
USE OF A MATRIX CLASS TO INTRODUCE

Session 2220

OBJECT ORIENTED PROGRAMMING

William H. Jermann, Ph. D.
Department of Electrical Engineering

The University of Memphis

ABSTRACT

At the end of a junior-level course called Matrix Computer
Methods, students are introduced to object orientied programming
through use of a user defined class called a Matrix class. The
introductory example is nontrivial and illustrates differences in
procedural techniques and object oriented programming.

INTRODUCTION

In our introductory programming course, students develop skills
in procedural programming using standard C [l].
assignment,

In their first
and in all subsequent assignments, they develop and

use separately compiled functions.

In a subsequent course called Matrix Computer Methods, they
develop and use a collection of matrix functions.
they finish this course,

By the time
they have accumulated considerable

experience in using a procedural programming language.

Until recently, object oriented programming using C++ was first
introduced in an upper division elective.
objects that are

However, we found that
commonly used in C++ textbooks were not

very satisfying as far as
programming [2] [3].

illustrating object oriented
Examples of such classes are arrays,

complex numbers, stacks, screen-graphic classes, and general-type
concepts such as "zoo-animal" classes.

We now introduce object-oriented programming at the end of the
Matrix Computer Methods course using a Matrix class. The
difference between object oriented techniques and procedural
techniques is vividly illustrated.

In the following paper, the class definitions, class methods, and
operation overloading functions associated with this example are
discussed. Furthermore, the Matrix class is used to develop a
hierarchy of derived classes that inherit attributes from the
base class.

P
age 3.599.1

USING C++ FOR OBJECT ORIENTED PROGRAMMING

Students frequently use class libraries to interface applications
programs to Windows environments. In fact, sometimes object
oriented programming appears to be associated exclusively with
the use of graphical objects. However, concepts of object
oriented programming are much more general. The entire issue of
BYTE in August 1981 relates to object oriented programming using
smalltalk-80 [4].

Unlike smalltalk, C++ is not just an object oriented programming
language, but rather a hybrid language. That is, the procedural
techniques used in C may still be used in C++. But in addition,
objects may be defined as instances of classes, and object
oriented techniques may be employed.

In our Matrix Computer Methods course, students develop and
separately compile a number of matrix functions. This set
includes functions that put a number into a matrix, retrieve a
specified element from a matrix, read and print matrices,perform
addition and multiplication of matrices, and find inverses and
determinants of square matrices. These functions are used in
implementing Matrix class methods when object oriented
programming is introduced.

C code may be recompiled and used in C++ programs.
there are several differences between C++ and C.

However,
Some of these

are:

1. Class definitions that lead to object oriented
programming techniques.

2. Use of inline functions.

3. Function and operation overloading.

4. Default argument values.

5. Passing arguments by reference.

6. Use of the "new" and "delete" operators.

These differences are illustrated in the following example

USE OF A MATRIX CLASS

A program illustrating object oriented techniques usinq a Matrix
class is shown in Figure 1. The Matrix class itself is defined
in the header file, matrix5.h, and is shown in Figure 2. The
class methods are shown in Figures 3 and 4. The code for these
class functions employs procedural techniques and uses functions
that have been developed by students earlier in the course.

Refer to the code shown in Figure 1. The difference between
procedural techniques and object oriented techniques is quite

P
age 3.599.2

clear. For example, to print matrix b,
is used.

the statement b.print()
If procedural techniques were used, a function would

have to be invoked, and arguments carried into the function, such
as the number of rows in the matrix,
pointer to the matrix,

the number of columns, a
and the column dimension of a 2-

dimensional array.

Refer to the program statement in Figure 1,

a = b * e.inv() + d * f.inv()

Clearly the operations +, *, and = have been overloaded, so that
in this context they imply matrix addition, matrix
multiplication, and assignment of matrix values to a matrix
object. To implement this statement using procedural techniques,
an inverse function would have to be called twice, a
multiplication function called twice, and a matrix addition
function called once. Each function requires a set of arguments
which must be transmitted in the proper sequence. This can be
tedious since a general matrix multiplication function requires 9
arguments.

Refer to the read() function at the start of the program, and the
read(p) function at the end of the program. The former reads from
standard input, and the latter from a file. This is an example
of either an overloaded function, or the use of a default
argument being passed to a function.

