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Undergraduate Research in Quantum Computing: 
Lessons Learned from Developing Student Researchers 

 
Abstract 
 
Numerous studies have established several positive outcomes associated with meaningful 
research experiences undertaken by undergraduate students. These benefits include enhanced 
critical thinking skills, improved learning abilities in subsequent course work, and increased 
pursuit of graduate studies. This paper reports on our supervision of several undergraduate 
students over the past couple of years in the area of quantum computing. Case studies of four 
projects involving six students are described. Lessons learned from working with our student 
researchers are given and recommended best practices for undergraduate research in this area are 
detailed. Finally, how this work dovetails with our implementation of a multi-disciplinary 
introductory quantum computing course running for the first time this Spring is also described. 
 
1. Introduction 
 
Educational scholars widely agree that engaging students in authentic undergraduate research 
experiences is a high-impact pedagogical practice as it promotes student-centered learning and 
results in several positive learning outcomes including improved problem-solving, critical-
thinking, and communication skills [1], [2], [3]. Undergraduate research programs also help with 
personal development, giving students improved attitudes, self-confidence, and personal 
initiative. Finally, it provides opportunities for professional development through networking 
with peers and mentors, and publication of their work [2]. In addition, such research experiences 
lead to increased retention in STEM fields and a greater likelihood of pursuing a graduate 
degree. Noteworthy as well is that undergraduate research experiences are beneficial to students 
at risk of underachieving [4]. 
 
To ensure a student has an impactful undergraduate research experience, it is important to 
provide appropriate projects. Students are highly motivated when they know that they are 
contributing to an authentic research question. At the same time the project must be tailored to 
the knowledge and capabilities of the student so that they are able to make meaningful 
contributions to the research. This paper argues that quantum computing provides abundant 
opportunities for successful undergraduate research projects. 
 
Peter Shor’s discovery that quantum computers could be used, in theory, to factor large integers 
almost exponentially faster than the best classical algorithms [5] generated a lot of interest in 
quantum information, science, and technology because of its potential to make current public-
key encryption schemes obsolete. In addition, quantum computers show great promise for 
solving classically intractable optimization problems (e.g., the traveling salesman problem [6], 
machine learning [7], and problems in computational biology [8]). As suggested by Richard 
Feynman [9], quantum computers should be able to efficiently simulate quantum systems. Work 
is proceeding on the quantum chemistry of molecules and materials [10], [11], [12]. Recent 
experimental devices have confirmed ‘quantum supremacy’ over certain classical approaches 
[13], [14], raising the possibility that quantum computers will be a viable computing technology 



 

in the coming decades. The end of Moore’s Law appears to be imminent as transistors are scaled 
deep into the nanoscale dimensions [15]. As such, quantum computing is generating widespread 
interest and excitement in both industry and academia as an emerging technology of the future. 
 
Based on our own experiences in mentoring undergraduate researchers over the past two years, 
we believe that quantum computing (QC) is an exciting area of investigation which allows 
undergraduate students to make meaningful contributions to open-ended research questions. The 
outline of our paper is as follows. The next sections provide the context and goals for our 
undergraduate research and explains why QC topics make viable and exciting research projects 
for undergraduates. Our experience mentoring two student projects in the summer of 2022, 
simulating Shor’s algorithm using a quantum computer simulator and investigating machine 
learning using quantum computers, is detailed next. Some insights from mentoring 
undergraduate students during the semester in an independent study in the spring of 2022 are 
also described. The implementation of our own introductory undergraduate QC course which 
features innovations such as students developing their own Python-based quantum computer 
simulator and using it in a course project is outlined. The final section summarizes the lessons 
learned from our experiences supervising undergraduates in QC. 
 
2. Background, Motivation, and Goals for Our Work 
 
Loyola University Maryland is a private liberal arts institution of approximately 3800 students. It 
focuses primarily on undergraduate studies and features STEM departments in engineering, 
computer science, physics, chemistry, biology, and mathematics. At our university 
undergraduate students have the opportunity to do research during the summer and during the 
academic year. 
 
