
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA.

UBSwarm: Design of a Software Environment to
Deploy Multiple Decentralized Robots

Tamer Abukhalil
Robotics, Intelligent Sensing & Control (RISC)

Laboratory
School of Engineering, University of Bridgeport

221 University Avenue, Bridgeport, USA
tabukhal@my.bridgeport.edu

Madhav Patil
Robotics, Intelligent Sensing & Control (RISC)

Laboratory
School of Engineering, University of Bridgeport

221 University Avenue, Bridgeport, USA
mpatil@my.bridgeport.edu

Abstract— this article presents a high-level configuration
and task assignment software package that distributes
algorithms on a swarm of robots which allows them to
operate in a swarm fashion. When the swarm robotic
system adopts a decentralized approach, the desired
collective behaviors emerge from local decisions made by
the robots themselves according to their environment. This
paper first brings a discussion on the existing swarm
control environments. Secondly it proposes a software
application that aims to facilitate the deployment of
multiple robotic agents which have different
configurations and sensory components. Using its GUI, the
proposed system expects the operator to select between
several available robot agents and assign the group of
robots a particular task from a set of available ones. The
main purpose for designing this framework is to reduce
the time and complexity of the development of robotic
software and maintenance costs, and to improve code and
component reusability.

Keywords— Decentralized Swarm Intelligence, Modular
Robotic Agents, Robotics Interactive Software, Robots
Deployment Environment.

I. INTRODUCTION
It has been proven that a single robot with multiple

capabilities cannot necessarily complete an intended job using
the same time and cost as that of multiple robotic agents.
Different robots, each one with its own configuration, are
more flexible, robust and cost-effective. Moreover, the desired
tasks may be too complex for one single robot, whereas it can
be effectively done by multiple robots [1, 2]. One of the key
advantages of the corporative multi-agents robotic systems is
fault-tolerance in which a robot can take over the task of a
failing one. Modular robotic systems have shown to be robust
and flexible in the tasks of localization, surveillance [3], and
reconnaissance [4]. Such properties are likely to become
increasingly important in real-world robotics applications.

Decentralization means that the algorithm does not require
access to the full global state and all control computations are
done locally. However, to command large groups of robots, it
is also essential to include an element of centralization to
allow humans to interact and task the team. Our paper is based
on the assumption that there is a lack of software packages
which provide control for the different platforms of robots
individually and allow concurrent control of heterogeneous
robotic teams. Our objective is to develop algorithms that can
provide connectivity between multiple agents, besides
building central software to track these agents. Such system
design is motivated by our interest in multi-robot control for
the deployment of potentially large numbers of cooperating
robots and application tasks such as persistent navigation,
object manipulation, and transportation. Online algorithms
operate under the assumption that future events (inputs) are
uncertain. Hence, they will occasionally perform an expensive
operation to efficiently respond to future operation. Generic
and parameterized algorithms provide behaviors that are
parameterized.

In the following section we provide a short analysis of
existing swarm deployment environments. In section III we
present a deployment software package for obtaining
decentralized control that can provide interesting collective
behaviors dedicated to different tasks/applications with a new
collective and mobile reconfigurable robotic system. We do
not consider any particular hardware or infrastructure of each
swarm agent, as our focus is building control mechanisms that
allow the system to operate several simple heterogeneous
agents. In section IV we evaluate UBSwarm framework with
respect to human rescue and wall painting applications.
Finally, Section V presents a summary of the work and draws
some conclusions.

II. RELATED WORK
A comprehensive investigation and evaluation of the

present multi-robotic systems (MRS) has been thoroughly
discussed in our previous work [5]. In that survey we
organized and classified ten swarm robotics systems and their
corresponding behavioral algorithms into a preliminary

taxonomy. We concluded that several algorithms have been
developed to run on swarms of robots. These algorithms
varied in complexity. Some provided basic functionality, such
as leader following, while others exhibited complex
interactions between the team of robots such as bidding on
tasks according to arbitrary rules. Many early approaches in
the literature concentrated on behavior-based technique where
several desired behaviors are prescribed for each agent, and
the final control is derived from a weighting of the relative
importance of each behavior. On the other hand, recent
researchers have begun to take a system controls perspective
and analyze the stability of multiple robot agents. Other
important hardware aspects of the current modular swarm
robotic systems such as self-reconfigurability, self-replication,
self-assembly, cost and miniaturization with robustness,
flexibility, and scalability were thoroughly analyzed in our
other work [6].

