
Paper ID #22521

User Stories and Algorithms as Programming and Design Tools

Dr. Tom Elliott Spector, Oklahoma State University

Professor of Architecture, Oklahoma State University Licensed Architect

Mr. Stan Carroll, Oklahoma State University

Stan Carroll, a computational designer, has been practicing architecture for over 25 years, is an award win-
ning public artist, and an educator/researcher. As a result of an ACADIA 2009 workshop on Grasshopper,
Carroll transformed his entire design process to center on computational design and fabrication methods.
Having recently completed a master degree in the Emergent Technologies Program at the Architectural
Association in London in 2014, Carroll has returned to his undergraduate alma mater where he is cur-
rently an assistant professor at the School of Architecture at Oklahoma State University. He is currently
teaching undergraduate design studios and Computational Foundations. In addition to his teaching and
researching, he also continues his private practice pursuing large public art commissions.

Prof. John J. Phillips, Oklahoma State University

JOHN PHILLIPS, a registered engineer and associate professor of architectural engineering, practiced
as a structural engineer for nine years before returning to his alma mater to teach at Oklahoma State
University. He teaches undergraduate and graduate courses including Statics, Analysis I, Foundations,
Timbers, Steel, Concrete, Steel II, Concrete II, Steel III, Concrete III, and in the Comprehensive Design
Studio.

c©American Society for Engineering Education, 2018

1 User Stories as a Programming and Design tool for Architecture

User Stories and Algorithms as Programming and Design tools

Introduction

A not uncommon sentiment from dissatisfied software clients is: “yes you gave me what I asked
for, but it wasn’t what I wanted.” This dissatisfaction occurs primarily due to the difficulty of
defining the desired experience of the software in hard performance numbers. Asking clients to
specify in advance exactly how the requested software is to perform is a notoriously faulty
strategy. Usually, their responses only reflect what a client has already seen, known and become
comfortable with or else the responses are hopelessly vague on the order of: “Give me something
I’ve never seen before.”

The obstacles for innovation in such situations should be obvious. This situation in software
design has its direct analogue in architectural engineering design. The architect or engineer
receives a program with space sizes and relationships, perhaps as well a statement of
organizational goals, and then is expected to turn these parameters into a design concept. The
large gap between the demands of basic functionality and the evolution of an artistically unified
design response make the conceptual and schematic phases of the design process often appear
opaque, mysterious, and less than fully rational. Data enters a black box, a design emerges. For
engineers, heuristic aids for initial sizing of structural elements all-too-quickly become
immutable paramaters.

In response to this problem of the subjectivity of experiential design qualities in the software
industry, a visualization technique called “user stories” has evolved to replace such cumbersome
elements as usability test reports and lengthy UI specifications within the agile design work
environment. (Sy, 131) The agile environment forsakes comprehensive software design for
shorter design “sprints,” which, when paired with frequent user feedback, results in products
which gradually come into useful existence instead of all at once. (Agile Manifesto) The user
stories become, in essence, the basic unit of design. We have applied this technique to a research,
programming and design methodology in design studio that, when conjoined with an algorithm
to test the design, produces satisfactory results.

Methods

In software design, a user story describes how a user wants to interact with the software—what
he or she hopes to get out of the product as well as the experience of using the product—or with
a component of the software. Typically, different sorts of users with different user goals are
identified. The essential features of a good, actionable user story are:

• It adopts an end-user’s viewpoint—it enters the user’s psychology in a sustained way
• It is not a single action, but a set of connected actions activated by a goal

2 User Stories as a Programming and Design tool for Architecture

• It is testable: criteria for successful implementation are established to determine success
or failure of the design. Those criteria for success may take the form of constraints (such
as egress requirements).

• The story does not contain technical details. It is phrased in experiential and qualitative
terms.

• A story has to be the right size. Too large of a story is called an “epic,” which must be
broken down into manageable stories. Too detailed a story is merely a scenario—an
image, a single action.

• Stories must be devised that have significant design implications.

