
Paper ID #10939

Use of Microsoft Testing Tools to Teach Software Testing: An Experience Re-
port

Ing. Gustavo Lopez, Universidad de Costa Rica

Gustavo Lopez is a researcher at the University of Costa Rica’s Research Center on Information and
Communication Technologies (CITIC), where he has worked since 2012. He has contributed to several
research projects on software testing and human-computer interaction, and he has also designed and taught
training courses on topics related to software testing. Previously, he worked as a Software Engineer at
a software development company in Costa Rica. He received his B.S. in Computer and Information
Science from the University of Costa Rica in 2011. His research interests include in software testing,
human-computer interaction, gender in computer science and computer science education.

Dr. Alexandra Martinez, Universidad de Costa Rica

Alexandra Martinez is an Associate Professor in the Department of Computer and Information Science at
the University of Costa Rica (UCR), where she has worked since 2009. She has taught graduate and un-
dergraduate courses in Databases, Software Testing, and Bioinformatics. She has done applied research in
software testing and bioinformatics at UCR’s Research Center on Information and Communication Tech-
nologies (CITIC). Previously, she worked as a Software Design Engineer in Test at Microsoft Corporation
in Redmond, WA, and as a Software Engineer at ArtinSoft in San Jose, Costa Rica. She received her Ph.D.
in Computer Engineering from the University of Florida in 2007, her M.S. in Computer Engineering from
the University of Florida in 2006, and her B.S. in Computer and Information Science from the Universidad
de Costa Rica in 2000. She also received a scholarship to study in the Pre-Doctoral Program in Computer
Science at the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from 2001 to 2002.

c©American Society for Engineering Education, 2014

P
age 24.1310.1

Use of Microsoft Testing Tools to Teach Software Testing:
An Experience Report

Abstract
This paper reports our experience using Microsoft testing tools in both graduate and under-
graduate Software Testing courses for four semesters. In particular, we used Microsoft Visu-
al Studio Ultimate 2010 (including Microsoft Test Manager 2010) and Microsoft Team
Foundation Server 2010, which together offer an integrated and comprehensive environment
for the application lifecycle management, including test planning, authoring, automation,
execution, tracking, monitoring and managing. We assessed our experience in using the
tools from the student`s and the teacher’s points of view. Based on students’ feedback, we
found that students not only consider they learned a lot from the labs (where Microsoft tools
were used) but also deem the tools easy to use, relevant to the course (supported the learning
of course concepts), and valuable for their professional career. On the other hand, based on
the teacher assessment, Microsoft tools provide support for the application of many different
concepts studied along the course within an integrated environment, reducing the learning
curve for students, while offering the added value of an industrial-level tool.

1. INTRODUCTION

Software testing is a critical activity in software engineering, accounting for 30% to 90% of
the total labor expended in developing software15. Yet software testing remains an under-
estimated activity in the Computer Science training curricula20. At the University of Costa
Rica, the Bachelor of Science’s program in Computer and Information Science offers an
elective undergraduate course in software resting, and Master of Science’s program in Com-
puter and Information Science offers an elective graduate course in software testing as well.
Both are 4-credit-hour courses, with 64 hours of class time in a 16-week semester. The un-
dergraduate and graduate versions of the courses are very similar in their core contents
(since the undergraduate course is not pre-requisite for the graduate one), differing mainly
on the applied research project (only performed at graduate level), advanced topics presented
by students (topics and depth vary according to the level), and the types of activities devel-
oped in and outside the class (for example, rich in-class discussions are far more common at
the graduate level than at the undergraduate level, since graduate students are more mature
and have more work experience). The main goal of both courses is to guide students in the
learning of the theoretical foundations and necessary skills for understanding and applying
software testing processes, techniques, and activities within the context of software quality
assurance. By the end of the semester students are expected to (i) understand and explain the
fundamentals of software testing, (ii) identify best practices for software testing and quality,
(iii) compare and apply different techniques, levels and types of software testing, as well as
(iv) plan, manage and implement a software testing process.

In order to effectively teach students how to test real-world software, the choice of software
tools, exercises, and lab projects is crucial, and we particularly believe that industry-level
tools together with practical labs or projects need to be used in the learning setting. We have
observed a tendency to adopt a set of separate open source tools in software testing courses,
where each tool serves a different purpose at a particular facet of the testing process, but the-

P
age 24.1310.2

se tools rarely integrate and while they help students to learn a particular topic of the course,
from our perspective, this approach fails to give students an overall, integrated and compre-
hensive view of the testing process with its activities, facets, and relationships among them.
Moreover, we think this approach unnecessarily increases the cognitive load on the students
since they need to master several tools in a short period of time and they might get lost in the
details of each new tool they are faced with rather than focusing on the “big picture” of the
task they are trying to solve (i.e., a concept they are trying to apply and learn). We therefore
decided to adopt Microsoft’s testing tools, which provide support for all the concepts we
want to teach (test planning, authoring, automation, execution, tracking, monitoring and
managing) in a single integrated environment that is also widely used in the industry, thus
overcoming the aforementioned shortcomings. In particular, we used Microsoft Visual Stu-
dio Ultimate 2010 (which includes Microsoft Test Manager 2010) and Microsoft Team
Foundation Server 2010.

Our contribution is to report on our experience using Microsoft testing tools in the context of
both graduate and undergraduate Software Testing courses, offering a guideline for using the
tools to apply the different concepts learned throughout the course. This could help colleges
and university professors who teach similar courses decide whether it is worth adopting the-
se tools in their courses.