The program in Figure 1 clearly illustrates the difference
between procedural techniques and object oriented techniques. If
procedural techniques are used, much effort is required in the
use of language semantics, whereas in object oriented programming,
the programmer can concentrate on the manipulations involving
the objects.

Refer to Figure 2. A Matrix class is defined, and several of
the methods are implemented using inline functions. The class
definition can be extended significantly.

Class functions and operator overload functions are shown in
Figures 3 and 4. Some of these involve use of functions that
have been previously written by students in the matrix course.
These include cget, cput, matread, matprint, matadd, matmul, and
inv, and are declared in the header file csubs5.h. Thus, many of
the class functions are implemented using procedural techniques
and previously written code. In Figures 3 and 4, there are
illustrations of transmitting arguments by reference as well as
illustrations of use of the new and delete operators.

DERIVED CLASSES AND INHERITANCE

Refer to Figure 5. Clearly the set of all square matrices is a
subset of the set of matrices. Similarly, other subclasses are
illustrated. Determinants, inverses, and eigenvalues are

P
age 3.599.3

attributes of square matrices, but not of general matrices.
Simiarly, we would probably not use a general function to find
the determinant or the eigenvalues of a triangular matrix, nor
would we use a general inverse routine to obtain the inverse of a
diagonal matrix.

Each derived class has all the attributes of its base classes, as
well as its own unique attributes. Refer to Figure 2. A Square
class is defined. This derived class contains all the attributes
of the matrix class plus its own attributes. We may wish to
define the inv method as part of the Square class rather than as
part of the general Matrix class. Similarly,
defined as a derived class of the Square class.

the Diag class is
Additional class

methods (and members) may be defined. It
that if the class functions of the derived
access to the members of the base class,
should be replaced with the word "protected"
definition.

should be mentioned
classes are to have
the word "private"
in the Matrix class

CONCLUSIONS

We first introduce object oriented programming to students after
they have nearly completed a course
Techniques. By this time,

in Matrix Computer
they have considerable experience in

procedural programming techniques. They also have considerable
knowledge about a non graphical object, the matrix. We believe
this introduction clearly illustrates the difference between
procedural and object oriented techniques.

Although the use of the Matrix class serves as a meaningful
introduction to object oriented programming, it does not give the
students skills or experience in developing object oriented
programs using C++. Those who are sufficiently motivated take a
subsequent upper division elective called Engineering Software.
Over the past few semesters, this elective has been taken by a
large number of students.

software contained in this
can get copies via email.

Those who would like copies of the
paper or the supporting software
Contact "wjermann@memphis.edu".

REFERENCES

1. w. Jermann, "The
Direction,

Freshman Programming Course: A New
Proceedings of the Annual ASEE Conference, Washington

D.C., June, 1996.

2. s. Lippman, C++ PRIMER,
Publishing Company, 1991.

2nd Edition, Addison-Wesley

3. J. Adams, S. Leestma, & L. Nyhoff,
COMPUTING, Prentice Hall, 1995.

C++ AN INTRODUCTION TO

4. BYTE, Vol. 6, No. 8, August 1981, pp 14 - 387.

P
age 3.599.4

#include <assert.h>
#include <stdio.h>
#include "a:matrix5.h" // Class definition. Overloaded operator defs.

int main()
{Matrix a(3,3), b(l0,l0),c;

a.read() ;
//Instantiate Matrix objects

b
// Object oriented technique

b.print();
// Matrix assignment (overloaded operation)

C = a + b ; // Matrix addition
c.print

(overloaded operation)

a = a + b + c + a ; // Matrix addition
a.print(); b.print(); c.print();
a = b * c; a.print();
Matrix d,e,f;

// Matrix multiplication

d f = b;
// Invoking constructor again

= e =
a = b * e.inv() + d * f.inv(); // Extended Matrix operations
a.print();
Matrix bi; bi = b.inv();
b.print(); bi.print();

// Finding an inverse

Matrix g(3,3), h(3,l);
double x[] = { 1, 1, 1,

0, 2, - 1 ,
4, -3, 2,
6 , 1, 4 };

g.set(x); g.print();
a = g.inv() * h;

h.set(x+9); h.print();

a.print();
// solve simultaneous equations

FILE *p;
Matrix aa(8,7);

assert (p = fopen("a:crap.dat","r"));
aa .read(p); aa.print();
return 0;

