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Abstract— this article presents a high-level configuration 
and task assignment software package that distributes 
algorithms on a swarm of robots which allows them to 
operate in a swarm fashion. When the swarm robotic 
system adopts a decentralized approach, the desired 
collective behaviors emerge from local decisions made by 
the robots themselves according to their environment. This 
paper first brings a discussion on the existing swarm 
control environments. Secondly it proposes a software 
application that aims to facilitate the deployment of 
multiple robotic agents which have different 
configurations and sensory components. Using its GUI, the 
proposed system expects the operator to select between 
several available robot agents and assign the group of 
robots a particular task from a set of available ones. The 
main purpose for designing this framework is to reduce 
the time and complexity of the development of robotic 
software and maintenance costs, and to improve code and 
component reusability. 

Keywords— Decentralized Swarm Intelligence, Modular 
Robotic Agents, Robotics Interactive Software, Robots 
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I. INTRODUCTION 
It has been proven that a single robot with multiple 

capabilities cannot necessarily complete an intended job using 
the same time and cost as that of multiple robotic agents. 
Different robots, each one with its own configuration, are 
more flexible, robust and cost-effective. Moreover, the desired 
tasks may be too complex for one single robot, whereas it can 
be effectively done by multiple robots [1, 2]. One of the key 
advantages of the corporative multi-agents robotic systems is 
fault-tolerance in which a robot can take over the task of a 
failing one. Modular robotic systems have shown to be robust 
and flexible in the tasks of localization, surveillance [3], and 
reconnaissance [4]. Such properties are likely to become 
increasingly important in real-world robotics applications. 

Decentralization means that the algorithm does not require 
access to the full global state and all control computations are 
done locally. However, to command large groups of robots, it 
is also essential to include an element of centralization to 
allow humans to interact and task the team. Our paper is based 
on the assumption that there is a lack of software packages 
which provide control for the different platforms of robots 
individually and allow concurrent control of heterogeneous 
robotic teams. Our objective is to develop algorithms that can 
provide connectivity between multiple agents, besides 
building central software to track these agents. Such system 
design is motivated by our interest in multi-robot control for 
the deployment of potentially large numbers of cooperating 
robots and application tasks such as persistent navigation, 
object manipulation, and transportation. Online algorithms 
operate under the assumption that future events (inputs) are 
uncertain. Hence, they will occasionally perform an expensive 
operation to efficiently respond to future operation. Generic 
and parameterized algorithms provide behaviors that are 
parameterized.  
 

In the following section we provide a short analysis of 
existing swarm deployment environments. In section III we 
present a deployment software package for obtaining 
decentralized control that can provide interesting collective 
behaviors dedicated to different tasks/applications with a new 
collective and mobile reconfigurable robotic system. We do 
not consider any particular hardware or infrastructure of each 
swarm agent, as our focus is building control mechanisms that 
allow the system to operate several simple heterogeneous 
agents. In section IV we evaluate UBSwarm framework with 
respect to human rescue and wall painting applications. 
Finally, Section V presents a summary of the work and draws 
some conclusions. 

II. RELATED WORK 
A comprehensive investigation and evaluation of the 

present multi-robotic systems (MRS) has been thoroughly 
discussed in our previous work [5]. In that survey we 
organized and classified ten swarm robotics systems and their 
corresponding behavioral algorithms into a preliminary 



taxonomy. We concluded that several algorithms have been 
developed to run on swarms of robots. These algorithms 
varied in complexity. Some provided basic functionality, such 
as leader following, while others exhibited complex 
interactions between the team of robots such as bidding on 
tasks according to arbitrary rules. Many early approaches in 
the literature concentrated on behavior-based technique where 
several desired behaviors are prescribed for each agent, and 
the final control is derived from a weighting of the relative 
importance of each behavior. On the other hand, recent 
researchers have begun to take a system controls perspective 
and analyze the stability of multiple robot agents. Other 
important hardware aspects of the current modular swarm 
robotic systems such as self-reconfigurability, self-replication, 
self-assembly, cost and miniaturization with robustness, 
flexibility, and scalability were thoroughly analyzed in our 
other work [6].  
 

Some script-based robot programming was designed 
specifically for robotic control like Pyro[7]. Pyro, which 
stands for Python Robotics, is a robotics programming 
environment written in the python programming language. 
Programming robot behaviors in Pyro is accomplished by 
programming high-level general-purpose programs. Pyro 
provides abstractions for low-level robot specific features 
much like the abstractions provided in high-level languages. 
The abstractions provided by Pyro allow robot control 
programs written for small robots to be used to control much 
larger robots without any modifications to the controller. This 
represents advancement over previous robot programming 
methodologies in which robot programs were written for 
specific motor controllers, sensors, communications protocols 
and other low-level features. 
 

