
 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

Session 1449 

 

 

Use of Sequencer Functions in Industrial Control 
 

 

Max Rabiee, Ph.D., P.E. 

University of Cincinnati 

 

 

 

 

Abstract 

 

In this paper we will study one of the most commonly used functions in programmable logic 

controller (PLC) systems.  This function is called the Sequencer.  All programmable logic 

controllers (PLC) have this function.  The sequencer function provides powerful capability for 

the PLC.  This function and its applications are studied as part of a logic controller course in 

Electrical and Computer Engineering Technology (ECET) programs. 

 

Some PLC manufacturers refer to the sequencer function as the “drum controller”.   However, in 

certain cases PLC manufacturers use the Table-to-Register or File-to-Word functions instead of 

the sequencer function [1].  These functions are not as versatile as the sequencer function.   

 

In this paper we will illustrate how students can utilize the sequencer function in the laboratory 

for controlling electromechanical actuators and robots.  We will also illustrate how to control the 

time period between each sequencer step. 

 

 

Introduction 

 

Sequencer functions can be used to control multiple outputs with several step patterns.  This 

means that in every sequenced step, you can change the state of the output devices connected to 

the output ports housed in output modules.  Output can change from the ON to OFF state, or 

from the OFF to ON state, or remain at the same state.    

 

In this paper, we will study the use of sequencer functions in programmable logic controller 

systems.  We will discuss how Sequencer functions are used to control output with multiple step 

patterns.  Specifically, we will study the use of sequencer functions for the Allen-Bradley 

SLC500 series programmable logic controllers [2]. These sequencer functions are:  (1) SQO 

(Sequencer Output) function, (2) SQI (Sequencer Input) or SQL (Sequencer Load) function, and 

(3) SQC (Sequencer Compare) function. An Allen-Bradley SLC 500 Series Programmable Logic  

 

P
age 9.1357.1



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

Controller (PLC) will have at least two of the three aforementioned sequencer functions.   

 

The objective of this paper is to illustrate how to: (1) teach students to configure the Sequencer 

Output function (SQO),  (2) illustrate to the students in lab the use of sequencer output function 

(SQO) in process and industrial control, (3) use the timer function to insert constant time 

intervals between the sequencer steps, (4) teach students to use two sequencer functions and one 

timer function to create a sequencer routine with variable time intervals between its steps, (5) 

configure the Sequencer Load function (SQL), (6) configure the Sequencer Compare function 

(SQC), and (7) use the sequencer compare function (SQC) to find an input port bit pattern.  

 

 

Configuring Sequencer Output (SQO) Function 

 

Table 1 illustrates the operations of a process control system.  Five output devices are to be 

turned on and off in a specific pattern.  We are assuming that there are three steps in this control 

procedure.  The advancing of the steps can be either event-driven or time-driven.  We will 

configure a sequencer output function for this event-driven control regime.  

 

 

Table 1.  The Output Pattern of a Control System 

 

 

 Step Number Motor #1 Motor #2 Green Light Red Light   White Light  
 

1  ON  ON   OFF   OFF OFF   

 

2  OFF  OFF  ON   ON  OFF 

 

3  OFF  OFF  OFF   ON  ON 

 

 

 

 

Table 1 shows that in this example two motors and three pilot lights are the output devices.  

Every time a normally open (N.O.) input is closed, the pattern on one of the steps is placed on 

the PLC output port.  In step one, both motors are on.  In step two, the green and red pilot lights 

are on.  In step three, the red and white pilot lights are on.  Figure 1 displays the ladder logic 

diagram for accomplishing the tasks described in Table 1.  An Allen-Bradley SLC500 Series 

PLC sequencer function is utilized in this ladder logic diagram [3].    

 

Every time the normally open (N.O.) input device is closed, the sequencer position advances to 

the next step.  The sequencer data can be placed either in bit data file #B3, bit data file #B10 or 

P
age 9.1357.2



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 integer data file #N7.   The sequencer data file contains the On/Off bit patterns or an integer 

number. Data file #B3 holds the sequencer output file in Figure 1.  Figure 2 shows the output 

pattern for this example stored in the #B3 file.  Notice that the motors are connected to both 

outputs zero and one (O:0/0 and O:0/1).  Therefore, bits zero and one in bit data file three (#B3) 

are used to control the motors.  Similarly, the pilot lights are controlled by bits two, three and 

four in bit data file three (#B3).  Sequencer bit patterns in file #B3 are placed on the destination 

register which for this example is output module zero (O:0).     