Previous teaching and training experiences on software testing techniques and tool support at
academic and industrial settings have been reported by Xie et al.22 but they consider only
developer testing. The main lesson learned is that the use of industrial tools and technologies
reduces the load on students during the course and helps them get some experience that
could be applied later.

Other valuable experiences presented by Harrison9 indicate that in order to help students
learn both the developer’s and tester’s perspective of testing, a two-part project is a good ap-
proach. The first part of such project consists in developing an application and testing it ap-
propriately (testing from the developer viewpoint), while the second part consists in testing
other student´s application (testing from the tester viewpoint). A problem with this approach
is that due to the timeline of the course, the course ends up focusing more on the develop-
ment than on the testing part (the author reports that 55% of the time is spent developing
while only 33% of the time is spent testing, and the remaining 12% is spent writing a short
reflection paper).

There have also been experiences using “real-world” (industrial) software under test in test-
ing courses8, as a mean to effectively teach students how to test real software. The major
risks of this approach are confidentiality and technical support on software that is under de-
velopment by others. Garousi8 states that this approach requires and leads to strong academ-
ia-industry partnerships, but points out that it is necessary to achieve certain level of confi-
dence between the parts to start such projects.

Wong21 describes a way to improve the state of undergraduate software testing education by
incorporating core concepts into the Computer Science curricula. Wong states that it is not
enough to teach students the fundamentals of software testing, but it is also necessary to ex-
pose students to useful software testing tools that are used both in the academia and in the

P
age 24.1310.3

industry. The main issue we perceive is that they use one tool for each testing technique, and
this can be cumbersome if more than one technique is used in the term project.

Acharya et al.1 present two active learning approaches to teach software verification, each
used at a different institution. In both cases, there is a clear separation between the theoreti-
cal and practical parts of the course. In one of the institutions, the following tools are used: a
bug tracking system, a unit testing tool, a mock developing tool, a white box testing tool (in-
cluding code coverage and cyclomatic complexity), and a mutation testing tool. One of the
main problems they face is compatibility among the software they use and the lab machines.
Such problems are expected when several tools with different requirements are used instead
of a single integrated package.

Chen et al.4 suggest a teaching approach based on diversity principles with the use of lec-
tures, tutorials, projects, and panels; however, no tools are suggested to achieve the goals
proposed by the authors. The proposed teaching approach is based on a lecture-tutorial-
project-panel model. The lecture presents the basic concepts, the tutorial offers small exam-
ples to illustrate the concepts, the project reinforces the contents of lectures and tutorials
through practice, and a discussion with students (panel) allows the difficulties to emerge and
be solved in group.

Dukes et al.6 present a case study where five different tools are used for web application se-
curity testing but then again each tool is used independently to addresses a different vulnera-
bility problem (not in an integrated environment). Not all the tools presented in this research
are free; two are commercial standalone tools. This prevents students from viewing the vul-
nerabilities as a whole problem. We think this could be useful for a course that is focused on
security testing but not for an introductory course on software testing.

Garousi7 presents open modern software testing laboratory courseware that is similar to the
one we report in this paper, but he uses several tools and SUTs. One of his findings is that
testing educators should align the choices of SUTs and tools with the ultimate goal of the
course at hand, the type of students, and the time and resources available to the students in
the course.

Other forays into improving the teaching of software testing have been reported. For in-
stance, Cowling5 describes how a staged approach from software engineering is applicable
to software testing, and shows that incremental development is not well supported on several
curriculums. Martinez et al.11 present their experience with two reflection mechanisms: a
learning journal used in a Software Testing course, and a two-part reflection questionnaire
used in a Software Quality Assurance course. Smith et al.19 explain how they used peer re-
views to teach software testing within a Data Structures course, by encouraging collabora-
tion and competition among students.

The rest of the paper is organized as follows. Section 2 describes the context of the courses.
Section 3 presents the labware used in the course. Section 4 mentions the implementation
and assessment methodology. Section 5 discusses our findings. Section 6 concludes the pa-
per and outlines our plans for future work.

P
age 24.1310.4

2. THE COURSES CONTEXT

2.1. The Undergraduate Software Testing Course

The undergraduate-level Software Testing course, CI-2400, is a 4-credit-hour elective course
in the 4th year of the Bachelor of Science’s program, in the Department of Computer and
Information Science at the University of Costa Rica. The course is offered regularly, with an
enrollment of 15 to 22 students. The class meets twice a week for one hour and fifty minutes
during 16 weeks, for a total of 64 hours of class in a semester. All courses at our university
have the same grading scale: 0 to 10, and students require a grade of 7.0 or higher to pass the
course.

2.2. The Graduate Software Testing Course

The graduate-level Software Testing course, PF-3866, is part of a group of several software
engineering courses regularly offered by the Master of Science Program in Computer and
Information Science at the University of Costa Rica. It is a 4-credit-hour course with 64
hours of class time in a 16-week semester, and a 2-credit-hour co-requisite lab course where
students put theory into practice by developing a large practical project or an applied re-
search project. The class meets once a week for 4 hours with 10-minute breaks every hour.

2.3. Course Objectives and Contents

As it was previously mentioned, the undergraduate and graduate versions of the Software
Testing course are very similar in their core contents and objectives, since one is not pre-
requisite for the other.

