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Treadstone:  
A Process for Improving Modeling Prowess  

Using Validation Rules 

Abstract: 

The creation of descriptive models using SysML is a skill-focused discipline; the outcomes of a 
modeling effort depend upon the abilities of the modelers contributing to it.  Ongoing shortages 
of skilled modelers are inhibiting the transition of systems engineering to a model-based 
discipline. 

This paper illustrates the use of validation rules to support instruction (both stand-alone 
modeling exercises and a larger, collaborative modeling project).  Validation rules have proven 
to be effective in reducing modeler errors when added incrementally in parallel with concepts 
introduced in class.  The rules simplify grading (since the instructor can focus on value-added 
content instead of semantic correctness).  In addition, the rules conform to the Seven Keys to 
Effective Feedback proposed by Grant Wiggins: 

1. Goal-Referenced (Error reduction/style conformance) 
2. Tangible and Transparent (Rules clearly explain what is wrong) 
3. Actionable (Error messages direct the modeler how to fix the issue) 
4. User-Friendly (Private feedback that marks elements with to simplify repair) 
5. Timely (On demand and rapid feedback eliminates errors before they accumulate) 
6. Ongoing (Available throughout the course of any modeling project) 
7. Consistent (All students receive the same feedback) [1]. 

The rules were continuously updated throughout the term in which they were introduced; 
students corrected new errors and improved their model quality as they executed their term 
projects.  Extracts from six team projects will be presented and contrasted with selected past 
projects (subjected to the same validation rules) to demonstrate the efficacy of the approach.  
Several models published by notable SysML modelers will also be analyzed. 

Systems Engineering in 2020:  A Discipline in Flux  

At the time of this paper’s publication, systems engineering is undergoing a transformation from 
document-intensive systems engineering (DISE) to model-based systems engineering (MBSE).  
This shift is driven by the increasing complexity of modern systems; traditional methods that rely 
on requirements statements, pictures-as-diagrams, and collections of disconnected artifacts and 
documents are not scalable.  They are prone to drifting out of synchronization, resulting in errors 
and omissions in the communication of design intent that manifest themselves as errors in testing 
or failures in usage.   



A well-crafted system model is inherently consistent and complete; relevant information can be 
readily extracted to serve individual stakeholder’s needs.  Unfortunately, many practitioners do 
not create well-crafted models.  Many superficially replicate DISE artifacts by using modeling 
tools as drawing tools (focusing on visual representations instead of model consistency).  Others 
fail to scrutinize their work to detect errors and omissions.  Even skilled modelers disagree on 
modeling methodology; each has his own preferred modeling patterns and stylistic 
idiosyncrasies.  Published textbooks and style guides tend to focus on superficialities (colors, 
capitalization of words, and number of elements on a diagram) instead of emphasizing the need 
to ensure that model elements, properties, and relationships are complete and consistent. 

This paper will focus on how system modeling is a craft (with resulting pedagogical 
implications), the creation of descriptive and/or executable models in SysML (the system 
modeling language), and how the use of automated validation rules can help teach system 
modeling and improve model quality.  

System Modeling as a Craft 

Model-Based Systems Engineering (MBSE) is a skill-based discipline that shares many 
similarities with software development.  Crafting descriptive system models in the System 
Modeling Language (SysML) is like writing code; models are an expression of intent.  Models 
are also path dependent, in that the experience of the development team shapes the outcome.  
Although good modeling practices and styles can be recognized and applied, alternate 
expressions of the same solution (and the existence of multiple solutions in a design set) imply 
that, in practice, there is not one, perfect, absolutely correct and optimal representation of a 
system.  Even if such a construct existed in theory (a matter left for others to debate), the effort 
to seek it and develop a model in conformance to it may exceed the benefits of a satisficing 
model available rapidly at a lower development cost. 

Hillary Sillitto suggests that “Architecting a system is the activity of creating a system 
architecture with the aim that the system to be built will do the job it was meant to do – in other 
words “will be fit for purpose”…Architecting defines what to design, while design defines what 
to build.” [2]

There is significant ongoing work in applying patterns and machine learning to system models 
(because the rigor of a purpose-built language enables visibility and analysis techniques 
impossible with natural language processing).  There is promise in these efforts and they will 
likely enable measurable improvements in model quality.  However, there is a need to execute 
effective systems architecture now, and that means that for the foreseeable future the capabilities 
of the humans-in-the-loop will dominate the outcomes of each modeling effort. 

Merriam-Webster defines craft as “an occupation or trade requiring manual dexterity or artistic 
skill.” [3]  Ryan Noguchi of Aerospace Corporation states: “System modeling is not a 
conceptually simple or straightforward task. It is like computer programming in many respects, 
requires some similar skill sets, and involves similar design tradeoffs…The conceptual model 



and the organization of models into modules can significantly impact their usability, consistency, 
and maintainability. It is important to have experienced architects familiar with both the problem 
space and the capabilities of the tools to lead that effort. Furthermore, building models using 
these tools is not always straightforward, and like software programming, is a skill that not 
everyone can learn equally well.” [4]  In essence, it is a craft. 