Ayssam Elkady et. al. [8], have developed a framework to 
utilize and configure modular robotic systems with different 
task descriptions. Their main focus was designing a 
middleware that is customized to work with different robotic 
platforms through a plug-and-play feature which allows auto 
detection and auto-reconfiguration of the attached 
standardized components installed on each robot according to 
the current system configurations. Therefore, the author’s 
solution is mainly dealing with the abstraction layers residing 
between the operating system rather than software 
applications. A similar system hierarchy is used in Mobile-R 
[9] where the system is capable of interacting with multiple 
robots using Mobile-C library [10], an IEEE Foundation for 
Physical Agents standard compliant mobile agent systems. 
Mobile-R provides deployment of a network of robots with 
off-line and on-line dynamic task allocation. The control 
strategy structure and all sub-components are dynamically 
modified at run-time. Mobile-R provides some packages to 
enhance system capabilities like artificial neural networks 
(ANNs), genetic algorithms (GAs), vision processing, and 
distributed computing. The system was validated through a 
real world experiment involving a K-Team Khepera III mobile 
robot and two virtual Pioneer2DX robots simulated using the 
Player/Stage system. 

Gregory P. Ball G. et al. [11], have proposed an 
application software built in JAVA to operate heterogeneous 

multi-agent robots for the sake of educational purposes named 
MAJIC. The system provides basic components for user 
interaction that enables the user to add/remove robots change 
the robotic swarm configuration, load java scripts into robots 
and so on. Authors described their architecture as components, 
consisting of one higher level component that is the GUI 
manager, two application logic components that consist of a 
Logic System to parse input into valid commands, and a 
Robot Server, which receives commands from the Logic 
System and communicates these commands to the appropriate 
robot. Local components communicate using direct procedure 
calls. 

III. METHODOLOGY 
We are developing an environment to utilize robots that 

have different modular design and configuration of sensory 
modules, and actuators. The system will be implemented as a 
GUI interface to reduce efforts in controlling swarm robotic 
systems. The proposed application offers customization for 
robotic platforms by simply defining the available sensing 
devices, actuation devices, and the required tasks. The main 
purpose for designing this framework is to reduce the time and 
complexity of the development of robotic software and 
maintenance costs, and to improve code and component 
reusability. Usage of the proposed framework prevents the 
need to redesign or rewrite algorithms or applications when 
there is a change in the robot’s platform, operating systems, or 
the introduction of new functionalities. The basic hierarchy of 
the UBSwarm deployment platform is shown in Fig. 1. 
 

 
 
 

Another key feature of the UBSwarm interface is to move 
the communication implementation from the user’s domain to 
the application domain. Instead of learning proprietary 
protocols for individual robots, the user can utilize the 
UBSwarm scripting language to pass common commands to 
any robot managed by the application. UBSwarm adds a layer 
of abstraction to such tasks, allowing users the ability to 
intuitively obtain desired responses without extensive 
knowledge of robot-specific operating systems and protocols. 
When users make changes to the hardware devices that are 
plugged onto the robotic agent, UBSwarm will provide the 
appropriate software package for these sensory devices and 

Robot agents 

Fig. 1:  High-End System Overview 



actuators. This flexibility makes it easy for the end users to 
add and use the new devices and consequently task 
applications. In addition, the software code can be written in 
the most common programming languages such as python, 
C++, or any programming language that is specific to a 
particular robot framework. These Software components are 
easy to install/upload in the console screen. At start up, 
UBSwarm uploads a code that is responsible for scanning for 
hardware changes onboard because almost all microcontrollers 
include a hardware feature to interrupt the current software 
routine and run a scanning routine when a particular pin 
changes states. By relying on the hardware to notice a change 
we can keep track of hardware components. Each one of these 
hardware component is operated using a particular algorithm 
that is created at the time of deployment. UBSwarm runs on a 
computer and uploads programs or communicates/monitors 
the robots through the USB (serial port), RF, WiFi, or 
Bluetooth. In our experiment we used our own robot agents 
that incorporate Arduino and Digilent Max32 
microcontrollers. 