 

 

 

 

 
 

 

 

Figure 1.  PLC Ladder Logic Diagram for the Output Pattern in Table 1 

 

 

 

 

 
 

 

Figure 2.  Data File for the Patterns Described in Table 1 

 

 

The five digit hexadecimal number in the Mask field can be used to hide the step patterns 

residing in the data file #B3.  In this example we are not masking (i.e., hiding) any bit pattern.  

These 16-bit words in bit data file three (#B3) are ANDed by a hex number entered in the mask 

area. The number of steps are set to four in the SQO function displayed in Figure 1.     

 

P
age 9.1357.3



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

The control register R6:0 is utilized to control the SQO function.  The PLC uses the control 

register bits for monitoring and controlling the SQO function.  Two control register bits R6:0/EN 

(sequencer enable) and R6:0/DN (sequencer done) are available to the PLC Programmer.  The 

Enable coil (R6:0/EN) is energized when the sequencer is on.   The Done coil (R6:0/DN) will 

energize when the sequencer has completed stepping through the number of steps specified for 

the SQO function.  Contacts with these coil addresses may be used to turn on or off  PLC 

functions and/or PLC output devices.   The RES (reset) function in Figure 1 is used to reset the 

SQO function.   

 

The input I:0/0 in the circuit displayed in Figure 1 is a manual pushbutton. In order to advance 

the SQO to the next step, one must close the Normally Open (N.O.) input manually.  Figure 3 

illustrates how to use a timer function to automatically advance the sequencer step once every 

second [2].  When normally open (N.O.) input zero (I:0/0) is closed, timer ON-Delay function 

zero (T4:0) will start operating.    Notice that the timer zero preset register (T4:0.pre) holds the 

number 100.  The time base for timer zero (T4:0) is set for 0.01 seconds.  Therefore the preset 

time value for timer zero is one seconds (100 x 0.01 = 1).  One second after starting the timer, 

the timer Done status bit (T4:0/DN) will energize.  Then the normally open (N.O.) timer done 

contact (T4:0/DN) in rung one (Rung 0001) will close and the sequencer output (SQO) 

function’s position will advance to next step.   

 

Also notice that the normally closed (N.C.) timer done contact (T4:0/DN) in rung zero (Rung 

0000) opens and resets the Timer ON-Delay function.  When the Timer ON-Delay function 

resets, its timer Done status bit coil (T4:0/DN) de-energizes.   Then, the normally closed (N.C.) 

timer Done status contact (T4:0/DN) returns to its normal position (closed) and the timer is 

energized to start timing again.    

 

 

Variable Time Intervals Between SQO Steps 

 

In the ladder logic diagram displayed in Figure 3, time intervals between sequencer steps were 

constant (i.e., one second).  In order to have variable time intervals between sequencer steps, one 

must utilize a second sequencer.  Figure 4 contains a ladder logic diagram in which the 

sequencer will step through a set of events that have variable time intervals between them.    

 

A second sequencer will control the time intervals.  The new sequencer file is integer data file 

seven (#N7).   The new sequencer destination register is the accumulated register for timer zero 

(T4:0.acc).  The contents of integer data file seven (#N7) are, 100, 250, 350, 450, 100.  Since the 

time base for the timer zero (T4:0) is 0.01, the time between steps will be 1, 2.5, 3.5, 4.5, and 1 

seconds. For example, the delay time between starting step (i.e., step zero) and the first step is 

one (1) second, and the delay time between step one (1) and two (2) is two and half (2.5) 

seconds.  Note that both sequencers must be synchronized to step through the patterns 

simultaneously.  

 

P
age 9.1357.4



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 

 
 

Figure 3.  Placing Fixed Time Intervals between Sequencer Steps 

 

 

 

Increasing Number of Steps and Outputs 

 

Each sequencers in the Allen-Bradley SLC 500 series PLC can control a 16-bit destination 

register [3].  This means that in order to control more than sixteen (16) discrete output, one must 

connect two sequencers in parallel such that they step through the defined pattern simultaneously 

[1].  Figure 5 displays the connection of two sequencers so that thirty-two (32) output can be 

stepped through the defined patterns residing in data file #B3.  Note that each output modules 

two and three (O:2 and O:3) in Figure 5 have sixteen (16) output ports.  Therefore, thirty-two 

(32) output ports are controlled by the parallel connection of the two sequencers.  Sequencers in 

Figure 5 are controlled by the R6:0 and R6:1 registers.  They both are stepped through the 

patterns which reside in data file #B3.  Input I:1/0 is used to energize both sequencers 

simultaneously.  