In Apprenticeship Patterns, Hoover and Oshineye describe the values of craftsmanship as 
including (emphasis added by the author): 

 An attachment to… a “growth mindset.” This entails a belief that you can be better and 
everything can be improved if you’re prepared to work at it… 

 A need to always be adapting and changing based on the feedback you get from the 
world around you… 

 A desire to be pragmatic rather than dogmatic. This involves a willingness to trade off 
theoretical purity or future perfection in favor of getting things done today.

 A belief that it is better to share what we know than to create scarcity by hoarding it… 

 A willingness to experiment and be proven wrong… 

 A dedication to what psychologists call an internal locus of control. 
[https://en.wikipedia.org/wiki/Locus_of_control]  This involves taking control of and 
responsibility for our destinies rather than just waiting for someone else to give us the 
answers. 

 A focus on individuals rather than groups... 

 A commitment to inclusiveness… 

 We are skill-centric rather than process-centric. For us, it is more important to be highly 
skilled than to be using the “right” process…This idea suggests that no process or tool is 
going to make everyone equally successful. Even though we can all improve, there will 
always be discrepancies in our skill levels.

 A strong preference for what Etienne Wenger calls “situated learning.” 
[http://wiki.c2.com/?LegitimatePeripheralParticipation..Its essence is that the best way to 
learn is to be in the same room with people who are trying to achieve some goal using 
the skills you wish to learn.” [5] 

Teaching a Craft:  Learning to Do by Doing 

Figure 1: Lintel from A Closed School (Author's Photo) 



The maxim in Figure 1 was cut into the lintel above the main entrance to a large, old, closed 
school.  It is an educational idea that comes into and out of favor in academia but is critically 
important to passing on craft skills (consider the difficulties inherent in teaching blacksmithing 
solely by drawing diagrams and lecturing instead of giving students access to a forge, anvil, 
tools, and steel…and consider the implications if the instructor is not a skilled, practicing 
blacksmith).   

Acknowledging modeling’s nature as a craft has shaped the author’s pedagogical approach to 
teaching system modeling using SysML and MagicDraw from Dassault Systèmes.  The 
introductory system modeling class currently consists of two phases.  In the first, students are 
required to construct small models and demonstrate their ability to create simple diagrams using 
MagicDraw.  They also learn how to edit and submit their work using TeamWork Cloud (the 
Dassault Systèmes collaboration server for MagicDraw).  This ensures they can perform the 
rudiments of system modeling and have overcome any technical challenges in connecting to the 
university’s server.  In the second phase, teams of students collaboratively model representative 
systems.  This lets them experience the subtleties of working together on a large system model, 
understand and experience best practices for collaboration, and cultivate a visceral understanding 
of how modeling tools work and how to make a model serve a systems engineering effort.  
Systems-of-interest have included notional nuclear submarines, next generation Mars orbiters, 
and simulated Mars rovers. 

During the second phase, normal classroom meetings are suspended, and the instructor conducts 
weekly meetings with each team to answer questions, provide recommendations, and generally 
shepherd each team towards maturing its model.  In the past, a significant amount of the 
instructor’s time was spent on resolving semantic and structural issues with each model in 
addition to suggesting methods and pointing out opportunities for improvement.  Resolving these 
issues is critical to the creation of well-formed models that can support advanced querying and 
tactical analysis…which should be the desired outcome of a modeling effort.  Crafting a 
beautiful, useless model (or set of diagrams) does a disservice to all stakeholders. 

The Burden of Inspection-Based Feedback 

As Noguchi states, “Many of the DoDAF architecture description models that have been built to 
date have been found to have many syntactical errors that would have been caught had they used 
the built-in model validation capabilities of their tools, but the problem would also have been 
apparent upon visual inspection by an experienced modeler… When a program cannot afford to 
populate their [sic] modeling team completely with experienced modelers, it is critical that model 
reviews be performed frequently by experienced modelers, particularly to check for semantic 
mistakes—those that won’t be caught by the modeling tools’ validation checks—by providing 
the review team with the actual electronic model files for them to review in detail using the 
modeling tool. Model reviews performed in a briefing format or through static captures of the 
model (typically via PDF files or HTML files) are much less effective at ferreting out errors.” [4] 



Unfortunately, this review process is not scalable.  The author found that the student models tend 
to grow rapidly (105 elements are not uncommon) and it rapidly becomes impossible to conduct 
the equivalent of five or more detailed model reviews on a weekly basis.  Although students 
were expected to use MagicDraw’s built-in validation rules, these checks were not sufficient to 
enforce the author’s modeling methodology and style.  In addition, they do not completely test 
for common modeling patterns and practices. 