// Matrix method overloading

}

Figure 1: A C++ main program that introduces object oriented
programming using Matrix objects

P
age 3.599.5

#include <stdio.h>
class Matrix {

friend Matrix&

public:
operator *(Matrix&, Matrix&);

Matrix(int x=5,int y=5);
~Matrix();
Matrix&
//

operator=(Matrix &);
will also overload ops + and *

int rows(void) { return r; }
int cols(void) { return c; }
void setrows(int x) { r = x; }
void setcols(int x) {c = x; }
double get(int i, int j);
void put(int i, int j, double x);
void set(double *); // assigns Matrix from array
void read(FILE * p=stdin);

of reals
// matread

void print(void); // matprint
Matrix& inv(); // returns inverse
double * getptr(void) { return ptr; }
void setptr(double *p) {ptr = p; }

private:
int r;
int c;
double *ptr;

public:
virtual void dumb();

}; // end of class definition

class Square:
public:

public Matrix {
Square(int n = 3);
void dumb();

};

class Diag:
public:

public Square {
Diag(int n=4);
void dumb();

};

Matrix& operator +(Matrix&,Matrix&);
Matrix& operator *(Matrix&,Matrix&);

Figure 2: Definition of a Matrix class and overloaded
(contained in header file, matrix5.h)

operators + and *

P
age 3.599.6

#include "a:matrix5."
#include "a:csubs5.h"
#include <assert.h>
#include <stdio.h>

Matrix::Matrix(int m, int n)
{ r = m; c = n; ptr = new double[m*n]; assert(ptr);

int i; for(i=O; i< m*n; i++) ptr[i] = 0; }

Matrix::~Matrix()
{ delete ptr ; }

Matrix& Matrix::operator=(Matrix &x)
(delete ptr; /

r = x.rows(); c = x.cols();
ptr = new double[r*c];
double *p; p = x.getptr();
int i; for(i=O; i< r*c; i++) ptr[i]=p[i];
return *this; }

Matrix& operator*(Matrix &x, Matrix &y) // A friend
{ assert(x.c == y.r);

static Matrix z; delete z.ptr; z.r = x.r;
z.c = y.c;
z.ptr = new double[z.r * z.c;
matmul(x.r,y.c,x.c,x.ptr,x.c,y.ptr,y.c,z.ptr,,z.c);
return z;

}

Matrix& operator+(Matrix &x, Matrix &y) // not a friend
(assert(x.rows() == y.rows());
static Matrix z; z = x;

assert(x.cols() == y.cols());

matadd(x.rows(),x.cols(),x.getptr(),x.cols(),

return z;
y.getptr(),y.cols(),z.getptr(),z.cols());

}

Figure 3: Class methods and operators for the Matrix class

P
age 3.599.7

double Matrix::get(int i, int j)
{ return cget(i,j,ptr,c); }

void Matrix::put(int i, int j, double x)
{ cput,j,x,ptr,c); }

void Matrix::read(FILE *p)
{ matread(r,c,ptr,c,p); }

void Matrix::print(void)
(matprint(r,c,ptr,c); }

Matrix& Matrix::inv(void)
{ assert(r == c);

static Matrix x; delete x.getptr();
x.setrows(r); x.setcols(c);
x.setptr(new double[r*c]);
assert(!inverse(r,ptr,c,x.getptr(),x.cols()));
return (x);

}

void Matrix:: set(douhle *x)
{int i,j; for(i=l; i<=r; i++)

for(j=l; j<=c; j++)
}

(*this).put(i,j,*x++);

#include <iostream.h>

void Matrix::dumb() {cout << "Matrix\n" ; }

Square:: Square(int n)
: Matrix(n,n)

{ }
Diag:: Diag(int n)

: Square(n)
{ }

void Diag::dumb() {cout << "Diagonal\n" ; }

void Square:: dumb() {cout << "Square\n" ; }

Figure 4: Methods for the Matrix class and its derived classes

P
age 3.599.8

Symmetrical
Matrix

Triangular

Diagonal
Matrix

or

Figure 5. Illustration of a matrix base class and derived classes

P
age 3.599.9