The main goal of the courses is to guide the students in the learning of the theoretical foun-
dations and necessary skills for understanding and applying software testing processes, tech-
niques, and activities within the context of software quality assurance.

After completing the course, students are expected to be able to:

• Understand and explain the fundamental concepts of software testing.
• Identify best practices for software testing and quality.
• Compare and apply different techniques, levels, and types of software testing.
• Plan, manage and implement a software testing process.

The course reading materials are based on several reference books and recent papers in the
area. The course contents are divided in six units, which are listed on Table 1.

The main difference in content between the undergraduate and graduate versions of the
course was the choice and depth of advanced topics presented by students. Because of the
co-requisite lab course, graduate students usually chose a topic that was related to the ap-
plied research project they were developing in the lab course, which usually made the
presentations richer and better since students not only had to grasp the theoretical back-
ground of the topic but also put it into practice by means of some experiment.

P
age 24.1310.5

Table 1. Course Units.

2.4. Teaching Approach and Course Evaluation

Our teaching approach for the Software Testing courses is based on Just-in-Time Teaching
(JiTT)17,16,18 and other active learning strategies2,12,13 such as in-class discussions and coop-
erative learning activities. Active Learning has been described as the use of techniques that
involve students in the learning process, rather than listening to a lecture in a passive way13.
Students can actively learn by reading, writing, discussing, solving a problem, or responding
to challenging questions12,13. We adopted active learning strategies since they have been
shown to improve student comprehension and retention of material3 as well as to increase
student motivation and higher order thinking2,13. JiTT, in particular, enables the student to go
to class ready to actively participate in the different activities, and to have a feeling of own-
ership since classroom activities are tailored to their needs17. One of the authors has had pre-
vious successful experiences with the use of JiTT in other courses10.

Following the JiTT spirit, we required students to prepare for class by reading in advance the
assigned material, and we made sure students actually read by having online reading tests

Unit Name Unit Content
1. Principles of

Software Testing
and Quality

Basics: quality assurance and control, software testing, verification
and validation (V&V), test cases, software defects. The testing pro-
cess and V&V activities during the software lifecycle. Quality fac-

tors.
2. Planning and

Managing the
Testing Process

Components of a Test Plan according to IEEE 829 Standard, and al-
ternative approaches. Management of the testing process. Defect re-

porting and tracking. Test metrics.
3. Types of Testing Static vs. dynamic tests, manual (technical reviews) vs. automated

tests, black box vs. white box tests, functional vs. non-functional
tests (load & performance, security, localization, usability, accessi-

bility), and regression tests.
4. Levels of Testing Unit testing, integration testing, system testing, user acceptance test-

ing. Alfa, beta, pre-release (RC) y final tests.
5. Test Design

Techniques
Black-box techniques: equivalence partitioning, boundary value

analysis, cause-effect graphing, intuition and experience. White-box
techniques: control flow testing (statement coverage, decision cover-

age, condition coverage, decision-condition coverage, multiple-
condition coverage, path coverage, basis path coverage), data flow

testing (all defs coverage, all uses coverage, all DU paths coverage).
Combination Testing (all-pairs technique). Exploratory Testing.

6. Advanced Topics Student presentations on advanced topics in software testing. Candi-
date topics include: mutation testing, cloud testing, model-based test-
ing, database testing, performance/load testing, security testing, and

automated test generation tools.

P
age 24.1310.6

that had to be completed the night before class. In this way, the teacher could read students’
responses and adjust the next lesson based on common difficulties or doubts expressed by
students. In-class activities rely on active participation by the students, especially at the
graduate level. For example, rich discussions contrasting different viewpoints and work ex-
periences among students are common at the graduate level since graduate students are more
mature and have more work experience than undergraduate ones. The majority of the classes
combine short lectures, exercises, and discussion on the assigned readings. Some classes are
taught directly in the laboratory so that students learn to use Microsoft’s testing tools with
the assistance of the teacher (although the lab guides were designed to be self-sufficient).

The course evaluation was not the same across the four implementations of the course, vary-
ing mainly due to the level of the course (grad/undergrad) but also based on students’ feed-
back and teacher’s self-assessment. Some of the evaluation instruments used in the course
included quizzes, exams, oral presentations on advanced topics, term projects, lab reports,
and reading tests. Not all of these were used in all implementations; for instance, quizzes and
reading tests replaced exams in the last two implementations of the graduate course, and lab
reports replaced the term project in the last implementation of the graduate course (previous-
ly, there were no lab reports although there were lab sessions).

The term project is multiphase and performed teams of 3 to 4 students. The main phases of
the project are: (i) design and specification of test cases, (ii) manual execution of test cases
and incident reports, and (iii) design, implementation and execution of automated tests. Stu-
dents implement the project using Microsoft’s testing tools, which they learn to use in the
labs. By using an integrated environment (Microsoft Test Manager) to specify user stories,
test cases, test plans, test runs, and bug reports; they have the added benefit of traceability
(from bugs to test cases to user stories) as well as richer queries and reports. Additionally,
the same suite of tools (in this case, Microsoft Visual Studio) supports the development of
automated tests such as unit tests (with code coverage metrics), user interface tests, load tests
and performance tests. It is worth noting that the Ultimate version of Microsoft Visual Stu-
dio actually includes Microsoft Test Manager, which although is a separate application, it
integrates nicely with Visual Studio. The use of Microsoft testing tools in the term project
and labs complements the theoretical knowledge with a realistic hands-on experience that
will be helpful in their professional career.