Automated Reviews via Custom Validation Suites 

In 2019, the author attended Approaches to Marking and Validating Sensitive MBSE Models, a 
presentation at the 2019 MBSE Cyber Experience Symposium [6].  This presentation, by Veejay 
Gorospe of the Johns Hopkins University’s Applied Physics Laboratory, showcased the usage of 
customized validation rules to assess security classification issues.  Gorospe created validation 
rules using the structured expression language built into MagicDraw. 

The author is a proponent of using these structured expressions to create purpose-built tables, 
matrices, and dynamic legends to extract value from models.  The language uses internal 
operations (such as union, intersect, isEmpty, etc.) and metachain navigation (MagicDraw’s 
attribute, element, and relationship navigation syntax) to extract information from the model.  
The structured expression language layers a relatively simple user interface on patterns that 
MagicDraw converts into internally executed code. 

To craft a validation rule, all that is necessary is to identify the type of element to which it is to 
be applied (for example, an object flow) and to develop a structured expression that returns a 
Boolean value.  Elements for which the expression is true pass validation and those for which it 
is false fail validation.  Severity level and documentation (which help the modeler correct the 
error) should also be created.  MagicDraw’s mechanism for executing rules is that they are 
constraints with the <<validationRule>> stereotype applied.  They must also be resident in a 
package with the <<validationSuite>> stereotype applied.  This exposes them to the validation 
engine. 

The author began constructing his own set of validation rules in the fall of 2019.  These were 
intended to support the transition of the introductory SysML course to asynchronous online 
lectures supported with live, weekly lab sessions.  These rules were designed to conduct stylistic, 
methodological, and semantic error-checking but were built from the perspective of an 
experienced modeler.  As the author began to grade student models it rapidly became apparent 
that novice modelers could build compliant models that still did not conform to the desired style.  
These workarounds clearly identified gaps in the rule set and led to the development of more 
rules; the implicit and unspoken assumptions made from experience were instantiated in the 
expanded ruleset. 

This meant that models that passed validation were graded in accordance with the rules as 
provided but that the next iteration of the model was expected to conform to the additional rules.  
Although the author tested each rule to eliminate false positives and false negatives, 



idiosyncrasies in individual approaches highlighted additional adjustments needed to ensure that 
the rules functioned as intended. 

The rule set began as a solely academic exercise at the University of Detroit Mercy; however, 
their utility led the author to integrate them into the models he created for his primary employer 
(SAIC).  The rules were kept in two separate profiles (one at the university and one resident on 
the SAIC server).  The author manually kept them in synch until his employer indicated a 
willingness to release them publicly as a service to the modeling community.  The university 
profile was replaced with a pre-release version of the SAIC profile; this allowed more rapid 
development as additional errors and corner cases were revealed in both environments.   

Testing the Rules:  The Mars Society Rover Project 

The subject of the Fall 2019 class modeling project was The Mars Society’s 2020 University 
Rover Challenge [7].  This competition requires collegiate teams to build functioning rovers for 
competing at the Mars Desert Research Station in Utah.  The rules are publicly published and 
executing a project based on them ensured that the student models do not contain proprietary 
information that would preclude their release. 

The Challenge contained seventy-six requirements that were divided among the teams to 
copy/paste from the source PDF file into Microsoft Excel.  They were then imported by the 
author to serve as a shared resource.  Each team’s model then used a library of common 
elements, the common requirements set, and the SAIC DE Profile.   

Each team was instructed to singularize the requirements and establish <<satisfy>> and 
<<verify>> relationships between the requirements, architectural elements, and test cases.  They 
refactored the requirements using the extended SysML requirement types (functional, 
performance, interface, design constraint, et al.) to leverage the built-in validation rules.  They 
also established <<trace>> relationships between their requirements and the originals in the used 
project. 

Student feedback was that this was a tedious process; that was the intent of this portion of the 
assignment.  By translating the text-based requirements into model elements (and appropriate 
test cases), the students gained a visceral understanding of how poorly formed many textual 
requirements are.  See Table 1 for a summary of the final requirements count for each team. 



Requirements Count 

Team Initial Final % Increase 

Curiosity 76 205 170%

JARS 76 216 184%

Strike Force Alpha 76 142 87%

Team Bolt 76 172 126%

Team Chimps 76 284 274%

Team Voodoo 76 110 45%
Table 1: Requirements Growth 

Once the students had completed their analysis of the provided requirements, they were required 
to complete a logical architecture for their rover.  These included activity diagrams, state 
machines, and internal block diagrams (IBDs).  The IBDs illustrate the connections between 
structural elements of the model and what flows of energy, material, or information are 
transferred between each element.  The modeling methodology taught in class emphasizes the 
harmonization of system behavior and structure; several rules check for consistency (for 
example, that an output from one system’s behavior that is consumed as input of another 
element’s function is mapped to a connection between them). 