Some script-based robot programming was designed
specifically for robotic control like Pyro[7]. Pyro, which
stands for Python Robotics, is a robotics programming
environment written in the python programming language.
Programming robot behaviors in Pyro is accomplished by
programming high-level general-purpose programs. Pyro
provides abstractions for low-level robot specific features
much like the abstractions provided in high-level languages.
The abstractions provided by Pyro allow robot control
programs written for small robots to be used to control much
larger robots without any modifications to the controller. This
represents advancement over previous robot programming
methodologies in which robot programs were written for
specific motor controllers, sensors, communications protocols
and other low-level features.

Ayssam Elkady et. al. [8], have developed a framework to
utilize and configure modular robotic systems with different
task descriptions. Their main focus was designing a
middleware that is customized to work with different robotic
platforms through a plug-and-play feature which allows auto
detection and auto-reconfiguration of the attached
standardized components installed on each robot according to
the current system configurations. Therefore, the author’s
solution is mainly dealing with the abstraction layers residing
between the operating system rather than software
applications. A similar system hierarchy is used in Mobile-R
[9] where the system is capable of interacting with multiple
robots using Mobile-C library [10], an IEEE Foundation for
Physical Agents standard compliant mobile agent systems.
Mobile-R provides deployment of a network of robots with
off-line and on-line dynamic task allocation. The control
strategy structure and all sub-components are dynamically
modified at run-time. Mobile-R provides some packages to
enhance system capabilities like artificial neural networks
(ANNs), genetic algorithms (GAs), vision processing, and
distributed computing. The system was validated through a
real world experiment involving a K-Team Khepera III mobile
robot and two virtual Pioneer2DX robots simulated using the
Player/Stage system.

Gregory P. Ball G. et al. [11], have proposed an
application software built in JAVA to operate heterogeneous

multi-agent robots for the sake of educational purposes named
MAJIC. The system provides basic components for user
interaction that enables the user to add/remove robots change
the robotic swarm configuration, load java scripts into robots
and so on. Authors described their architecture as components,
consisting of one higher level component that is the GUI
manager, two application logic components that consist of a
Logic System to parse input into valid commands, and a
Robot Server, which receives commands from the Logic
System and communicates these commands to the appropriate
robot. Local components communicate using direct procedure
calls.

III. METHODOLOGY
We are developing an environment to utilize robots that

have different modular design and configuration of sensory
modules, and actuators. The system will be implemented as a
GUI interface to reduce efforts in controlling swarm robotic
systems. The proposed application offers customization for
robotic platforms by simply defining the available sensing
devices, actuation devices, and the required tasks. The main
purpose for designing this framework is to reduce the time and
complexity of the development of robotic software and
maintenance costs, and to improve code and component
reusability. Usage of the proposed framework prevents the
need to redesign or rewrite algorithms or applications when
there is a change in the robot’s platform, operating systems, or
the introduction of new functionalities. The basic hierarchy of
the UBSwarm deployment platform is shown in Fig. 1.