2.5. The Students

The majority of our undergraduate students are full-time students, although some work as
course assistants at the university. A small percent of students have full-time or part-time
jobs outside the university. Students who take the undergraduate Software Testing course are
seniors.

On the other hand, all of our master’s students work fulltime in different industries, from
small and medium-size software organizations to large IT Departments of non-IT compa-
nies. Most of the students work on software development, some are software architects or
project managers although there is a trend for students to start working as software testers. A
small percentage of our students have other job profiles such as service management and
support desk professionals.

P
age 24.1310.7

2.6. The Teacher and Labware Creator

The first author designed and developed the labs, which included written guides, examples,
tools, infrastructure, and software under test. He initially created these labs as part of train-
ing on software testing requested by an internal software development unit from our univer-
sity. This training was offered in the context of a research project on software testing and
quality where both authors participated and which was supported by the Research Center on
Information and Communication Technologies (CITIC) and the Department of Computer
and Information Science. At the time of the study, the first author was a researcher at CITIC
with over one year of experience as a software tester and training instructor. He also volun-
tarily helped students during the lab sessions of the Software Testing courses taught by the
second author.

The second author was the instructor of the Software Testing courses. At the time of the
study, she was an Associate Professor at the Department of Computer and Information Sci-
ence, with over three years of teaching experience and over two years as principal investiga-
tor in research projects. She has a Ph.D. in Computer Engineering, academic background in
software testing, and three years of industry experience as a software tester.

3. LABWARE

3.1. The Origins

At the beginning of 2011, a software development unit from our university contracted CIT-
IC’s training services to provide both a course on the fundamentals of software testing and a
workshop on using Microsoft testing tools to support the software testing process. This unit
develops and maintains most of the software used internally in our university. The unit’s
staff develops software in Visual Basic using Microsoft development tools, thus the practical
part of the training focused on learning to use Microsoft testing tools and incorporating them
into the workflow of the development team, leveraging their knowledge of the Microsoft en-
vironment.

The training was conducted in two stages of 18 hours each: first, a theoretical course on
software testing (taught by the second author) and then, a hands-on workshop on the use of
the tools (taught mainly by the first author). Two researchers from CITIC (one with exper-
tise in IT and another with expertise in software testing) were in charge of developing the lab
guides, examples, and software under test to be used in the hands-on workshop. A set of ten
labs was designed, using Microsoft Visual Studio Hands on Labs as a basis but adapting
them to fit the needs of the unit for which the training was targeted. Lab guides were written
to be easy to follow in order to avoid the need for constant trainer intervention.

The labs covered the main features of Microsoft testing tools such as version control, test
case creation and management, load tests, performance test, UI automated tests, unit tests,
automatic and manual bug report, coverage metrics and virtual environments using lab man-
agement. The labs were refined and corrected after their use in the training workshop. Then,
the labs were adapted for use in the Software Testing courses.

P
age 24.1310.8

3.2. The Tools

The tools we used were Microsoft Visual Studio (VS), Microsoft Test Manager (MTM) and
Microsoft Team Foundation Server (TFS), in their 2010 versions. The Ultimate skew of
Visual Studio includes the Test Manager application. These tools were chosen because they
provide an integrated and comprehensive suite for the application lifecycle management, in-
cluding test planning, authoring, automation, execution, tracking, monitoring and managing.

3.2.1. Microsoft Team Foundation Server

The Visual Studio Team Foundation Server is the collaboration platform at the core of Mi-
crosoft's application lifecycle management solution; TFS is an industrial tool that can be
used to support either agile or cascade development processes. TFS delivers source control,
work item tracking, automated builds, project web access and informative web sites and re-
porting. TFS is part of Microsoft Team System Servers, which also include build servers and
testing servers. TFS is used to store data and manage software projects14.

3.2.2. Microsoft Test Manager

The Microsoft Test Manager application is a tool introduced along with VS and TFS
2010. It is used to create and organize test plans and test cases, and execute manual
tests. MTM is built specifically for testers to be able to interact with other members of the
project team. MTM allows the planning, execution, analysis and tracking of test cases asso-
ciated with one or more software development projects, MTM also allows the automation of
some kind of tests. MTM enable testers to access Lab Management that help tests across
multiple virtual environments and it is the main tool to support testing and communication
with the rest of the team14.

3.2.3. Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment used in console, graphic
and web applications as well as web services. Visual Studio includes support for testing
tasks including unit testing, performance and load testing, and UI automation. It also allows
visualization and reporting of relevant work items in the development and testing process 14.

3.3. Labs

Table 2 shows the labs used in the course, along with the content units they support. All
units except the first one have at least one supporting lab, allowing students to apply the
concepts studied throughout the course.

The first sets of practices are focused on the management part of the tools as it addressed the
source control capabilities and the work items management. Microsoft Team Foundation has
features designed to assist enterprise software development teams manage the work and help
with software defect tracking.

P
age 24.1310.9

Table 2. Labs per course unit.

The first lab on User stories and task management aims to get students familiarized with
the tools (particularly, Visual Studio) by teaching them how to manage work items. “Work
item” is the generic name for user stories, tasks, test cases, and bugs. Work items are the
central elements within Microsoft tools for managing a software development project. Work
items’ workflow or states can be customized depending on the team’s requirements. In this
lab, students learn to create and manage user stories (requirements) and tasks, and link them
together for traceability purposes (knowing which tasks are associated to which user stories).
This is useful because later in the term project students are asked to create and store user sto-
ries for the software they are testing, so that test cases and bugs can be traced back to the
original requirements.