The genesis for our foray into QC research began with three faculty members (one each from our 
institution’s physics, engineering, and CS departments) discussing the possibility of developing 
an introduction to QC course. An interesting project was proposed: to develop a quantum 
computer simulator from scratch using the Python programming language and NumPy, a Python 
based numerical programming library. In the summer of 2021, we were fortunate to have two 
exceptional undergraduate researchers who developed such a simulator. One student had just 
finished his freshman year as a physics major while the other had completed his sophomore year 
as a computer science major. While the students had no prior knowledge of QC, they were able 
to get up to speed through materials provided by their faculty mentors and their own initiative in 
finding appropriate tutorials on the Internet. By the end of the summer the students were able to 
complete a rudimentary Python-based simulator. 
 
This project was attractive for two reasons. First, developing the code for a simulator opens the 
door to a range of interesting research, from adding one’s own custom noise models, to 
investigating ways to accelerate the simulator or add the ability to handle more qubits, which are 
all viable research problems in their own right [16], [17]. Second, the development of the 
simulator forms a driving motivator for learning QC and thus provides a basis for our 
introductory class on QC. 
 
 



 

3. Quantum Computing for Undergraduate Research 
 
This section describes our approach for teaching introductory QC to undergraduates, particularly 
the simulator, which enables them to engage in viable undergraduate research. In addition to 
learning the theory using Dirac’s bra-ket notation, the students write their own Python code to 
automate the operations otherwise being done by hand. In the simulator quantum gates are 
represented as matrices; the tensor product is used to calculate the full matrix at each moment in 
time; the complete quantum state vector (wave function) is computed at each stage of the 
quantum circuit; and a measurement method is implemented. We adopted the approach used by 
Google Cirq (https://quantumai.google/cirq/build/circuits) to subdivide the circuit into 
“moments,” where each moment is a set of gate operations executed in a slice of time. The gates 
in each vertical column form a moment as illustrated in Fig. 1. In a physical quantum computer, 
such moments do not necessarily represent the order of operations, but in a simulator, moments 
help the students organize their thoughts on how the circuit behaves and thus aid in learning QC 
principles. States, gates, and moments are all represented as Python classes. One can also display 
quantum circuit diagrams, list the contents of a state in various formats, and display the results of 
thousands of measurements. Because the size of the matrices increases exponentially with the 
number of qubits, one important advantage of developing a simulator is that the students can 
extend the theory to situations with three or more qubits, which are intractable by hand, enabling 
them to handle more complex circuits earlier in the learning process. 
 
 
 
 
 
 
 
 
 

Fig. 1. Conceptual quantum circuit illustrating a moment in the dashed box. Gates are 
represented by the rectangles labeled “U”. 

 
Our approach requires a foundational knowledge of linear algebra (i.e., vector spaces, linearity 
and superposition, and matrix and tensor products) and a minimal knowledge of quantum 
physics. While the instructors allude to quantum physics ideas and experimental results, most of 
the presentation is more abstract and hardware independent [18], [19]. For the summer research 
projects, computer programming skills are important, but for our introductory QC course, many 
STEM students having completed their sophomore year will have seen sufficient computer 
science. 
 
4. Investigating Advanced Quantum Computing Algorithms 
 
In 2022 we had the opportunity to engage four undergraduate students in various QC projects. 
The first two students did an independent study during the spring semester and the latter two did 
two projects during the summer months. A description of these projects and an assessment of 
what we learned in the process are detailed in this section. 