The models were graded four times during the term:  Initial, Checkpoint, and Final submissions 
(as well as end-of-term).  Project element counts and final error totals are displayed in Table 2.  
Note that three teams had zero errors and zero info (indications of immaturity, typically related 
to behavioral/structural disconnects).  See Figure 2 and Figure 3 for plots of model elements vs. 
team and milestone. 

Model Elements Validation 

Team Initial Checkpoint Final End of Term Errors Info Pages

Curiosity 8587 22550 17588 21483 0 0 198

JARS 9548 16291 18357 21905 1 214 237

Strike Force Alpha 7070 8963 13351 16204 0 0 193

Team Bolt 8262 19440 15206 17773 0 39 199

Team Chimps 10015 22050 18732 21768 0 0 242

Team Voodoo 5664 8583 9846 11836 0 76 175
Table 2: Model Element Summary 

The Pages column in Table 2 is the page count of a Requirements Report generated from 
MagicDraw.  This standard report includes the requirements as well as diagrams and other model 
content.  The author generated these to show the students how much material they had developed 
and integrated over the course of half of a semester.  These reports also gave them an 
appreciation of the difficulties in generating artifacts of that size and complexity without using a 
model as an authoritative source of truth. 



Figure 2: Model Elements by Team 

Figure 3: Model Elements by Milestone 

Error Rates of Unassisted Modeling 

The author applied the validation rules to models created by Lenny Delligatti [8], Sandy 
Friedenthal and Christopher Oster [9], and Robert Karban [10], and two other student models 
previously published (the NeMO [11] and PRZ-1 [12]).  These models, all publicly available, 
represent a cross-section of modeling styles and approaches.  The intent of this analysis was to 
confirm that the rules were broadly applicable and to measure the error rates of student and 
experienced modelers.  Delligatti, Friedenthal, and Karban are well-regarded professionals; their 
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error rate is a good indication of how many errors skilled modelers introduce when modeling 
without automated validation (the average practitioner is probably much higher).  

Row Labels DellSat Friedenthal TMT NeMO PRZ-1 Grand Total 

ACTIVITY 9 129 573 197 97 1005 

ACTOR 6 6 5 19 24 60 

CONBLOCK 12 4 16 

OPERATION 45 18 390 326 119 898 

SIGNAL 27 38 285 244 40 634 

STATE 20 37 226 235 11 529 

USE CASE 14 18 16 182 12 242 

Grand Total 121 246 1495 1215 307 3384 

Table 3: Undocumented Elements 

Table 3: Undocumented Elements summarizes the documentation errors present in the models.  
This is a stylistic requirement (and these errors will not be included in the computation of error 
rate).  However, they are shown here because in the author’s experience properly documenting 
these element types prevents confusion downstream when a model has matured, and it is being 
actively used to make tactical decisions.   

Row Labels DellSat Friedenthal TMT NeMO PRZ-1 Grand Total 

ACTIVITYNAME 2 2 

ACTORNAME 3 3 

BLOCKNAME 1 1 

PACKAGENAME 1 1 

REGIONNAME 4 46 10 60 

STATENAME 1 22 23 

Grand Total 1 4 47 34 4 90 

Table 4: Unnamed Elements 

Unnamed elements of the types listed in Table 4 tend to indicate modeling housekeeping errors; 
if an element is created and deleted from a diagram but not from the model it can be difficult to 
detect and remove.  The rule to name region names in states is good modeling practice and is 
included in this set. 



DellSat Friedenthal TMT NeMO PRZ-1 
Grand 
Total 

ACCEPTEVENT 
TIMEEVENTTRIGGER

1 1 

ACTIVITYEDGEGUARD 2 94 6 126 228 
ACTIVITYPARAMETERFLOW 9 93 33 15 139 289 
BUFFERFLOW 1 3 4 
CALLOPERATIONOPERATION 4 2 6 
CONSTRAINTPARAM 17 17 
CONSTRAINTSPECIFICATION 2 40 338 28 408 
CONTROLNODEINCOMING 4 2 6 
CONTROLNODEOUTGOING 4 20 3 11 38 
EXTENDEXTPOINT 1 1 
EXTENSIONPOINTUSE 6 6 
INPINSCONN 17 39 49 57 162 
MESSAGESIGNATURE 12 10 1 9 32 
PARATYPE 233 75 57 365 
PARTTYPE 2 5 7 
STATEREACHABILITY 2 1 32 2 37 
TRANSITIONCHOICE 2 2 
TRANSITIONTRIGGER 2 11 23 98 9 143 
VALUETYPE 67 15 4 4 90 
Grand Total 25 265 805 323 424 1842 

Table 5: Omissions 

The error totals in Table 5 are related to omissions in model elements; these represent 
unconnected elements, missing flows, undefined decision choices, and other content that should 
be included in a well-formed model.  Some of these errors result from placing information in the 
wrong location in the model (for example, placing conditional information in the Name field 
instead of the Guard field); others may result from deleting some model elements improperly (a 
housekeeping issue).   