The second lab is on Source control. The main purpose of this lab is to teach students the
benefits of using a source control manager, and how to resolve code conflicts that may arise
when working with other people on the same code base. For this lab, Visual Studio is used.
Clearly, TFS is used in the background, but students interact with Visual Studio.

The third lab is about Test case and test plan management. For this lab, we use the Mi-
crosoft Test Manager application. Nevertheless, since MTM and VS are part of an integrated
tool suite, we can either manage existing test cases (for instance, created in VS) or create
new ones from MTM. This lab guides students in the creation of a test plan and correspond-
ing test cases. It also contains informative sections that explain the possible states of a work
item, as well as how to manually execute test cases and keep track of test execution statis-
tics.

The fourth lab is on Bug Reporting, and it aims to teach students how to adequately report
and manage bugs (or defects) using the tools. For this lab, MTM is used. Although creating a
bug report may seem simple, students are reminded of best practices recommended in indus-

Course unit Supporting Lab
1. Principles of Software Test-

ing and Quality
None

2. Planning and Managing the
Testing Process

1. User stories and task management lab
2. Source control lab
3. Test case and test plan management lab
4. Bug reporting and management lab

3. Types of Testing 5. User interface automation lab
6. Performance testing lab
7. Load testing lab

4. Levels of Testing 8. Unit testing lab
5. Test Design Techniques 9. Code coverage lab
6. Advanced Topics 10. Virtual environments lab

P
age 24.1310.10

try standards such as IEEE 829. Special attention is paid to the quality of bug reports when
grading the term project.

The next three labs focus on black box testing and non-functional testing, and cover specifi-
cally performance tests, load tests, and automated user interface tests (the main testing types
supported by the tools). All three labs deal with test automation. These labs are on UI auto-
mation, Performance Testing, and Load Testing. Visual Studio is used in all of them. The
main purpose of these labs is to enable students to develop advanced automated tests that
can be automatically executed as many times as needed.

The next two labs focus on white box testing, particularly unit testing and obtaining cover-
age metrics. In both cases, Visual Studio is used. The Unit testing lab teaches students how
to automatically generate partial test code (generated code is just a skeleton), complete the
test code with the help of assertions and other test logic, and create data-driven tests from
existing tests. This lab and the following one are designed to be executed one after the other,
since coverage metrics are obtained from unit tests. The Code coverage lab teaches students
how to obtain code coverage metrics when running unit tests. Sometimes we have asked stu-
dents to add more unit tests so as to reach 90 to 95% of code coverage, thus engaging stu-
dents into a little competition.

The last lab is on Virtual Environments. The main goal of this lab is to teach students
about the virtualization capabilities of the tools, which allow to create and manage virtual
environments for testing. We have to mention that this was the only lab that was not execut-
ed in any of the four implementations of the course, due to the infrastructure requirements
needed to run it. The only time this lab was executed was during the practical training for
which the labs were initially designed.

3.4. The Software Under Test

We used three different software under test (SUT). The first SUT developed was the widely
known “triangle” program, which takes three integer values as input, and outputs whether
the triangle is scalene, isosceles, or equilateral. We found a java class that coded the triangle
program, so we translated it to C# in order to be able to use it from Microsoft´s tools. Then,
we purposely injected some bugs into the code so that students would find some bugs during
testing. This SUT was used in the unit testing and code coverage labs.

The second SUT was designed to show the source control capabilities of Microsoft tools. It
consisted in a set of small classes (one class per student) that would simply output a message
with the student’s name. This SUT was used in the source control lab, where the students
were asked to first modify the code of a classmate, then their own, and later attempt to check
in (commit) their code to the source control tool. The purpose was to expose conflicts that
could arise with different code versions and to use the tool to resolve them.

The third and most-used SUT was the MVC Music Store application provided by Microsoft
as a tutorial application built on ASP.NET MVC. The MVC Music Store is a web applica-
tion that sells music albums online, and implements site administration, user sign-in, and
shopping cart functionality. This SUT is used in the following labs: Load testing, Perfor-

P
age 24.1310.11

mance testing, UI automation, User stories and task management, Test case and test plan
management. A modified version of this application with injected bugs is used in the Bug
reporting and management lab.

4. IMPLEMENTATION AND ASSESSMENT

4.1. Implementations

There have been four implementations of the Software Testing course that have used the Mi-
crosoft testing tools. The first implementation was on the first semester of 2011 and it was
the graduate version of the course. The second implementation was on the second semester
of 2011 and it was the undergraduate version of the course (in fact, this was the only under-
graduate implementation we have). The third implementation was on the first semester of
2012 at the graduate level and the fourth and last implementation was on the second semes-
ter of 2013 at the graduate level as well.

4.2. Assessments

Our approach of incorporating Microsoft testing tools in the course was assessed from the
students’ and teacher’s perspectives. The students’ perspective was gathered from a survey.
Participation in the survey was voluntary and anonymous. The teacher’s perspective was ob-
tained from an analysis of strengths and limitations, and a list of lessons learned.

The survey contained questions related to the materials used during the course, including the
lab guides for using Microsoft testing tools. Other set of questions focused on the teaching
and learning strategies used in the course (for instance, lectures, exercises, discussions, read-
ings, applied research project, and classmate presentations of advanced topics). There was
also a set of questions related to the use of Microsoft tools for testing, which are relevant for
this study. In each implementation of the course, approximately 15 students participated in
the survey. In the next section, we present the aggregated results of student responses across
the four implementations of the course.