 

In order to increase the number of steps, one must cascade sequencers [1].  Figure 6 shows a 

connection for which the number of steps may be increased to 512.  This means that there are 

256 steps stored in data file #B3, and an additional 256 steps stored in data file #B10.  Note that 

when the first sequencer has completed the 256 steps (i.e., step 0 through step 255) residing in 

data file #B3, then the second sequencer will start stepping through the last 256 steps which is in 

data file #B10. 

 

 

P
age 9.1357.5



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 

 
 

Figure 4.  Variable Time Intervals between Sequencer Events 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
age 9.1357.6



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 

 

 
 

Figure 5.  Connecting Sequencers in Parallel to Increase Number Of Outputs 

 

 

 

Configuring Sequencer Load (SQL) Function  

 

Sequencer load function (sometimes called Sequencer input function) is used to collect data from 

input modules.  Figure 7 displays a ladder logic diagram that illustrates how to read the input 

module I:1 every one minute (i.e., 60 seconds) and record the data in data file #B3:0.   Notice 

that 256 data points can be stored in the bit three data file (#B3.)  One can increase the capacity 

by cascading two or more sequencers.

P
age 9.1357.7



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 

 

 
 

Figure 6.  Cascade Connection of Sequencers for Increasing Number Of Steps 

 

 

 

 
 

 

Figure 7.  PLC Ladder Logic Diagram for a Sequencer Load  (SQL) Application 

 

P
age 9.1357.8



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

 

Configuring Sequencer Compare (SQC) Function 

 

The sequencer compare function is used to read an input module.  It will then compare the data 

to data stored in the sequencer data file.  If the collected data from the input module match the 

data in the data file, the “Bit Found” coil will energize.  Figure 8 illustrates how to use the SQC 

function to turn on an output if the input word is the same as the word in the data file #B3. 

 

 

 
 

Figure 8.  PLC Ladder Logic Diagram for a Sequencer Compare Application 

 

 

 

Conclusion 

 

This paper described how to use three (3) very important sequencer functions. These functions 

are Sequencer Output (SQO), Sequencer Load (SQL), and Sequencer Compare (SQC).   

Sequencer functions are utilized in many PLC ladder logic diagrams for controlling industrial 

systems.   We illustrated how to configure these functions in PLC ladder logic diagrams.  In a 

programmable logic controller course, students should learn how to use these functions to control 

industrial systems.  Students should also know how to increase the number of output and the 

number of sequencer steps.  These techniques were also illustrated in this paper.  Several 

laboratory experiments pertaining to sequencer functions are assigned to the students during the 

course of an academic quarter.  Student feedbacks have been very positive for integrating their 

knowledge gained during the classroom lectures in the laboratory.  

 

 

 

 

P
age 9.1357.9



 

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright 2004, American Society for Engineering Education 

 

Bibliography 

 
1. Programmable Logic Controllers; Principles and Applications, By John Webb and Ronald Reis, Fifth 

Edition, 2003, Published by Prentice-Hall, Upper Saddle River, NJ. 

 

2. Programmable Logic Controllers; Hardware and Programming, By Max Rabiee, 2002, Published by 

Goodheart-Willcox (G-W) Publishing Company, Tinley Park, IL. 

 

3. Allen-Bradley Reference Manual (2001).  Allen-Bradley SLC500 and MicroLogic-1000 Instruction Set, 

Rockwell Automation, Milwaukee, WI. 

 

 

 

 

Biography 
 

Max Rabiee earned his Ph.D. in Electrical Engineering from the University of Kentucky in 1987.  He is an 

Associate Professor of Electrical and Computer Engineering Technology at the University of Cincinnati.  Dr. Rabiee 

is a registered professional engineer, and a senior member of the Institute of Electrical and Electronic Engineering 

(IEEE). He is also a member of the American Society of Engineering Education (ASEE), the National Association 

of Industrial Technology (NAIT), the Eta Kappa Nu Electrical Engineering Honor Society and the Tau Beta Pi 

Engineering Honor Society. 

 

P
age 9.1357.10