Another key feature of the UBSwarm interface is to move
the communication implementation from the user’s domain to
the application domain. Instead of learning proprietary
protocols for individual robots, the user can utilize the
UBSwarm scripting language to pass common commands to
any robot managed by the application. UBSwarm adds a layer
of abstraction to such tasks, allowing users the ability to
intuitively obtain desired responses without extensive
knowledge of robot-specific operating systems and protocols.
When users make changes to the hardware devices that are
plugged onto the robotic agent, UBSwarm will provide the
appropriate software package for these sensory devices and

Robot agents

Fig. 1: High-End System Overview

actuators. This flexibility makes it easy for the end users to
add and use the new devices and consequently task
applications. In addition, the software code can be written in
the most common programming languages such as python,
C++, or any programming language that is specific to a
particular robot framework. These Software components are
easy to install/upload in the console screen. At start up,
UBSwarm uploads a code that is responsible for scanning for
hardware changes onboard because almost all microcontrollers
include a hardware feature to interrupt the current software
routine and run a scanning routine when a particular pin
changes states. By relying on the hardware to notice a change
we can keep track of hardware components. Each one of these
hardware component is operated using a particular algorithm
that is created at the time of deployment. UBSwarm runs on a
computer and uploads programs or communicates/monitors
the robots through the USB (serial port), RF, WiFi, or
Bluetooth. In our experiment we used our own robot agents
that incorporate Arduino and Digilent Max32
microcontrollers.

UBSwarm provide a direct forward two-step configuration
that helps the operator to select between several available
robot computers (microcontrollers) actuators, and sensors and
then assign the group of robots a particular task from the set of
predetermined tasks. To test and evaluate the swarm system or
to change the configuration of the whole system, the user
should be able to change each robot’s features. That is, the
user will have the option to add/remove hardware features of
any selected robot. The user can also decide which robots to
be assigned for the task. In the main menu, the user is given a
list of tasks to be assigned to the swarm system.

IV. SYSTEM ARCHITECTURE
UBSwarm is an interactive Java-based application designed

for extensibility and platform independence. The system
establishes communications with embedded robot modules via
various mediums. At the time of startup the system will expect
the operator to:

- Configure the system by picking the available agents,
their onboard features (sensors, motors, etc.) and the
services needed to accomplish each task

- Or simply run the system using the last executed
configuration.

The system is divided into two main subsystems, a robot

deployment system and a robot control and translation system.
The robot control system includes a robot control agent in
which the user should provide all the parameters required for
all sensors incorporated on robots. The user should also
describe actuation methods used. The robot deployment
system encapsulates a variety of high-level applications
module which contains the tasks that the platforms will
perform such as navigation, area scanning, and obstacle
avoidance. A hardware abstraction layer is used to hide the
heterogeneity of lower hardware devices and provide a
component interface for the upper layers call.

A. Robot Deployment System
The deployment system interacts with agents through

various types of communication mediums. The deployment
system takes the responsibility of running actions according to
the definition parameters and the different integrations of the
heterogeneous robots. Each application is implemented as a
software module to perform a number of specific tasks used
for sensing, decision-making, and autonomous action. Actions
are platform independent robot algorithm; for example, it can
be an obstacle avoidance algorithm or a data processing
algorithm using Kalmans filter, etc. These actions can
communicate together using message channels. The
deployment system framework is shown in Fig.2. The
deployment system contains the developer interface, the
coordination agent, the dynamic interpreter, and the
knowledge base.

1) Operator Interface

The system developer interface provides the human
operator command and control windows. The user can interact
with the computer through interaction tools which provides a
list of actions/tasks and the available robotic agents. In some
other parts of the interface, the user will be prompted to input
the required system parameters for all sensors incorporated on
robots such as the PIN location by which each sensor/actuator
is connected to. As we mentioned earlier UBSwarm connects
to the robots using either of USB cable, RF, WiFi, or
Bluetooth. The user has to provide the IP address of the
particular robot when WiFi is used. When connecting the
robot to the USB, UBSwarm will detect the COM port
automatically. After defining all required parameters, the user
will have the chance to write programs and upload them on
each robot. The interface provides a number of tasks that can
be assigned to the group of robots such as SLAM, and human
rescue (pulling an object). Each task is defined as functional
modules. Obstacle avoidance, navigation, and SLAM are
examples of such functional modules. Each functional module

Fig. 2: System Architecture

Robot Deployment Environment

Robot Control Middleware

User interface

Face
Det.

Obstacle
Avoid.