And it is developed in 3 steps (Figure 1):

• A conversation with the user types (or their surrogates) concerning the story
• A note card-sized written description—the story
• Criteria for confirmation or success. (Jeffries, 2001)

For a comprehensive studio course—the project to house a local theatre company—the
methodology of user stories was combined with an algorithm written in Grasshopper and
visualized in Rhino to test design solutions for seating arrangements in the thrust theatre box.
First, students were tasked to interview theatre staff and patrons to develop their user stories.
While each story itself is qualitative, the success criteria should be written in such a way that
they can be stated in quantitative terms if proposed design solutions are to be tested prior to
actual implementation. One characteristic design goal to emerge from these interviews—that the
space provides an intimate theatrical experience for the theatre-going patron—was turned into
quantifiable success criteria. (Figure 1)

 To sustain the desired quality of intimacy with the onstage action we isolated three quantifiable
success criteria—a maximum desirable distance of seating from the stage, a maximum desirable
spread, or viewing angle, for the seating, and the minimum “C” distance—defined as the height
in inches between any given seatback and the seatback immediately in front. The “C” distance,
ultimately, determines the rake. The algorithm to test proposed solutions was envisioned as an
optimization problem requiring iterative attempts to make proposed theatre seating layouts meet
the performance requirements. Each success criteria embodies trade-offs for optimization. For
example, a shorter maximum allowable distance from the stage will compromise the width of the

Figure 1: Theatre-goer’s User Story
and its Success Criteria

3 User Stories as a Programming and Design tool for Architecture

rows or else the number of seats the theatre can accommodate. Too narrow an allowable viewing
angle will impact the distance from the stage. High “C” numbers, while increasing viewing
desirability, complicates providing access to the seats.

 These 3 parameters were turned into an algorithm in the Grasshopper program which was used
to evaluate the geometric properties of students’ theatre box designs in Rhino (Figure 2). Theatre
seats that failed to meet one of the criteria were highlighted as triangles. This information formed
a feedback loop used to direct the redesign of the theatre box (Figure 3, 4).

Figure 2: An image of the Rhino base model that students could adjust to reflect their
proposed seating layouts.

4 User Stories as a Programming and Design tool for Architecture

Problem Seats do not meet minimum
requirements for sight lines. (white
triangles)

Seats with minimum “C”
heights (grey Circles)

Seats which meet all success criteria
(black circles)

Figure 3: a tested seating configuration with
graphic legend

5 User Stories as a Programming and Design tool for Architecture

Figure 4: The resulting theatre box
and section through the theatre.

6 User Stories as a Programming and Design tool for Architecture

In the following year, the capstone studio project was a combination food pantry and homeless
youth shelter for a provider in a nearby urban center. This project presented the prospect of user
stories from several perspectives—that of the food pantry clients, the organization’s skeletal
staff, homeless teens, and the volunteers that do much of the work of unloading, sorting
packaging and stocking the pantry shelves.

All students were required to volunteer at the food pantry to experience the volunteers’
perspective. This also gave them a chance to interview regular volunteers for their user stories.
Those stories characteristically expressed a desire for a maximally efficient operation combined
with the opportunity to enjoy time spent with fellow volunteers. Success criteria for the food
pantry receiving and distribution operation were modeled as a straightforward efficiency
equation in Grasshopper (adjusted for a frequency assessment for the different types of grocery
products received and distributed) applied to a simplified plan view in Rhino. Testing the model
based on the total number of linear feet required to complete the various receiving, storage and
distribution operations resulted in a unitless scoring of each student’s design (Figure 5).
Depending on the score, the revised design could be imported back into the Revit model for
incorporation into the overall design (Figure 6). Scores were posted on a whiteboard for all to see
(Figure 7).

Figure 5: The Rhino model and Grasshopper algorithm

7 User Stories as a Programming and Design tool for Architecture

Figure 6: The food pantry area designed in Revit. The Rhino model of the Revit file for this area records the design
nodes for receiving, storing and distribution of the foodstuffs. These notes are analyzed in Grasshopper to
determine a score.

Figure 7: the efficiency scoring

8 User Stories as a Programming and Design tool for Architecture

Efficiency scores ranged from Abbie’s high of 132 to Patrick’s low of 51 (Lower is better).
Anything below 100 was considered adequately efficient, though several students with adequate
scores repeatedly sought to improve their scores through redesign.

Results

User stories were first tried in studio solely as an alternative to the standard research and
programming methods. Students reported that once the programming phase was complete,
however, the user stories provided them little incentive to revisit their designs. But once the user
stories were combined with the algorithm-based feedback mechanism the next year, the link
between the user stories and the end design was made tangible. A well-designed algorithm has
certain advantages over frequent user feedback envisioned in the agile work method. For the
design of the theatre box, the algorithm highlighted for elimination the bad seats. Design critics
did not have to argue with students that certain seating configurations were poor, or difficult, or
resulted in an excessive number of undesirable seats. Instead, the Rhino model conveyed this
information. Furthermore, this process allowed students to both quickly try out different seating
configurations and to visualize the impact of their decisions on audience experience. The timely
feedback provided by the algorithm tied to the Rhino model resulted in uniformly improved
theatre seating configurations compared to similar projects in years past (Figure 8).