5. FINDINGS AND DISCUSSION

5.1. Students’ assessment

Seven of the 35 questions in the survey were related to the use of the Microsoft testing tools
and the hands-on labs. The first question was “How much do you think you learned from the
labs (using Visual Studio and Microsoft Test Manager)?” The multiple-choice answers were:
a lot, a little, nothing, and no-response (NR). Figure 1 summarizes student responses to this
question.

We observe from Figure 1 that 73% of the 63 students who completed the survey consider
that they learned a lot from the labs, i.e., from using Microsoft testing tools as the practical
component of the course. An interesting finding is that the lab practices and term project
won the second place (a tie) among the course activities which students learned most from,
only surpassed by teacher’s lectures and readings (tie for first place).

P
age 24.1310.12

Figure 1. Students’ assessment of how much they learned from the labs.

The second question was if the students thought there was a good balance between theory
and practice in the course. Here, 79% of the students who completed the survey stated that
there was a good balance, although some pointed out that the course was toilsome. The other
21% of the students though that there was not a good balance, with some indicating that
there was a big focus on theory and a lack of practice.

Students were also asked to what extent they thought that the Microsoft testing tools were (i)
easy to use (i.e., user friendly), (ii) relevant to the course (i.e., supported the learning of con-
cepts studied in the course), and (iii) valuable (i.e., knowing these tools gives added value to
the course and to you as a professional). The multiple-choice answers were: a lot, a little,
nothing, and no-response (NR). Figures 2, 3 and 4 show the results for these three questions.

From Figure 2 we observe that 86% of the students who completed the survey think that the
tools are highly user friendly. This leads us to think that it is good idea to use these tools in
an academic setting such as the aforementioned course, since the learning curve is mild and
students feel at ease using the tools. In Figure 3, it is not a coincidence that 92% of the stu-
dents think that the tools are highly relevant to the course since the labs were designed to
support the main concepts studied in the course (the same concepts were covered in the
training that originated the labware). From Figure 4, we note that 88% of the students state
that the tools are highly valuable and provide an added value in their professional lives. We
suppose that since most respondents are graduate students who work, most of them possibly
knew Microsoft Visual Studio only as a development IDE but were unaware of the potential
of its testing features until they took the Software Testing course.

Figure 2. Usability of the tools (user friendliness).

P
age 24.1310.13

Figure 3. Relevance of the tools to the course (support for concepts studied).

Figure 4. Value of the tools (added value to the course and students).

Another question asked was “Do you think that the use of Microsoft testing tools was en-
riching for your learning?” Table 3 shows some of the comments students wrote regarding
the use of Microsoft tools.

Table 3. Sample student comments regarding the use of Microsoft testing tools.

 Comment
Student 1 I work with. NET, so the tools were very useful for my job. I liked that

the teacher was brave enough to use these tools in the course, despite
the fact that the university discourages the use of proprietary software. I
have nothing against open source software but I do not like the philoso-
phy of rejecting proprietary software even if it is more suitable for
teaching.

Student 2 It broadened my knowledge of tools that I can use for testing and how
to use them.

Student 3 It’s a good tool and is used by many software development companies.
Student 4 A lot, since this tool is currently used in the industry, working with it

drew us closer to the way companies operate nowadays.

P
age 24.1310.14

We also asked students what other aspects they would have liked to learn in the course about
the Microsoft testing tools. Table 4 shows some of the comments made by the students.

Table 4. Sample student comments regarding things they would have liked to learn about

the tools.

 Comment
Student 1 The coverage of testing tools was pretty good.
Student 2 Personally I am satisfied with what I learned. I guess there must be

much more functionalities than the ones we used but I am happy to
know I could use the tool and now it is part of what I can write in my
resume.

Student 3 I think that the introduction to the tool allows us to investigate by our-
selves anything extra we want to know.

Student 4 I think they are useful tools that should be employed earlier in the
course. You can get more out of the tools when people are familiar
with them. Labs were performed towards the end of the course and
there was no time to truly understand the functionalities; we were
simply following the guides.

Student 5 I would like a more robust and complete example on unit testing that
includes several classes and functionalities, preferably on a web appli-
cation.

Student 6 I would have liked to learn about the Lab Manager.
Student 7 Tests with virtual servers. I found them quite interesting and useful in

the “real world”.

The last two questions were “What did you like most about the course?” and “What did you
like least about the course?” Tables 5 and 6 show some of the comments made by students in
response to these questions.

Table 5. Sample student comments about what they liked most in the course.

 Comment
Student 1 The practical part with Visual Studio and the feedback from people

who use it.
Student 2 The labs, which I think should be given a little more time and depth.
Student 3 The project, where one could perform the testing process for an ap-

plication, from the test planning to the tests execution and reporting
defects in the application.

P
age 24.1310.15

Student 4 What I liked most about the course was the development of the pro-
ject because it taught me what should be done in a real life project.

Student 5 The use of Visual Studio to implement the tests.
Student 6 The topics and tools used because they favor my work performance,

therefore, I believe that the knowledge acquired in this course can be
applied in the workplace.

Student 7 Learning testing techniques and use of Visual Studio.
Student 8 The labs and to be able to know a new tool.