 

4.1 Understanding the Quantum Fourier Transform and Its Applications 
 
During the spring semester two computer engineering undergraduate students, a junior and a 
senior, undertook an independent research study with one of the authors. The goal was to 
determine how well these engineering students could assimilate the necessary background 
material on QC to begin reading the scholarly literature and to apply it to a selected problem 
involving the use of the Quantum Fourier Transform (QFT). The actual problem was left open-
ended, to be determined by student interest and progress in the second half of the semester. The 
students were assigned readings from a textbook [20], tutorials developed the prior summer, and 
met with the faculty member once a week for an hour to discuss their progress. The students 
were engaged in understanding QC through writing Python code and using NumPy to study the 
matrix operations and in the use of IBM’s Qiskit simulator. Several papers were studied in detail, 
the focus being on the ones that made use of the QFT. The two-qubit implementation of the QFT 
was analyzed in detail and the three-qubit version was studied. A recent paper that compared the 
QFT with the classical Fourier transform [21] was assigned for reading. (The fact that this paper 
was written by a high school student was somewhat motivating to our college students!) The 
students’ prior study of the Discrete Fourier Transform in their signal processing classes was 
helpful to their study of the QFT. The inverse QFT used for quantum phase estimation was 
dubbed a binary-to-phase converter–such an abstraction enabled the quantum circuit proposal for 
solving the NP-hard traveling salesman problem to be understood at a conceptual level [6]. 
 
The students were primarily evaluated on their performance in this independent study by a 
midterm and final report. For the final report the students had to describe the working of a QC 
algorithm and write some relevant Python code. The senior student was assessed to have an 
above-average level understanding of the material while the junior student was deemed to have a 
more average understanding. In terms of actual research progress, we can say the results were 
rather modest, as the semester’s work resulted in grasping an understanding of some current 
research under the guidance of their faculty mentor. Nevertheless, given the limited time students 
(and faculty) have to interact during the semester, we conclude the efforts were worthwhile for 
the insight gained into the extent to which engineering students are able to grasp the basic 
concepts of QC and to begin reading the scholarly literature. The students also seemed highly 
engaged by the topic itself and appreciated the opportunity to take part in this independent study. 
 
4.2 Understanding Machine Learning using Quantum Computing  

 
Introduction: Importance of the Research Topic 
Advances in machine learning algorithms combined with increased computing power of classical 
computing platforms (e.g., the move to multi-core and graphical processing units), have enabled 
machine learning to become a key technique for analyzing the vast amounts of data being 
generated in the era of ‘Big Data’. For example, in computational biology, the development of 
statistical models of molecular structure is important in drug discovery [8], [10] and for 
investigating the structure of proteins [22], [23]. Due to computationally intensive nature of these 
machine learning algorithms (due to the so-called curse of dimensionality) combined with the 
exponential growth of datasets, researchers have begun investigating the potential of QC to 
increase the performance of machine learning algorithms [24]. 
 



 

Quantum machine learning is a challenging research area, as it requires expertise in both QC and 
machine learning. For an initial undergraduate research project, a quantum machine learning 
approach that implements a very simple distance-based classifier [25] was studied. From the 
machine learning perspective, the classification metric based upon the distance between data 
points mapped to a Euclidean plane can be understood mathematically with a knowledge of basic 
high school trigonometry. From the QC perspective, a single quantum gate (the Hadamard gate) 
was at the core of the algorithm, making the basic concept straightforward to understand. 
Furthermore, the algorithm highlights the key QC concepts of superposition, interference, and 
entanglement. While a simple dataset was adopted, the advantage of quantum parallelism is 
demonstrated as the test data can be compared to both sets of training data at the same time. 
 
What was done 
One of the authors of this paper worked on this research over the summer with a data-science 
student who had just finished his freshman year. The student had completed two programming 
courses but did not have any prior background in machine learning or QC. Hence, close 
supervision of the student was required, and coding examples and tutorials were given to the 
student. With this guidance the student was able to understand and explain the operation of the 
circuit and write Python code to analyze the circuit. To gain insight on the circuit, the focus was 
on hand analysis of the circuit and developing Python code that generated the matrices at each 
stage of the circuit. 
 
A simplified version of the Iris dataset [26] was used to train and test the quantum classifier. 
Following the work of Schuld et al. [25], only two of the four features available for each sample 
were used, permitting the data points to be represented using complex numbers. As is typical in 
classification applications, the data were normalized so the data points were on a unit circle and 
just an angle was needed to specify each point. The data could then be encoded with a quantum 
circuit consisting of a series of rotation gates combined with CNOT and CCNOT gates to 
entangle the data. With some effort, it was found that the data preparation circuit could be 
completely analyzed and understood via hand analysis. This enabled insight to be gained on the 
critical role played by the data preparation circuit used for quantum machine learning 
applications. 
 