DellSat Friedenthal TMT NeMO PRZ-1
Grand 
Total 

CALLBEHAVIORSELF 1 1
PARTLOOP 3 12 15
Grand Total 4 12 16

Table 6: Loops 

The loops in Table 6 represent infinite loops of behavior or structure (behaviors that call 
themselves and part properties typed by elements that lead to recursive structures). 



DellSat Friedenthal TMT NeMO PRZ-1 Grand Total

Unnamed / 
Omissions / Loops

26 269 856 357 440 1948 

Elements 3542 13187 275256 35293 44265 371543 

Errors  
Per 1,000 Elements

7.3 20.4 3.1 10.1 9.9 5.9 

Table 7:  Error Summary 

Table 7 lists the error totals for each model (not including documentation errors) and computes 
the number of errors per thousand model elements.  The average error rate compares favorably 
with the industry average for software lines of code (15-50 errors per delivered lines of 
code) [13].  The models created by experienced modelers (DellSat/TMT) have a lower error rate 
than the student models.  The Friedenthal/Oster model was built as a companion to a book and 
may not have been built with the same level of rigor as a model-for-use.  Karban’s model (TMT) 
has a larger fraction of parametric diagrams and elements (which have fewer associated rules); 
this may contribute to the proportionally lower number of defects.  The two student models made 
without the assistance of validation rules have similar error rates. 

Note that five of the six models constructed this term, supported by the validation rules, had zero 
errors (and the sixth had one error, a defect rate of 0.05 errors per thousand elements).  This is a 
marked reduction in defects when compared with any of the other models, particularly when one 
considers these teams of five or six students learned SysML, MagicDraw, and the modeling 
methodology in the same term that they constructed the models.  Table 8 illustrates the relative 
sizes of the models analyzed in this paper. 

Team Elements Relative Size

DellSat 3542 1.3% 

Friedenthal 13187 4.8% 

TMT 275256 100.0% 

NeMO 35293 12.8% 

PRZ-1 44265 16.1% 

Curiosity 21483 7.8% 

JARS 21905 8.0% 

Strike Force Alpha 16204 5.9% 

Team Bolt 17773 6.5% 

Team Chimps 21768 7.9% 

Team Voodoo 11836 4.3% 

Table 8: Relative Model Sizes 



Figure 4: Error Rate 

Figure 4 plots the number of errors in each model versus the log10 of the number of elements in 
each model.  It suggests that the number of errors introduced without validation may be 
estimated as a function of the number of elements; it also suggests that the models created with 
validation are part of a different population (illustrating the efficacy of the rules in driving the 
desired outcomes).  

Implementation in a Modeling Course 

The use of the validation rules as a pedagogical aid demonstrated significant utility.  The 
decrease in non-stylistic errors shows the value in detecting semantic and completeness issues; 
the lack of stylistic errors shows that the rules are effective in shaping modelers as they develop 
skill with the modeling tool, language, and methodology.   

The validation rules are also aligned with Wiggin’s Rules for Effective Feedback: 

1. Goal-Referenced (Error reduction/style conformance) 
2. Tangible and Transparent (Rules clearly explain what is wrong) 
3. Actionable (Error messages direct the modeler how to fix the issue) 
4. User-Friendly (Private feedback that marks elements with errors to simplify repair) 
5. Timely (On demand and rapid feedback eliminates errors before they accumulate) 
6. Ongoing (Available throughout the course of any modeling project) 
7. Consistent (All students receive the same feedback) [1]. 
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In essence, the rules allow students to benefit from the expertise encoded into them by receiving 
on-demand, detailed modeling feedback.  During the term, students responded well to the use of 
the rules; many of them were able to resolve their errors with minimal assistance and the focus of 
the lab sessions tended to be on more advanced topics.  In addition, the time to grade and assess 
the teams’ submissions was greatly reduced.  Students learned that creating elements triggered a 
cascade of errors until they were documented, traced and/or related, and used properly.  The 
presence of defects in the model highlighted “hot spots” that required attention and other sections 
of the models could receive more cursory inspections.  Generic tables and dependency matrices 
were also used to conduct quality checks that supplemented detailed review of specific diagrams 
and model elements. 

Educators wishing to implement this approach may download the rules from SAIC [14]; they 
have been made publicly available as a service to the modeling community.  As of May 2020, 
the rules are also accompanied by an example model, videos explaining some of the 
customizations included, and a model-based style guide.  This guide provides illustrative 
examples and rationales for each rule; the example model, based upon the Ranger lunar probes 
of the 1960s, is a complete representation of a system in SysML: requirements, logical and 
physical architectures, behavior diagrams, and parametrics.  The rules are being ported to the 
IBM Rational Rhapsody tool; these will also be released to the modeling community.  

