATION error All use cases must have documentation.

UCTRACE error
All use cases must have an outgoing
trace, extend, or refine relationship or
an incoming include relationship

USECASENAME error Use Cases must be named.
VALUENAME error Value properties must be named.

VALUETYPE error
Value properties must be typed by
value types.