UBSwarm provide a direct forward two-step configuration 
that helps the operator to select between several available 
robot computers (microcontrollers) actuators, and sensors and 
then assign the group of robots a particular task from the set of 
predetermined tasks. To test and evaluate the swarm system or 
to change the configuration of the whole system, the user 
should be able to change each robot’s features. That is, the 
user will have the option to add/remove hardware features of 
any selected robot. The user can also decide which robots to 
be assigned for the task. In the main menu, the user is given a 
list of tasks to be assigned to the swarm system. 

IV. SYSTEM ARCHITECTURE 
UBSwarm is an interactive Java-based application designed 

for extensibility and platform independence. The system 
establishes communications with embedded robot modules via 
various mediums. At the time of startup the system will expect 
the operator to: 
 

- Configure the system by picking the available agents, 
their onboard features (sensors, motors, etc.) and the 
services needed to accomplish each task  

- Or simply run the system using the last executed 
configuration. 

 
The system is divided into two main subsystems, a robot 

deployment system and a robot control and translation system. 
The robot control system includes a robot control agent in 
which the user should provide all the parameters required for 
all sensors incorporated on robots. The user should also 
describe actuation methods used. The robot deployment 
system encapsulates a variety of high-level applications 
module which contains the tasks that the platforms will 
perform such as navigation, area scanning, and obstacle 
avoidance. A hardware abstraction layer is used to hide the 
heterogeneity of lower hardware devices and provide a 
component interface for the upper layers call. 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Robot Deployment System 
The deployment system interacts with agents through 

various types of communication mediums. The deployment 
system takes the responsibility of running actions according to 
the definition parameters and the different integrations of the 
heterogeneous robots. Each application is implemented as a 
software module to perform a number of specific tasks used 
for sensing, decision-making, and autonomous action. Actions 
are platform independent robot algorithm; for example, it can 
be an obstacle avoidance algorithm or a data processing 
algorithm using Kalmans filter, etc. These actions can 
communicate together using message channels. The 
deployment system framework is shown in Fig.2. The 
deployment system contains the developer interface, the 
coordination agent, the dynamic interpreter, and the 
knowledge base. 
 
1) Operator Interface 

The system developer interface provides the human 
operator command and control windows. The user can interact 
with the computer through interaction tools which provides a 
list of actions/tasks and the available robotic agents. In some 
other parts of the interface, the user will be prompted to input 
the required system parameters for all sensors incorporated on 
robots such as the PIN location by which each sensor/actuator 
is connected to. As we mentioned earlier UBSwarm connects 
to the robots using either of USB cable, RF, WiFi, or 
Bluetooth. The user has to provide the IP address of the 
particular robot when WiFi is used. When connecting the 
robot to the USB, UBSwarm will detect the COM port 
automatically. After defining all required parameters, the user 
will have the chance to write programs and upload them on 
each robot. The interface provides a number of tasks that can 
be assigned to the group of robots such as SLAM, and human 
rescue (pulling an object). Each task is defined as functional 
modules.  Obstacle avoidance, navigation, and SLAM are 
examples of such functional modules. Each functional module 

Fig. 2: System Architecture 
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encapsulates services such as Opencv, Hough transformation, 
etc.  Each service is regarded as a component of the system 
and is described in an XML configuration file to remove 
platform dependency. The user interface also allows the users 
to update, remove, or add robots in the swarm group. After 
clicking on a particular task, the user will be prompted to pick 
a number of robots displayed in a list of the available robot 
types by manipulating the arrow buttons as shown in fig. 3 (a). 
the user will be then be asked to enter each agent’s initial pin 
locations (once for each type of robot) associated with various 
hardware components such as ultrasonic sensors, scan servo 
motors, and the n pin locations for the n-Dof arm if any is 
attached on the robot. A value of -1 will be assigned to pin 
locations of components that does not exist on the particular 
robot. The programs which will be uploaded on each robot 
type will differ according the different pin locations associated 
with each type that were set by the user. The computer will 
ask the user to connect each robot to allow uploading the 
program as shown in fig. 3 (b).  The next four subsystems 
show how the deployment system works to manage the 
heterogeneity of the hardware and the software associated 
with each robotic agent. 
 