Each modeling tool allows the user to tailor which rules are applied to a given model; educators 
are encouraged to select the rules from this set that are applicable and to create their own 
supplemental rules as needed. 

Conclusions and Future Work 

The construction and deployment of automated validation rules had a positive impact on the 
quality of student models.  It also reduced the time needed to review and grade models and 
allowed more time to be spent on addressing more advanced modeling issues.  Analysis of 
models created without automatic validation illustrated that even experienced modelers introduce 
errors into models at a rate comparable to authoring software. 

It is the author’s hope that widespread adoption of this ruleset will improve the quality of SysML 
models created by students and professional practitioners.  The model-based style guide and 
Ranger model can serve as exemplars to support students as they undertake modeling projects.  
This will help accelerate the transformation to a model-based discipline by resolving the current 
talent shortage. 

The validation ruleset will continue to be expanded and tested in both academic and professional 
contexts (as of the v1.5 May 2020 release there are 153 rules).  The author intends to re-analyze 
these models with the expanded ruleset and explore how rules may be used to assist in 
collaboration between organizations (for example, making a set of rules contractually binding so 
that any model exchanged between organizations must pass an agreed-upon set of rules). 
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Appendix 1:  Validation Rules Used (circa December 2019) 

Name Severity Error Message 

ACCEPTEVENTMATCH error 
The signal triggering an accept event 
action must match the signal typing its 
output pin.

ACCEPTEVENTOUTPUT error 

Accept Events must own an output pin.  
If you are modeling a signal that 
triggers a state transition, associate the 
object flow with an item flow and 
realize the transition.

ACCEPTEVENTPORTMATCH error 
The assigned and inferred ports (via 
item flow realization) must match.

ACCEPTEVENTTIMEEVENTTRIGGER error 
Accept events triggered by time events 
must have WHEN defined.

ACCEPTOUTGOING error 

If an Accept Event outgoing object 
flow is realized by an item flow or flow 
set, the signal that triggers the accept 
event must be conveyed by the item 
flows or flow set.

ACTIVITYACTIONSTM error 
All activities owned by state machines 
must have at least one action node.

ACTIVITYDOCUMENTATION error All activities must have documentation.

ACTIVITYEDGEGUARD error 
All control and object flows exiting a 
decision node must have guards 
defined.

ACTIVITYEDGEMISMATCH error 
Flows into and out of a control node 
(join, fork, merge, or decision) must be 
of the same type (object or control).

ACTIVITYFINAL error 
Activities that own diagrams must own 
one final node and it must have one 
incoming control flow.

ACTIVITYINITIAL error 
Activities that own diagrams must own 
one initial node and it must have one 
outgoing control flow.

ACTIVITYNAME error Activities must be named.

ACTIVITYOWNS error 

Activities must own at least one 
diagram or operation.  If it will not be 
further decomposed, set its "Leaf" 
attribute to true.

ACTIVITYPARAMETERFLOW error 
All activity parameter nodes must have 
incoming or outgoing object flows.

ACTIVITYPARAMETERSTM error 
State Machine Entry, Do, Exit, and 
Transition activities may not have 
parameters.



Name Severity Error Message 

ACTORASSOCIATION error 
Actors may not be associated with 
other actors.

ACTORASSOCIATIONS error 
All Actors and other use case elements 
must be associated with at least one use 
case.

ACTORDOCUMENTATION error All Actors must have documentation.
ACTORNAME error All Actors must have names.

ACTORUSECASE error 
All use case elements must be 
associated with at least one use case or 
be specialized by other actors.

ACTPARTYPE error 
All activity parameter nodes must be 
typed by signals.

ACTREALIZATION error 

All Actors and other use case elements 
must be realized by at least one part 
property in the structure tree of a 
system context block.  Environmental 
effects may be realized by value 
properties in the structure tree of a 
system context block.

ALLOCATIONPROHIBIT error 

Allocations are prohibited; use 
realization (between levels of 
abstraction) or satisfy (between 
requirements and other model 
elements).

BLOCKNAME error Blocks must be named.

BUFFERFLOW error 
Buffers and data stores must have at 
least one object flow (incoming or 
outgoing).

CALLBEHAVIORBEHAVIOR error 
Call behavior actions must have the 
called behavior specified.

CALLBEHAVIORSELF error 
Call behavior actions may not call the 
activity that owns them.

CALLOPERATIONOPERATION error 
Call operation actions must have the 
called operation specified.

CHANGEEVENTEXPRESSION error 
All transitions triggered by change 
events must have CHANGE 
EXPRESSION defined.

CONBLOCKDOCUMENTATION error 
All blocks that type part properties of 
the system context must have 
documentation.

CONNECTIONPOINTCONNECTED error 
Connection points must have one 
transition (outgoing or incoming).

