
Session 3460

Using a Product Line Approach to Develop Course Projects�

Gerald C. Gannodyz and John J. Doherty
Dept. of Computer Science & Engineering, Arizona State University

Box 875406, Tempe, AZ 85287-5406
E-mail: fgannod,doherty.jg@asu.edu

Abstract

Product Line and Product Family approaches are development techniques that take advantage of common-
alities that exist among a set of current or planned products. The use of a product line approach allows
for speedier integration of new requirements and capabilities to account for product variation without the
timely process of reorganizing and reengineering an entire product. While the product line approach is an
emerging paradigm in the software development research and industrial communities, little attention has
been placed on its use as a methodology for developing and maintaining course projects in an engineering
curriculum. As part of an Embedded Systems concentration at Arizona State University we are creating
a course in Embedded Systems Engineering that focuses on systems integration and applications develop-
ment. For this course we are developing a home automation product line. By using a product line approach,
students can gain exposure to new technologies in successive offerings while still receiving instruction on
core concepts. Furthermore, instructors can easily provide a wide variety of experiences for students with a
minimal amount of incremental course refinements.

1 Introduction

One of the many challenges facing engineering educators today is the need to keep pace with
technological advancements. Many factors must be considered before integrating new technology
into a curriculum. Traditionally, if the technology varies widely from technology in current course
offerings, a new course is considered. Otherwise, an existing course is modified or updated. In
either case, the process of integrating the new technology into a curriculum can be both expensive
and time consuming.

Product Line and Product Family approaches are development techniques that take advantage
of commonalities that exist among a set of current or planned products. These shared features, or
assets, may include artifacts such as software and hardware reference architectures, software and
hardware components, processes used to develop and integrate components, and test plans. The
use of a product line approach allows for speedier integration of new requirements and capabilities
to account for product variation without the timely process of reorganizing and reengineering an
entire product. While the product line approach is an emerging paradigm in the software develop-
ment research and industrial communities, little attention has been placed on its use as a method-
ology for developing and maintaining course projects in an engineering curriculum. In treating a
course as a targeted product market domain we have been able to apply the same techniques used
in software product line development to course development.

At Arizona State University we are currently developing a concentration track in embedded
systems1. As part of the curriculum we are creating a course in Embedded Systems Engineering

�This research supported in part by NSF Experimental and Integrative Activities Grant EIA-0122600.
yThis author supported in part by NSF CAREER Grant CCR-0133956.
zContact Author.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.1



(ESE) that focuses on systems integration and applications development. For this course we are
developing a home automation product line that includes products such as security systems, air
quality-monitoring systems, and lawn and garden maintenance systems. As a result, by using
a product line approach, students can gain exposure to new technologies in successive offerings
while still receiving instruction on core concepts. Furthermore, instructors can easily provide a
wide variety of experiences for students with a minimal amount of course refinements.

The remainder of this paper is organized as follows. Section 2 describes background material in
the areas of software product lines, embedded systems, and a methodology for course development.
Section 3 presents the activities that occurred during course development including the use of
a product line to develop an infrastructure for course projects while Section 4 describes related
work. Finally, concluding remarks as well as future investigations are described in Section 5.

2 Background

This section discusses background material in the areas of software product lines and course
development, and describes an embedded systems concentration track which serves as the context
for the course described in this paper.

2.1 Software Product Lines

Clements and Northrop define a software product family, or product line to be “a set of software-
intensive systems sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common set of core assets
in a prescribed way2.” A few of the critical elements to the process of developing process lines
include the recognition and development of core assets and the development of reusable processes
that define how assets are used to assemble products. The benefits of product lines are numerous
and include2 improved time-to-market, improved product quality, increased customer satisfaction,
increased ability to meet reuse goals, and decreased staffing requirements.

A software product line achieves these goals with savings across the entire development spectrum2.
Requirements no longer require detailed analysis. Only the deltas to the common requirements will
require analysis, thus reducing time and costs. The activity of creating an architecture is minimized
and requires only small levels of fine tuning from the base architecture for each product. Addition-
ally, components are reused as needed from the asset base, with new development only required to
meet variabilities between products. Modeling, analysis and testing can rely, with a high degree of
confidence, on previous members of the product line and will only need to focus on deltas. Plan-
ning and processes for a new member of the product family will be minimal and should already
be in place. Finally, the organization will require fewer people to build products and those people
will have stronger domain knowledge across the product line.

The three essential activities for a successful product line project are core asset development,
product development, and management2. These essential activities translate into practice areas, as
shown in Table 1.