Navigat
ion

Coordination
Agent

HAL

Know
ledge
base

Device Agent

Polling routine

Hardware Components

Xbee Sonar GPS

Robot N Robot 1

Device Library

encapsulates services such as Opencv, Hough transformation,
etc. Each service is regarded as a component of the system
and is described in an XML configuration file to remove
platform dependency. The user interface also allows the users
to update, remove, or add robots in the swarm group. After
clicking on a particular task, the user will be prompted to pick
a number of robots displayed in a list of the available robot
types by manipulating the arrow buttons as shown in fig. 3 (a).
the user will be then be asked to enter each agent’s initial pin
locations (once for each type of robot) associated with various
hardware components such as ultrasonic sensors, scan servo
motors, and the n pin locations for the n-Dof arm if any is
attached on the robot. A value of -1 will be assigned to pin
locations of components that does not exist on the particular
robot. The programs which will be uploaded on each robot
type will differ according the different pin locations associated
with each type that were set by the user. The computer will
ask the user to connect each robot to allow uploading the
program as shown in fig. 3 (b). The next four subsystems
show how the deployment system works to manage the
heterogeneity of the hardware and the software associated
with each robotic agent.

2) Coordination Agent

The heterogeneity of the robots and the operating
platforms imposes dependencies such as data format, location
of machine addresses, and availability of the components. As
addressed in [8] the data format dependency is removed by a
standard data format that is machine independent. Just like the
functional modules described earlier, the data format is
regarded as a component in the system. Relevant tasks for a
team mission are defined the XML configuration file which is
loaded at startup. The XML file also specifies which tasks can
be performed by each agent. In [8] the other two dependencies
are removed by having all information being sent to an
addressable channel instead of sending information directly to
a specific robot. The coordination agent processes the
available state data and activates high-level behaviors using
rules defined in a schema approach in order to select the
appropriate robots and actions based on the provided tasks.

3) Runtime Interpreter
When new devices are plugged in, system developers can
install new platform software packages specific for the
execution of the newly added devices. In other words, system
developers can extend the system’s functionality by adding
new service modules to the list of available modules that can
be found under the “runtime” tab in the main menu. When
new service is added to the system, the dynamic interpreter
manages flow of information between these services by
monitoring the creation and removal of all services and the
associated static registries. The Dynamic interpreter maintains
state information regarding possible & running local services.
The host and registry maps are used in routing communication
to the appropriate tasks.

(a)

(b)

The flow of information managed by the dynamic

interpreter is shown in fig. 4. The Dynamic interpreter will be
the first service created which in turn will wrap the real JVM
Runtime objects.

When new services are added to the system, messages will

be initiated by the runtime interpreter. The message consists of
two basic parts: the header (which describes the data being
transmitted, its origin, its data type, and so on) and the body
(data). There are four types of messages, the Command
message, used to invoke a service in another application; the
Document message, used to pass a set of data to another
application; the Event message, used to notify an- other
application of a change in this application and the Request-
Reply message, used when an application sends back a reply.
The messages are classified into three categories: Simple
message (short messages with low delay requirements), real-
time message (short message with a certain deadline), and
message stream (message sequence with a certain rate). The
priority setting of a message can be adjusted an urgent
message that should be delivered first. Fig. 4 shows the
operation of the runtime interpreter when services are added to
the system.

Fig. 3: (a) Operator Interface configuration (b) Prompt to
connect and upload programs

Once the coordination agent completes its job, the

dynamic agent breaks down allocated tasks into required
actions from actuator movements to communications. Then,
the dynamic interpreter monitors the flow of data, manages the
flow of messages through the system, makes sure that all
applications and components are available, tracks quality of
service (e.g. response times) of an external service, and reports
error conditions. The dynamic interpreter does its job by
utilizing a component requirement matrix for each robot. The
component requirement matrix is used to combine the
necessary components from the knowledge base to the mobile
agents which are then passed to the robot control and
translation agent. As described in [8] each component has an
XML configuration file to customize its behavior. Each
component is designed to be dynamically reconfigurable by
the dynamic interpreter during robot operation.