CONNECTOREND error Connector ends must be proxy ports.



Name Severity Error Message 

CONSTRAINTPARAM error 
Constraint blocks must own one or 
more constraint parameters.

CONSTRAINTSPECIFICATION error 
Constraint specifications may not be 
empty.

CONTEXTPARTS error 
System context blocks must own at 
least one part property.

CONTEXTREALIZATION error 
All part properties owned by system 
context blocks must realize one or more 
use case elements.

CONTEXTTYPE error 

Part properties may not be typed by 
system context blocks; they should 
typically be the top-level block that 
owns the system context IBD.

CONTROLNODEINCOMING error 
Joins and merges must have at least 
two incoming flows.

CONTROLNODEOUTGOING error 
Forks and decisions must have at least 
two outgoing flows.

CONVEYTYPE error Item flows may only convey signals.
DATASTORETYPE error Data stores must be typed by signals.

DECISIONNODENAME error 
Decision nodes must have a name (this 
is used to specify the decision).

EXTENDEXTPOINT error 
Extend relationships must be assigned 
to at least one extension point.

EXTENSIONPOINTUSE error 
Extension points must be associated 
with at least one Extend relationship.

EXTERNALPARTTYPE error 
Part properties typed by external blocks 
must be owned by system context or 
external blocks.

FLOWCONNECTOR error 
This flow is not realized by any 
connectors.

FLOWDIRECTION error 

All flow properties must be out or 
inout; this ensures consistent 
conjugation (all 1-way in flows are 
conjugated).

FLOWFINALINCOMING error 
All flow final nodes must have one 
incoming flow.

FLOWSETENDS error 

If a flow set has individual flows 
assigned, the individual flows must 
connect the source and target of the 
flow set.

FLOWSETSOURCE error 

Ports that are the source of a flow set 
must have flow properties compatible 
with the conveyed signals of the flow 
set.



Name Severity Error Message 

FLOWSETTARGET error 

Ports that are the target of a flow set 
must have flow properties compatible 
with the conveyed signals of the flow 
set.

FLOWTYPE error 
All flow properties must be typed by 
signals.

IBDOWNER error IBDs must be owned by a block.

IBNOTSPECBLOCK error 
Interface blocks may not specialize 
non-interface blocks.

IMPITEMFLOWCOMPAT error 
Flow properties of proxy ports 
connected by flow sets must be 
compatible.

INPINCONN error 
Input pins must have an incoming 
object flow (target pins are exempt 
from this rule).

INTBLOCKFLOW error 
Interface blocks must own at least one 
flow property or port.

INTERFACENEEDED info 
The owners of the ends of this object 
flow are different and it is not realized 
by an item flow.

ITEMFLOWCONVEYED error 
All item flows must convey one or 
more signals or be part of a flow set.

LIFELINETYPE error All lifelines must be typed by blocks.

LOGICALARCH error 

Part properties that are owned by a 
block with a logical stereotype must be 
typed by a block with a logical 
stereotype.

LOGICALCONNFLOWS info 
All connectors that connect ports in the 
logical architecture must have at least 
one flow.

LOGICALPHYSICAL error 
Blocks cannot have both logical and 
physical stereotypes applied.

LOGICALPORT error 

All proxy ports owned by blocks with 
the <<logical>> stereotype applied 
must be typed by interface blocks with 
the <<logical>> stereotype applied.

LOGTERMPARTS error 
Logical blocks with ATOMIC = TRUE 
may not own part properties.

MESSAGEFLOWNEEDED info 
This message signature is a signal and 
is not realized by any item flows or 
flow sets.

MESSAGEFLOWS error 
If a message is associated with item 
flows or flow sets, they must convey its 
signature signal.



Name Severity Error Message 

MESSAGESIGNATURE error 
All messages on sequence diagrams 
must have signatures assigned (signal 
or operation).

NOATTACHMENT error 

Embedding files in the model is not 
allowed.  Use a hyperlink to an 
authoritative source instead (use an 
artifact if necessary, to represent the 
embedded file).

OBJECTFLOWCOMPAT error 
If an object flow is realized by an item 
flow or flow set, those flows must 
convey the signal typing its source.

OBJECTFLOWENDS error 
Object flows must have input/output 
pins as their source/target (no direct 
connection with send or accept events).

OBJFLOWSOURCE error 
Object flows must have pins as their 
source (not call operations or call 
behaviors).

OPAQUEACTIONBODY error 
Opaque actions must have a BODY 
specified.

OPDOCUMENTATION error 
All operations must have 
documentation.

OPERATIONNAME error Operations must be named.

OPOWNER error 
Operations must be owned by activities 
or blocks with context, logical, or 
physical stereotypes applied.

OPUSAGE info 
This operation is not used (called on an 
Activity or Sequence) in the model

OUTPINCONN error 
Output pins must have an outgoing 
object flow

PACKAGENAME error Packages must be named.