 
2) Coordination Agent 

The heterogeneity of the robots and the operating 
platforms imposes dependencies such as data format, location 
of machine addresses, and availability of the components.  As 
addressed in [8] the data format dependency is removed by a 
standard data format that is machine independent. Just like the 
functional modules described earlier, the data format is 
regarded as a component in the system. Relevant tasks for a 
team mission are defined the XML configuration file which is 
loaded at startup. The XML file also specifies which tasks can 
be performed by each agent. In [8] the other two dependencies 
are removed by having all information being sent to an 
addressable channel instead of sending information directly to 
a specific robot. The coordination agent processes the 
available state data and activates high-level behaviors using 
rules defined in a schema approach in order to select the 
appropriate robots and actions based on the provided tasks. 
 
3) Runtime Interpreter 
When new devices are plugged in, system developers can 
install new platform software packages specific for the 
execution of the newly added devices. In other words, system 
developers can extend the system’s functionality by adding 
new service modules to the list of available modules that can 
be found under the “runtime” tab in the main menu. When 
new service is added to the system, the dynamic interpreter 
manages flow of information between these services by 
monitoring the creation and removal of all services and the 
associated static registries. The Dynamic interpreter maintains 
state information regarding possible & running local services. 
The host and registry maps are used in routing communication 
to the appropriate tasks. 
 

 
(a) 

 
(b) 

  
 
 

 
The flow of information managed by the dynamic 

interpreter is shown in fig. 4. The Dynamic interpreter will be 
the first service created which in turn will wrap the real JVM 
Runtime objects. 

 
When new services are added to the system, messages will 

be initiated by the runtime interpreter. The message consists of 
two basic parts: the header (which describes the data being 
transmitted, its origin, its data type, and so on) and the body 
(data). There are four types of messages, the Command 
message, used to invoke a service in another application; the 
Document message, used to pass a set of data to another 
application; the Event message, used to notify an- other 
application of a change in this application and the Request-
Reply message, used when an application sends back a reply. 
The messages are classified into three categories: Simple 
message (short messages with low delay requirements), real-
time message (short message with a certain deadline), and 
message stream (message sequence with a certain rate). The 
priority setting of a message can be adjusted an urgent 
message that should be delivered first. Fig. 4 shows the 
operation of the runtime interpreter when services are added to 
the system. 

 

Fig. 3: (a) Operator Interface configuration (b) Prompt to 
connect and upload programs 



 
Once the coordination agent completes its job, the 

dynamic agent breaks down allocated tasks into required 
actions from actuator movements to communications. Then, 
the dynamic interpreter monitors the flow of data, manages the 
flow of messages through the system, makes sure that all 
applications and components are available, tracks quality of 
service (e.g. response times) of an external service, and reports 
error conditions.  The dynamic interpreter does its job by 
utilizing a component requirement matrix for each robot. The 
component requirement matrix is used to combine the 
necessary components from the knowledge base to the mobile 
agents which are then passed to the robot control and 
translation agent. As described in [8] each component has an 
XML configuration file to customize its behavior. Each 
component is designed to be dynamically reconfigurable by 
the dynamic interpreter during robot operation.  
 
4) Knowledge Base (Registry) 

The Knowledge base contains all of the necessary 
information for each robot to give the operator the ability to 
address each task. This includes a listing of all possible 
actions, service modules, and behavioral components   
implementations for each robot. The knowledge base stores 
service types, dependencies, categories and other relevant 
information regarding service creation. It also includes the 
agents’ required communication protocols, and their drivers. 
Physical and logical addresses associated with each 
component are also stored in the knowledge base. 
 

V. THE EXPERIMENT 

A. Human Rescue (transporting a human) 
The task of human/object transporting requires the robotic 

agents to cooperatively work together pull the heavy object in 
order to reach a desired position. As shown in fig. 4 the swarm 
of robots generates simple actions based on observations from 
its environment.  The algorithm was developed for a group of 
robots to autonomously cooperate such that the pulled object 
can be positioned and oriented in the 2D space. Corporation 

between robots is achieved by exchanging messages when 
additional robots are needed to pull the object. Each individual 
robot is programmed to call another one if its wheel/tread on 
one side rotates in higher speed than the other side. The 
experiment begins when the robot start looking for a human as 
it wanders in the unknown environment; the robot is equipped 
with onboard camera in order to detect the human body on the 
ground. The robot will then call another agent using Xbee-
based communication and then the two robots will place 
themselves on different corners and using their grippers and 
by sending a particular synchronization message, the two will 
attach to the body and start pulling backward to a safer 
position. A human prototype was built and several 
experiments were conducted. More weights have been placed 
inside the human prototype as the number of the robots 
increased. We noticed that the configuration that uses more 
than two robots is able to pulling heavier objects however; this 
configuration causes the robot to skid to any of the both sides 
and consequently this act reduces the elapsed distance the 
robots have actually pulled. Table 5.1 below shows the 
distances achieved by the different number of robots with 
respect to different weights for the object being transported.   
 