In addition, the actual circuit, shown in Fig. 2, was implemented on a 5-qubit quantum computer 
through IBM’s Quantum Experience [27]. We were able to reproduce the results of the targeted 
paper by Schuld et al. [25] and to further the work by investigating additional dataset examples 
that were executed on the IBM quantum computer. In doing so, the student’s work highlighted 
an issue with such a machine learning approach: the required data preparation on both a classical 
computer and the quantum computer becomes the bottleneck if large amounts are data are to be 
processed by a quantum machine learning algorithm. The execution of the algorithm on an actual 
quantum computer emphasized the issue with noise in the data preparation scheme. Furthermore, 
the research highlighted the shortcomings of this simple approach as some of the additional data 
points that were used to test the quantum circuit were misclassified. 
 
Lessons learned 
In summary this project exemplified the key concepts involved in quantum machine learning. 
State-vector analysis of the quantum circuit from Schuld et al. [25] provided insight on how 



 

quantum parallelism is affected through the superposition and entanglement of qubit states. In 
addition, the issues associated with the classical-quantum interface, namely how classical data 
can be prepared and uploaded onto the quantum computer were vividly illustrated in this project. 
Implementing noise models to analytically understand the effect of noise and how it might be 
mitigated in the data preparation circuits are some ways that this research can be meaningfully 
extended by an undergraduate researcher. The work also underscores the need to balance finding 
a challenging piece of research that is of interest to a student while being within the cognitive 
scope of an undergraduate. We conclude that this project succeeded on both levels: the topic was 
quite interesting and motivating to the undergraduate researcher, who was able to successfully 
present his work at the end of the summer to his fellow students and other faculty mentors 
associated with the science-wide summer research program. 
 

 
Fig. 2. The quantum machine learning circuit implemented on IBM’s 5 qubit quantum computer. 
 
4.3 Simulating Shor’s Algorithm on the QC Simulator  
 
Introduction: Importance of the Research Topic 
In 1994 Peter Shor developed a QC algorithm to find the prime factors of a number in fewer 
steps than can be achieved by classical computing methods [5]. This was one of the first practical 
demonstrations of QC and showed that public-key cryptosystems, such as RSA, could be 
efficiently broken. In these systems information is encrypted using a number N = pq, where p 
and q are two large primes. The information is decrypted with knowledge of p and q. The 
security of the encryption depends upon the extreme difficulty in factoring N. Shor’s algorithm 
stimulated the growth of the QC industry. Because this algorithm has a number theory part and a 
QC part, it takes a significant effort to understand and implement it without predefined functions 
on a simulator. One of the authors of this paper therefore worked on simulating Shor’s algorithm 
with an undergraduate physics major during the summer. The student had no prior knowledge of 
QC. We were able to factor 91=13×7 on the student PC laptop and 143=13×11 with 23 qubits on 
a Core i7, 2.8 GHz, 16 GB RAM computer. 
 
What was done 
During the first month of summer research the student worked on fundamentals of QC, the 
simulator, and the number theory associated with RSA encryption and Shor’s algorithm. A 
stripped-down version of the simulator was given to the student. Through a series of exercises 
mostly adapted from the ‘Try It’ problems in Flarend and Hilborn [20], the student learned to 
work with object-oriented programming, build up the simulator, execute various quantum 
circuits, write a measurement method, and interpret the results. Simultaneously the student and 
advisor worked step-by-step through RSA encryption and decryption following descriptions 



 

from [20] and [28]. Tests of finding the period of modular exponentiation were accomplished 
with Mathematica and Excel. 
 