Table 6. Sample student comments about what they liked least in the course.

 Comment
Student 1 Using little open source software.
Student 2 The pile of work associated with the team project.
Student 3 The short time devoted to the labs.
Student 4 The fact that we only used one tool. I would have liked to study al-

ternative tools. VS and TFS are very good tools but for those who
develop in a different language, they fall short.

5.2. Results from Teacher’s assessment

The teacher made a qualitative assessment on the strengths and limitations of the use of Mi-
crosoft testing tools, based on her experience across the four implementations.

5.2.1. Strengths

The main strength of having such integrated tool suite to support a course is that students are
able to put into practice the different concepts and facets of the testing process within a sin-
gle environment (IDE), with the consequent benefit of minimizing the learning curve and
allowing full traceability from user stories to tasks to test cases to automation to bugs (which
would be cumbersome if different tools were used for different parts of the process). Anoth-
er advantage of using Microsoft testing tools is that they support the concepts studied across
all but one of the course units. Additionally, we believe that learning a commercial tool that
is actually used in real industrial settings is an added value for students. In fact, a considera-
ble number of graduate students who took the course indicated that they use Microsoft tools
in their work, but they did not know about the testing capabilities of these tools, so learning
these in the context of the course was a direct benefit for them and their organizations.

A characteristic that we use frequently and that we deem important for teachers is that the
tools allow us to monitor and evaluate the individual work and progress of the students,
while allowing them to collaborate as team members. This is enabled by the use of individu-
al accounts in the TFS server combined with team projects to which users belong. This is an
enormous help for the teacher because if there is a student who is not doing his part of the

P
age 24.1310.16

project, the teacher can easily detect it, and can penalize that student rather than the whole
team. The logging mechanisms embedded in the tool also make it more difficult for students
to cheat (for example, if a student copies test cases or bugs from a classmate, this will show
in the work item’s log since the tool store who created the item, who modified it, who copied
it, etc.).

It is also worth mentioning that there is a vast amount of documentation, tutorials and videos
available from Microsoft to help teachers and students alike to learn how to use the tools
(documentation is usually scarce in open source tools).

Lastly, with the recent development of Pex and Moles* from Microsoft Research, there is an
opportunity for students to use Microsoft tools in combination with Pex and Moles for their
applied research project.

5.2.2. Limitations

A major limitation that we found was the overhead of correctly installing and configuring
the Team Foundation Server and the user/group permissions adequately. We therefore rec-
ommend the teachers who want to adopt this tool in their course to seek support from the IT
Department during the installation, configuration and setup.

Another limitation is the non-negligible learning curve for the teacher to master the different
aspects of the tool, due to the fact that it is a rich commercial tool with many features and
complexities. We recommend allowing at least a month time to learn the tool before starting
the course.

One technical limitation with the tools is that the user interface automation (over web appli-
cations) only works with some browsers; being Microsoft’s Internet Explorer the one that
works best. This is a major drawback if other browsers need to be considered during testing.

5.3. Lessons learned

One of the lessons we learned is that it is a good idea to use a tool or tool suite that is easy to
use by the students in order to reduce the learning curve for learning the tools and have the
students readily focused on using the tools to adequately do the testing (rather than on inte-
grating, solving compatibility issues among different tools, or trying to get the tool to work).
Another lesson is that using a tool that students can use at their workplace gives an added
value to the course, and since commercial tools are in widespread use in the industry, it
makes sense to teach students a good commercial tool rather than an academic-only proto-
type that has a low chance of actually being used in the industry.

Since the tools are industrial it can require a large set of servers depending on the scale
needed. We suggest using a medium size server for the TFS and small size server for the
web applications that need to be published for testing. With these two servers all the labs can
be conducted, except or the Virtual environments lab, since it requires a virtualization server

* Pex and Moles are Visual Studio add-ins that provide code analysis for .NET code and au-
tomated white box testing, available at http://research.microsoft.com/en-us/projects/Pex/

P
age 24.1310.17

running Hyper V and depending on the amount of people running the test at the same time,
memory requirements grow. We normally have 16 people working in pairs, for a total of 8
simultaneous accesses, and the memory requirements grow up to 32 GB. Additionally, at
least two network adapters are needed.

The hands-on labs approach for the practical part of the course help students to learn the
tools without much assistance from the teacher, allowing the teacher to spend more time an-
swering questions related to the application of the theory rather than the specifics of the
tools. The written lab guides are also an excellent aid to students because they serve as a ref-
erence that can be used at any point during the course or later, if they forget how to do some-
thing.

We also found out that the quantity and extension of the labs is about the right workload for
students, but it needs to be spread out through the semester and just in time when the theoret-
ical concepts are studied. In the majority of the implementations, labs have been relegated
towards the end of the course (due to several reasons), which was indicated by many stu-
dents as an aspect to improve in the course. Another lesson learned from the students’ feed-
back is that more time needs to be allocated to complete the labs, since it was common that
students did not finish on time and had to complete it on their own outside of class.

6. CONCLUSION AND FUTURE WORK

We presented an experience report on the use of Microsoft testing tools in a Software Test-
ing course. The tools used were Microsoft Visual Studio Ultimate 2010 (including Microsoft
Test Manager 2010) and Microsoft Team Foundation Server 2010. Our experience compris-
es four implementations of the course (i.e., four semesters), one at the undergraduate level
and three at the graduate level. The course labware is described, including a detailed list of
the labs (hands-on practices) that were used to support each course unit. Our approach of
incorporating Microsoft test tools in the course was assessed by the students through an
anonymous survey, and by the teacher through a qualitative analysis of strengths and limita-
tions.