4) Knowledge Base (Registry)

The Knowledge base contains all of the necessary
information for each robot to give the operator the ability to
address each task. This includes a listing of all possible
actions, service modules, and behavioral components
implementations for each robot. The knowledge base stores
service types, dependencies, categories and other relevant
information regarding service creation. It also includes the
agents’ required communication protocols, and their drivers.
Physical and logical addresses associated with each
component are also stored in the knowledge base.

V. THE EXPERIMENT

A. Human Rescue (transporting a human)
The task of human/object transporting requires the robotic

agents to cooperatively work together pull the heavy object in
order to reach a desired position. As shown in fig. 4 the swarm
of robots generates simple actions based on observations from
its environment. The algorithm was developed for a group of
robots to autonomously cooperate such that the pulled object
can be positioned and oriented in the 2D space. Corporation

between robots is achieved by exchanging messages when
additional robots are needed to pull the object. Each individual
robot is programmed to call another one if its wheel/tread on
one side rotates in higher speed than the other side. The
experiment begins when the robot start looking for a human as
it wanders in the unknown environment; the robot is equipped
with onboard camera in order to detect the human body on the
ground. The robot will then call another agent using Xbee-
based communication and then the two robots will place
themselves on different corners and using their grippers and
by sending a particular synchronization message, the two will
attach to the body and start pulling backward to a safer
position. A human prototype was built and several
experiments were conducted. More weights have been placed
inside the human prototype as the number of the robots
increased. We noticed that the configuration that uses more
than two robots is able to pulling heavier objects however; this
configuration causes the robot to skid to any of the both sides
and consequently this act reduces the elapsed distance the
robots have actually pulled. Table 5.1 below shows the
distances achieved by the different number of robots with
respect to different weights for the object being transported.

Object
weight

Pulling Distance
1 robot 2

robots
3
robots

4
robots

5
robots

10
Kilograms

0.1
Meters

1.5 4 3 1

20
Kilograms

0 0.5 4 2 1

40
Kilograms

0 0 2 2 1

Table 1: Successful pulling distance according to different number of robotic
agents

Fig. 4: Adding services in runtime

B. Wall Painting
The task is executing interior painting tasks by our robotic

swarm system. As we mentioned earlier our robotic agents
each have location sensors, simple communication modules,
and vision capability to be able to move away from each and
start painting their little part of the wall in parallel.
Experiments were conducted in order to examine the
integration between humans and the robot in their work.
Painting using a brush is the most commonly used by human
workers. Using a brush in our system requires more
sophisticated robotic arms. Painting by a spraying, however, is
less demanding in terms of accuracy, and therefore more
appropriate for our system.

1. Arm and End effecter
The end effecter is the basic 1-Dof gripper attached to a 2-

Dof arm that controls the position of the end effecter in two
movements; up, down, and 360 degree rotation of the gripper
around its own center. Fig. 5 shows the movements and the
offsets along direct Z axis.

Painting with that particular type of end-effecter creates
multiple adjacent rectangular coating sectors as shown in fig.
6. The height of each sector (H) is the height of the highest
point the end effecter can reach on the wall which was
reasonably taken as 30 cm. The width of the sector (W), for a
robot with a given work space), depends on the area being
sprayed by the nozzle attached to the end effecter (gripper),
that actually determines the width of a stripe (S) painted in a
single tool movement.

Fig. 7 shows two robots performing a painting test using the
nozzles attached to each of their grippers.

2. Painting method

Two robots were used each equipped with the arm

discussed earlier and a flexible hose attached to the end
effecter and one end and to a compressed paint container at
the other end. Using this flexible spraying equipment, each
robot can paint a surface of 10 x 30 cm only when it is facing
the surface of the wall. The trajectory of the end-effecter is
composed of three kinds of movements:

• Each robot moves concurrently at the same speed
with the other robots. An infra-red sensor mounted at
the front of each robot. When a wall is detected, each
robot will rotate its painting tool in order to align it
with the wall at the highest extension then it will
maintain a constant distance from the wall as the
painting starts.