PARATYPE error 
All parameters owned by operations 
must be typed.

PARTIB error 
Part properties may not be typed by 
Interface blocks.

PARTLOOP error 

There is a part property loop associated 
with this block (a block in the structure 
owns a part property typed by a block 
"upstream," leading to recursion in the 
structure tree.

PARTTYPE error All part properties must be typed.

PERFORMANCEFUNCTIONREFINE error 
Performance requirements must refine 
one or more functional requirements.

PHYSICALARCH error 
Part properties that are owned by a 
block with a physical stereotype must 



Name Severity Error Message 
be typed by a block with a physical 
stereotype.

PHYSICALPORT error 

All proxy ports owned by blocks with 
the <<physical>> stereotype applied 
must be typed by interface blocks that 
have the <<physical>> stereotype 
applied.

PHYSTERMPARTS error 
Physical blocks with ATOMIC = 
TRUE may not own part properties.

PROXYPORT error All ports must be proxy ports.

PROXYPORTTYPE error 
Proxy ports must be typed by interface 
blocks.

REALIZEDIRECTION error 

Realization relationships between 
logical and physical elements must 
have the physical element as the source 
and the logical element as the target.

RECEPTIONPROHIBIT error 
Receptions are prohibited; use 
operations instead.

REFPROPPROHIBIT error 

Reference properties are prohibited.  
These may be represented as part 
properties at a higher level in the 
system model structure.

REGIONNAME error 
Regions of orthogonal states must be 
named.

REQEXTEND error 
Non-extended requirements are 
forbidden.

REQTRACE error 
Requirements must have at least one 
outgoing trace (to artifact) or refine 
relationship.

REQUIREMENTSATISFY info 

This requirement does not have any 
satisfy relationships.  (Requirements 
that have blank text are exempted from 
this rule).

REQUIREMENTVERIFY info 

This requirement does not have at least 
one verify relationship.  (Requirements 
that have blank text are exempted from 
this rule).

SENDINCOMING error 

If incoming object flows to a Send 
Signal event are realized by an item 
flow or flow set, the signal of the event 
must be conveyed by the item flows or 
flow set.



Name Severity Error Message 

SENDSIGNALMATCH error 
The signal sent by a send signal action 
must match the signal typing its input 
pin.

SENDSIGNALPIN error 
Send signal actions must have at least 
one input pin.

SENDSIGNALPORTMATCH error 
The assigned and inferred ports (via 
item flow realization) must match.

SEQUENCELEVEL error 
Sequence diagrams may not mix 
physical and logical lifeline types.

SIGNALDOCUMENTATION error All signals must have documentation.

SIGNALEVENTSIGNAL error 
Signal Events must have a signal 
defined.

SIGNALNAME error All signals must be named.

SOFTWAREFUNCTION info 
This software element does not own 
any operations.

SRCCNT error 
All source content elements must have 
either a file name or hyperlink.

STATEDOCUMENTATION error All states must have documentation.

STATEMACHINEOPERATIONS error 
State machines may not own operations 
in their structure (move operation to a 
block or activity).

STATENAME error States must be named.

STATEOWNER error 
State machines must be owned by 
blocks.

STATEREACHABILITY error 
All states must have at least one 
incoming transition.

STMINTEGRITY error 

State machines may only call 
operations owned within their owning 
block's structural decomposition 
(owned by blocks typing its parts).

SUBMACHINECONNECTIONS error 
States that are submachines must have 
all entry and exit points associated with 
connection points.

SWIMLANEPROHIBIT error 

Swimlanes are prohibited; see 
customizations for operations and flows 
that can display part-level ownership if 
operations are owned by blocks.  
Dynamic legends may also provide 
similar functionality to swimlanes in a 
more compact representation.

TIMEEVENTWHEN error 
All transitions triggered by time events 
must have WHEN defined.

TRANSITIONCHOICE error 
All transitions exiting a choice must 
have guards defined.



Name Severity Error Message 

TRANSITIONSOURCE error 
No operation owns an output parameter 
typed by the signal (or its general 
classifier) that triggers this transition.

TRANSITIONTRIGGER error 
All transitions (except those exiting 
connection points or pseudostates) must 
have triggers.

TRANSITIONTRIGGERFLOW info 
This transition is triggered by a signal 
but is not associated with any item 
flows or flow sets.

TRIGGERFLOWMISMATCH error 
The signal triggering this transition is 
not conveyed on any related item flows 
or flow sets.

UCASSOCIATION error 
Use cases may not be associated with 
other use cases.

UCDOCUMENTATION error All use cases must have documentation.

UCTRACE error 
All use cases must have an outgoing 
trace, extend, or refine relationship or 
an incoming include relationship

USECASENAME error Use Cases must be named.
VALUENAME error Value properties must be named.

VALUETYPE error 
Value properties must be typed by 
value types.