Work on simulating Shor’s algorithm occupied the second half of the summer. We followed 
suggestions by Candela [29]. An example of a quantum circuit for seven qubits is shown in Fig. 
3, which is capable of factoring 15. Each rectangle in the diagram represents a matrix whose size 
increases exponentially with the number of qubits passing into the rectangle. These matrices can 
become very large in practical problems. To factor larger numbers, effort was needed to 
understand the structure of the controlled-U matrices that are shown in the diagram as “x an mod 
C.” The student wrote Python methods to generate a U matrix for arbitrary n and to expand IQFT 
(Inverse Quantum Fourier Transform) to automatically handle any number of qubits. After 
making thousands of measurements with the quantum simulator, the student wrote code to mimic 
what a classical computer would have to do to obtain the factors from the measurements. 
Histograms of the data were constructed; peaks were found; and a continued fractions method 
converted the location of a peak into a fraction. This resulted in the period of the modular 
exponentiation from which the prime factors could be calculated. 

 

Fig. 3. Reproduced from [29] with the permission of the American Association of Physics 
Teachers. 

 
Lessons learned 
There were two major lessons learned. The first pertained to multiqubit gates. To learn QC 
starting from a stripped-down simulator, the student successfully built up the simulator to handle 
any number of qubits and sequential single qubit gates. However, the approach could not handle 
multiqubit gates (ex. CNOT). The advisor concluded that from the beginning, simulator 
development needs to be steered in a way that can handle arbitrary multiqubit gates. 
 
The second lesson pertained to the limitations of using the NumPy’s kron function to compute 
the tensor product of the gates at a given moment of time in the quantum circuit. To factor a 
number such as 143, N=23 qubits were required, forming state vectors each containing 223 ( 
107) elements. Because the matrices are 2N x 2N sparse block matrices, using kron to form the 
matrices was an inefficient use of memory and became impossible as N increased in size. Since 



 

the U matrix operated on a subset of qubits, a new function was written, which we nicknamed 
“superKron,” that applied U to different portions of the state vector, requiring a much smaller 
matrix to be held in memory. To handle controlled-U operations, a lookup table was generated 
that could map one bit arrangement to another in order to facilitate the calculation. The author 
concluded that for simple circuits, where N is relatively small, kron is sufficient and convenient. 
But when N becomes large, either a superKron function would have to be given to the students 
or time would have to be spent instructing the students on the mathematics underlying it.  
 
5. Introduction to Quantum Computing Course 
 
This section provides an overview of our initial teaching of an introductory undergraduate course 
in QC during the spring of 2023. In addition to learning about the standard theoretical topics, the 
students developed a Python-based quantum computer simulator. They also worked on research 
projects during the last 2.5 weeks of the semester. 
 
This introductory course was primarily geared towards students at the sophomore, junior, and 
senior levels majoring in physics, computer science, and electrical engineering. The students 
collaborated on in-class learning activities using the Jigsaw active learning method [30] and on 
programming assignments which built towards a simulator. Our hypothesis was that students 
with a mixture of STEM backgrounds would help each other, making the course more accessible 
to a broad range of students. The course pre-requisites were only an introductory programming 
course and Calculus I – the latter was to ensure a basic level of mathematical maturity. 
Background in quantum physics, linear algebra, and complex numbers was introduced to the 
students in the course. We assumed students had a working knowledge of high school algebra 
and trigonometry. 
 
The students coded their own quantum computer simulator over five assignments lasting about 
10 weeks, where one or two key software modules were created per assignment. From a software 
engineering perspective, this bottom-up approach worked well and enabled students to 
internalize the mapping of the QC concepts to the code. The more proficient coders were then 
able to extend their simulator as part of the course research project. A key classroom challenge 
was dealing with the wide range of coding experience, which spanned as little as one semester 
through those graduating in a few months with a computer science degree. Our plan was to ask 
more advanced coders to teach others in their group. For some, this was a valuable and 
rewarding learning experience, but for others, teaching was not their forte. Helping the students 
understand the value of being a mentor was one of the challenges faced by the course instructors. 
But in the end, there were half a dozen simulators in use in the room, which could not have been 
coded without having the interdisciplinary groups. 
 