• The tool will be moved in two linear vertical
movements in which the paint is being sprayed.
During the movement, each sprayer is activated or

Fig. 4: Human rescue using 4 robots

Fig. 5: The 2-Dof sketch for the robot arm

Fig. 6: The surface covered by the painter

Fig. 7: the Nozzles attached to the robots

de-activated according to the movement of the arm
and the distance from the wall.

• After completing two vertical sprays, each robot will
move to the next adjacent partition on the wall by
moving backward for a predetermined fixed distance,
turning to the a left, moving forward for 20 cm,
turning to the right and then moving forward for the
same fixed distance to reach the next partition. The
painting process takes place again and the whole
procedure is repeated until the whole area is painted.

We were interested in learning how much time is saved

when painting using multiple robots. To do so, we ran two
experiments. The first one which involved one single robot,
the task was completed in 30 minutes. In the second
experiment we ran two robots in which they took 14 minutes
to complete their task.

VI. CONCLUSION
We learned, as experimental results depict, the sensing and

the overall task-specific capabilities of the platforms can be
easily upgraded by adding another sensor, e.g., laser range
finders and that is how the name extendible robots come from.
UBSwarm environment generates programs that cope with
changes of the robots configurations. Moreover, better design
considerations has to take place when building a robot that is
intended to accomplish tasks that incorporate another robotic
agents as a group. Using multi robotic systems in assigned
missions may cause some actual collisions. This problem was
illustrated in the human-rescue task as the robots tended to slip
and skid to one side as they pulled the heavy object. In future
work we will attempt to design a mechanism that gets
activated should the robot start slipping.

REFERENCES

[1] Y. Xinan, L. Alei, and G. Haibing, "An algorithm for self-organized
aggregation of swarm robotics using timer," in Swarm Intelligence (SIS),
2011 IEEE Symposium on, 2011, pp. 1-7.

[2] L. Bayindir and E. Sahin, "A review of studies in swarm robotics,"
Turkish Journal of Electrical Engineering, vol. 15, pp. 115-147, 2007.

[3] A. T. Hayes, A. Martinoli, and R. M. Goodman, "Swarm robotic odor
localization," in Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, 2001, pp. 1073-1078.

[4] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, "Pheromone
robotics," Autonomous Robots, vol. 11, pp. 319-324, 2001.

[5] T. Abukhalil, M. Patil, and T. Sobh, "Survey on Decentralized Modular
Swarm Robots and Control Interfaces," International Journal of
Engineering (IJE), vol. 7, p. 44, 2013.

[6] M. Patil, T. Abukhalil, and T. Sobh, "Hardware Architecture Review of
Swarm Robotics System: Self-Reconfigurability, Self-Reassembly, and
Self-Replication," ISRN Robotics, vol. 2013, 2013.

[7] D. Blank, D. Kumar, L. Meeden, and H. Yanco, "Pyro: A python-based
versatile programming environment for teaching robotics," Journal on
Educational Resources in Computing (JERIC), vol. 4, p. 3, 2004.

[8] A. Elkady, J. Joy, and T. Sobh, "A plug and play middleware for sensory
modules, actuation platforms and task descriptions in robotic
manipulation platforms," in Submitted to Proc. 2011 ASME International
Design Engineering Technical Conf. and Computers and Information in
Engineering Conf.(IDETC/CIE’11), 2011.

[9] S. S. Nestinger and H. H. Cheng, "Mobile-R: A reconfigurable
cooperative control platform for rapid deployment of multi-robot
systems," in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, 2011, pp. 52-57.

[10] B. Chen, H. H. Cheng, and J. Palen, "Mobile‐C: a mobile agent
platform for mobile C/C++ agents," Software: Practice and Experience,
vol. 36, pp. 1711-1733, 2006.

[11] G. P. Ball, K. Squire, C. Martell, and M. T. Shing, "MAJIC: A Java
application for controlling multiple, heterogeneous robotic agents," in
Rapid System Prototyping, 2008. RSP'08. The 19th IEEE/IFIP
International Symposium on, 2008, pp. 189-195.