Results from the students’ assessment indicate that students consider the Microsoft testing
tools very easy to use, relevant to the course since they help learning course concepts, and
highly valuable for their professional career. Additionally, a majority of students said they
learned a lot from the labs (where the tools were used). Some students commented that the
labs, term project, and use of VS was what they liked most about the course (both the labs
and term project made heavy use of the tools), which we think is a positive sign. On the
down side, some students commented that they would have liked to learn other tools as well
(particularly, open source ones), others complained about the amount of work required by
the term project, and yet others complained about not having enough time for the labs (prac-
tical part of the course).

The teacher’s assessment indicates that the main advantage of the tools is that students are
able to apply the different concepts and parts of the testing process from one integrated envi-
ronment, thus minimizing the learning curve for students, and allowing traceability and inte-
gration of the different test elements across the different parts of the testing process. The

P
age 24.1310.18

main disadvantage is the overhead of properly installing and setting up the Team Foundation
Server as well as configuring the user/group permissions adequately. Other strengths and
limitations were described, as well as a list of lessons learned.

In the future, we plan to explore the use of a more complex and realistic SUT for the unit
testing lab, as suggested by one student in the survey. We would also like to address com-
mon complains from students by allocating more class time to the labs and distributing the
labs better across the semester. We also plan to incorporate two more labs: one on “Explora-
tory testing” and one on “Static code analysis”, since we discovered that the 2012 version of
the tools provides good support for these topics.

7. ACKNOWLEDGMENTS

This work was partially supported by CITIC, under the project No. 834-B2-A14, and by the
Department of Computer and Information Science from the University of Costa Rica.

8. REFERENCES
1. Acharya, S. and Schilling, W. Effective Active Learning Approaches To Teaching Software Verification.

American Society for Engineering Education (2012).

2. Bonwell, C. C. and Eison, J. A. Active Learning: Creating Excitement in the Classroom. ASHE ERIC
Higher Education Report No. 1. The George Washington University, School of Education and Human De-
velopment, Washington D.C., USA, 1st edition (1991).

3. Briggs, T. Techniques for Active Learning in CS Courses. Journal of Computing in Small Colleges (2005).

4. Chen, Z., Zhang, J., and Luo, B. Teaching Software Testing Methods Based on Diversity Principles. Con-
ference on Software Engineering Education and Training (2011).

5. Cowling, T. Stages in Teaching Software Testing. International Conference on Software Engineering
(2013).

6. Dukes, L., Yuan, X., and Akowuah, F. A Case Study on Web Application Security Testing with Tools and
Manual Testing. Proceedings of IEEE (2013).

7. Garousi, V. An Open Modern Software Testing Laboratory Courseware – An Experience Report. IEEE
Conference on Software Engineering Education and Training (2010).

8. Garousi, V. Incorporating Real-World Industrial Testing Projects in Software Testing Courses: Opportuni-
ties, Challenges, and Lessons Learned. Conference on Software Engineering Education and Train-
ing (2011).

9. Harrison, N. B. Teaching Software Testing from Two Viewpoints. Consortium for Computing Sciences in
Colleges (2010).

P
age 24.1310.19

10. Martinez, A. Using JITT in a Database Course. Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (2012).

11. Martinez, A. and Jenkins, M. An Experience Using Reflection in Software Engineering, American Society
for Engineering Education (2012).

12. McConnell, J. J. Active learning and its use in Computer Science. Proceedings of the 1st conference on
Integrating Technology into Computer Science Education (1996).

13. McConnell, J. J. Active and Cooperative Learning: Tips and Tricks (Part I). ACM Special Interest Group
on Computer Science Education Bull (2005).

14. Microsoft Developer Network. http://msdn.microsoft.com/dn308572

15. NIST. The economic impacts of inadequate infrastructure for software testing.
http://www.nist.gov/director/planning/upload/report02-3.pdf

16. Novak, G. M., Gavrin, A., and Wolfgang, C. Just-in-Time Teaching: Blending Active Learning with Web
Technology. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition (1999).

17. Novak, G. and Patterson, E. An Introduction to Just-in-Time Teaching (JiTT). In S. Simkins and M. Maier,
editors, Just in Time Teaching Across the Disciplines. Stylus Publishing (2009).

18. Simkins, S., Maier, M., and Rhem, J. Just-in-Time Teaching: Across the Disciplines, and Across the Acad-
emy. Stylus Publishing, Sterling, VA, USA, 1st edition (2009).

19. Smith, J., Tessler, J., Kramer, E., and Lin, C. Using Peer Review to Teach Software Testing. International
Conference on Computing Education Research (2012).

20. Talon, B., Leclet, D., Lewandowski, A., and Bourguin, G. Learning Software Testing Using a Collabora-
tive Activities Oriented Platform. Ninth IEEE International Conference on Advanced Learning Technolo-
gies (2009).

21. Wong, E. Improving the State Of Undergraduate Software Testing Education. American Society for Engi-
neering Education (2012).

22. Xie, T., De Halleux, J., Tillmann, N., and Schulte, W. Teaching and Training Developer-Testing Tech-
niques and Tool Support. ACM SIGPLAN conference on Systems, Programming, Languages and Applica-
tions: Software for Humanity (2010).

P
age 24.1310.20