An important objective of our course was to give students opportunities to investigate open areas 
of QC research. The learning benefits include improvements in student understanding and 
cognition, practical experience in developing into a researcher, and retention in STEM fields 
[31], [32]. Groups of 1 to 3 students worked on research projects after finishing the development 
of their quantum computer simulator. Students presented their findings to the class during the 
last week of the semester. At the time of this writing, the final project reports remain to be 



 

submitted, but from the presentations, we can provide some preliminary assessments of several 
types of projects. 
 
First, students worked on methods to improve the quantum computer simulator. One project 
explored the scipy.sparse library for handling sparse matrices with the goal of handling circuits 
with a larger number of qubits. Another project explored parallel computation to improve the 
speed and size of matrices that can be processed. Using the Dask library, the students 
demonstrated that their simulator could run faster on a conventional multi-core laptop and that 
the simulator could be scaled relatively easily to computing clusters [33]. They used a quantum 
adder circuit as a test case. 
 
A second type of project investigated the impact of noise on Grover’s search algorithm for two 
qubits. The students compared real-world noise on multiple IBM quantum computers and looked 
at a noise model on the IBM Qiskit simulator. They made modifications to the course simulator 
to inject noise at various points in the circuit. The instructors believe that the speed with which 
these students could learn to use Qiskit and modify the simulator was the result of the many 
coding assignments in this course as exercises and for development of the simulator. This type of 
project could lead to a future project on noisy intermediate-scale quantum machines. 
 
There were topics that we did not have time to cover in the course but were explored in the 
student research projects. One student looked at the quantum Fourier transform and quantum 
phase estimation. The Deutsch-Jozsa algorithm was extended. Quantum machine learning was a 
popular topic as three groups studied the simple distance-based classifier described earlier [25]. 
The students attempted to reproduce the published work in [25] and to evaluate it further with 
additional data points and a different dataset. 
 
6. Summary and Conclusions 
 
Quantum computing is regarded by many as the next major computing paradigm that will enable 
continued exponential improvements in computing efficiency that have been ‘enjoyed’ over the 
last five-plus decades of Moore’s Law. As such, it is an exciting field of study for both our 
undergraduate students and their faculty mentors. The thesis of this paper is that QC provides 
ample opportunities for exciting and open-ended undergraduate research projects. Our 
experience to date demonstrates that undergraduate researchers, under the close supervision of 
their faculty mentors, are able to undertake meaningful research. Even if this research is 
considered somewhat modest compared to the efforts of graduate students, the students are 
studying legitimate and open-ended research problems in QC, not standard textbook problems.  
 
For summer research, ten weeks are dedicated to intensive study and research, which is 
considered the full-time job for the student. We find it beneficial to have the prospective research 
students do some reading on QC prior to the summer. During the actual research period close 
supervision with meetings at least twice per week during the summer is highly recommended for 
keeping the research on track.  The initial development of the quantum computer simulator in the 
summer of 2021 gave us insight on how to integrate the development of a simulator in our 
introductory course as well as use it as a foundation for future research. For one of the summer 
projects, a freshman data science student required a fair amount of guidance to understand and 



 

write the necessary code to analyze the quantum machine learning circuit. However, he was able 
to comprehend and successfully present his research by the end of the summer. For the other 
summer project, a sophomore physics major seemed to be able to grasp the basics of QC 
relatively quickly and was able to make significant progress in understanding Shor’s algorithm 
and simulating it. Doing research as an independent study during the school year is more 
challenging.  We have found that one meeting a week is usually all the time that can be devoted 
to supervising student research. Nevertheless, we believe it is a worthwhile activity for keeping 
students engaged in research, although more modest achievements can be expected. 
 
Our innovation of integrating the development of a Python-based simulator into the standard 
theoretical approaches taught in a QC course was accomplished during the spring of 2023. We 
suspect the practical nature of the course has attracted a significant number of students who 
might not have taken this course if the material were purely theoretical. While we still need to 
complete a final assessment of the course, we expect to see some benefit in having 
multidisciplinary groups of students work together. The mini-research projects are expected to 
improve student learning and motivation. The course should also improve the preparation of the 
students for doing future QC research. 
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