The end result from the food pantry design exercise: students with poor efficiency scores were
motivated to revise their designs according to the priorities established for efficiency within the
algorithm. Furthermore, the algorithm itself was able to be reviewed by the client for
modification. For example, the algorithm weighed the storage operation for certain food types
more heavily than for others that were not accessed as often. When the relative weights were

Firgure 8: Student Rhino model
analyzed and the resulting seating
layout in Revit.

9 User Stories as a Programming and Design tool for Architecture

discussed with the client, adjustments were able to be made to better reflect the operations of an
average week.

Testing the proposed design against the criteria set up in the algorithm allows a feedback loop to
be established from programming (in the form of user stories) through the design proposal,
testing the proposal (in the Rhino model in conjunction with Grasshopper) to, finally,
identification of designs that do not meet, in whole or in part, the success criteria established in
the user story. We are encouraged by these results and intend to continue incorporating this
technique into future studios. If the user stories and their associated success criteria are
developed in consultation with clients, then the resulting designs can emerge from the black box
as explicit responses to the user stories.

Conclusions and Further Study

User stories are not without their detractors in the agile design community, but we believe that
there are aspects to the employ of user stories within the agile concept we have yet to employ
that may well help engineering and architecture students with the always-vexing problems of
scheduling and time management, and of assigning responsibilities within a group project.
(Sauro, 2016, Hudson, 2013, Wright and McCarthy, 2010, Nielson, 2001) Here we have in mind
in particular the concept of sprints. If design tasks can be clearly delineated, or “chunked,”—
either by professors, or better yet, within the team—then creating interim deadlines for task
completion and assigning responsibilities for sub-tasks can be greatly enhanced. We could
anticipate that, since sub-tasks within engineering and architecture do not lend themselves to be
as fully componentized as they do within software design, time will need to be made for
synthesis and reconciliation of the various elements. In addition to the concept of sprints, the
organization of large of amounts of programming data collected in direct consultation with users
in “affinity diagrams” is another relevant strategy of the agile work environment with potential
applicability to architectural design.(Beyer, 31) An affinity diagram has some of the
characteristics of the familiar bubble diagram, but rather than address space adjacencies, it
enables designers to bring together use concepts that might not otherwise be obvious. It also
differs from the bubble diagram in that it is not the result of classification according to already-
programmed use categories. Instead, it is the result of observations that themselves tend to create
categories.

With these successes and ideas for future improvement in mind, however, it should be noted that
the context out of which software design emerges differs in significant ways from that of
architectural engineering. The agile environment is specifically conceived to both bracket
ongoing change so that individual features of the overall product can be designed and to parcel
out responsibility so that the development team is only responsible at any given time to reach a
state of completion for individual design tasks drawn from a pre-existing backlog of tasks, that
when completed, will resemble the shape of the final product. (Beyer, 6). It’s as though we could
produce the theatre box or the food distribution operation as a discreet plug-in component of the
overall building. But of course if things are not quite this neat in software and HCI design, they
are doubly messy when it comes to the design of buildings. This difference in context may help
explain the paucity of scholarly writing in this subject. As long as the user stories worked with

10 User Stories as a Programming and Design tool for Architecture

here are understood as providing a process to optimize individual features, but no roadmap for
how all the various features of a building are to integrate, then the technique has not exceeded its
applicability for architectural engineering.

References

Agile Manifesto http://agilemanifesto.org/principles.html

Beyer, Hugh. User-Centered Agile Methods. San Rafael, CA: Morgan & Claypool, 2010.

Cohn, Mike. User Stories Applied for Agile Software Development. Boston: Addison-Wesley.
2004.

Hudson, William “User Stories Don’t Help Users: Introducing Persona Stories,” Interactions,
November-December 2013.

Jeffries, Ron. (2001). “Essential XP: Card, Conversation and Confirmation.” XP Magazine.

Nielson,, Jakob “First Rule of Usability? Don’t Listen to Users,” 2001,
https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/

Sauro, Jeff. “The Challenges and Opportunities of Measuring the User Experience,” Journal of
Usability Studies, v12 n2, 2016. 1-7

Sy, Desiree. “Adapting Usability Investigations for Agile User-Centered Design,” Journal of
Usability Studies, v2n3, 2007 112-132.

Wright, Peter and McCarthy, John. Experience-Centered Design: Designers, Users, and
Communities in Dialogue, Morgan & Claypool, 2010.

http://agilemanifesto.org/principles.html
https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/