 
 
 
Object 
weight 

Pulling Distance 
1 robot  2 

robots  
3 
robots  

4 
robots  

5 
robots  

10 
Kilograms 

0.1 
Meters 

1.5 4  3 1 

20 
Kilograms 

0 0.5 4 2 1 

40 
Kilograms 

0 0 2 2 1 

     

Table 1: Successful pulling distance according to different number of robotic 
agents 

Fig. 4: Adding services in runtime 
 



 
 
 

B. Wall Painting 
The task is executing interior painting tasks by our robotic 

swarm system. As we mentioned earlier our robotic agents 
each have location sensors, simple communication modules, 
and vision capability to be able to move away from each and 
start painting their little part of the wall in parallel. 
Experiments were conducted in order to examine the 
integration between humans and the robot in their work. 
Painting using a brush is the most commonly used by human 
workers. Using a brush in our system requires more 
sophisticated robotic arms. Painting by a spraying, however, is 
less demanding in terms of accuracy, and therefore more 
appropriate for our system. 
 

1. Arm and End effecter 
The end effecter is the basic 1-Dof gripper attached to a 2-

Dof arm that controls the position of the end effecter in two 
movements; up, down, and 360 degree rotation of the gripper 
around its own center. Fig. 5 shows the movements and the 
offsets along direct Z axis.  

 
 
 

Painting with that particular type of end-effecter creates 
multiple adjacent rectangular coating sectors as shown in fig. 
6. The height of each sector (H) is the height of the highest 
point the end effecter can reach on the wall which was 
reasonably taken as 30 cm. The width of the sector (W), for a 
robot with a given work space), depends on the area being 
sprayed by the nozzle attached to the end effecter (gripper), 
that actually determines the width of a stripe (S) painted in a 
single tool movement. 

 
 

 

 
 
 

 
Fig. 7 shows two robots performing a painting test using the 
nozzles attached to each of their grippers. 
 
 

 
2. Painting method 

 
Two robots were used each equipped with the arm 

discussed earlier and a flexible hose attached to the end 
effecter and one end and to a compressed paint container at 
the other end. Using this flexible spraying equipment, each 
robot can paint a surface of 10 x 30 cm only when it is facing 
the surface of the wall. The trajectory of the end-effecter is 
composed of three kinds of movements: 
 

• Each robot moves concurrently at the same speed 
with the other robots. An infra-red sensor mounted at 
the front of each robot. When a wall is detected, each 
robot will rotate its painting tool in order to align it 
with the wall at the highest extension then it will 
maintain a constant distance from the wall as the 
painting starts.  

• The tool will be moved in two linear vertical 
movements in which the paint is being sprayed. 
During the movement, each sprayer is activated or 

Fig. 4: Human rescue using 4 robots 

Fig. 5: The 2-Dof sketch for the robot arm 

Fig. 6: The surface covered by the painter 

Fig. 7: the Nozzles attached to the robots 



de-activated according to the movement of the arm 
and the distance from the wall. 

• After completing two vertical sprays, each robot will 
move to the next adjacent partition on the wall by 
moving backward for a predetermined fixed distance, 
turning to the a left, moving forward for 20 cm, 
turning to the right and then moving forward for the 
same fixed distance to reach the next partition. The 
painting process takes place again and the whole 
procedure is repeated until the whole area is painted. 

 
We were interested in learning how much time is saved 

when painting using multiple robots.  To do so, we ran two 
experiments. The first one which involved one single robot, 
the task was completed in 30 minutes. In the second 
experiment we ran two robots in which they took 14 minutes 
to complete their task.  
 

VI. CONCLUSION 
We learned, as experimental results depict, the sensing and 

the overall task-specific capabilities of the platforms can be 
easily upgraded by adding another sensor, e.g., laser range 
finders and that is how the name extendible robots come from. 
UBSwarm environment generates programs that cope with 
changes of the robots configurations. Moreover, better design 
considerations has to take place when building a robot that is 
intended to accomplish tasks that incorporate another robotic 
agents as a group. Using multi robotic systems in assigned 
missions may cause some actual collisions. This problem was 
illustrated in the human-rescue task as the robots tended to slip 
and skid to one side as they pulled the heavy object. In future 
work we will attempt to design a mechanism that gets 
activated should the robot start slipping. 
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