2.2 Course Development Guidelines

Davidson and Ambrose describe an approach for planning and developing courses that is sim-
ilar to the process used to develop proposals3. Figure 1 lists guidelines that focus on identifying
the constituents of a course (e.g., the students), their backgrounds and experience, and course ob-

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.2



Software Engineering Technical Management Organizational Management

Architecture Definition Configuration Management Building a Business Case
Architecture Evaluation Data Collection, Metrics, and Tracking Customer Interface Management
Component Development Make/Buy/Mine/Commission Analysis Developing an Acquisition Strategy
COTS Utilization Process Definition Funding
Mining Existing Assets Scoping Launching and Institutionalizing
Requirements Engineering Technical Planning Market Analysis
Software System Integration Technical Risk Management Operations
Testing Tool Support Organizational Planning
Understanding Relevant Domains Organizational Risk Management

Structuring the Organization
Technology Forecasting
Training

Table 1: Software Product Line Practice Areas 2

jectives based on course and program goals. The objectives lead to identification of a scope for the
course as well as the learning activities that meet the objectives, outcomes, and scope constraints.
One of the important aspects of these guidelines is that the preliminary activities (Steps 1–3) are
consistent with typical practices required for accreditation.

In this paper, we describe the development of a course based on the use of these guidelines.
Specifically, this paper discusses our efforts in following Step 3 and the use of a product line
approach for the design of course projects. In addition, we examine the impact of the approach
upon the overall design of the course.

Steps in Planning a Course (The New Professor’s Handbook):

1. For each course, determine the backgrounds and interests of the students likely to enroll.

2. Choose the objectives of the course based on these backgrounds and on the knowledge and skills
which you deem appropriate to teach, as well as on your interest and expertise.

3. Choose the scope and content of the course based on time and money constraints.

4. Develop the learning experiences to achieve the objectives, within the scope previously determined.
These experiences may include in-class activities such as lectures, recitations, and group meetings,
as well as out-of-class activities such as required readings and homework assignments.

5. Plan feedback and evaluation of student learning through tests, written reports, and other assessment
techniques.

6. Prepare a syllabus based on the considerations above.

Figure 1: Course Development Guidelines 3

2.3 A Concentration Track in Embedded Systems

At Arizona State University, we are completing the implementation of a novel infrastructure for
a concentration track in embedded systems that combines important aspects of academic content

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.3



with the latest in research and industrial practices1. The concentration track emphasizes funda-
mental issues such as the balance between hardware and software and the respective trade-offs of
building embedded systems.

Our curricular project spans the entire spectrum of activities related to the design and delivery
of educational and research efforts and is characterized by three main innovative components: 1) a
new industry-university collaborative model for integrating basic and applied research into a degree
program4, 2) creation and delivery of state-of-the-art course content and appropriate laboratories,
and 3) creation of capstone projects that are implemented through internships.

The curricular project involves the synthesis of the core of an embedded systems program
based on the latest research and close cooperation with industry. The content of the program draws
heavily upon advanced research and development in industry and academia and is reinforced by
specially structured internship activities that have been developed as part of this effort. The core
material, which is not currently found in traditional computer engineering programs, provides the
content that industry consultants have specifically identified as critical for engineers to function
productively in the area of embedded systems. Figure 2 shows the structure of the embedded
systems concentration track. The track is built upon the standard computer engineering core, and
includes four courses: Embedded Systems Development, Embedded Systems Engineering, and a
pair of capstone courses.

Computer 

Engineering Core 

Embedded Systems

Capstone I 

Embedded Systems

Development 

Embedded Systems

Engineering 

Embedded Systems

Capstone II 

Figure 2: The Embedded Systems Curriculum at ASU 1

3 Course Development

A meta-goal of the work described in this paper was to enable the study of software product
lines by applying the techniques underlying software product line development to the design of
course learning activities. Specifically, a software product line approach was directly applied to
the development of course projects and had a secondary effect on identifying topics for course lab-
oratories and lectures. In this section we describe the process used in the planning and development
of the Embedded Systems Engineering (ESE) course at Arizona State University and the impact
of software product line development techniques upon the course development process. The team
assembled to perform this process included several PhD and MS graduate research assistants and
a supervising faculty member.

3.1 Preliminaries

Steps 1–3 of the course development methodology suggested by Davidson and Ambrose3 in-
volve a number of preliminary activities meant to help determine course content. This section

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.4



summarizes these preliminaries for the ESE course context.

3.1.1 Student Backgrounds and Interests

For the initial offering of the ESE course, the students had primarily a background in Computer
Science (rather than Computer Engineering). The students all had at least taken an introductory
software engineering course that included project planning, requirements analysis, design, etc. In
addition, a majority of the students had received a semester of advanced software engineering with
topics including software architecture, object-oriented analysis and design, and design patterns.

3.1.2 Course Objectives and Outcomes

The objectives of the course were based on meeting a number of program goals including the
establishment of a concentration track in embedded systems1. At a lower level, we were interested
in establishing an embedded systems course that would allow computer science students to gain
experience developing embedded software. That is, we were interested in a course that catered to
more than just computer engineering or electrical engineering students.

Figure 3 summarizes the course objectives and outcomes for the ESE course. The objectives
focus upon the design, analysis, and development of applications that utilize both hardware and
software. The outcomes indicate the observable characteristics expected from students upon com-
pletion of the course. To summarize, the course is intended to address quality of service issues
(e.g., safety and reliability), system modeling and analysis, and application development for sys-
tems that use both hardware and software components.

As the development of the course progressed, a modest number of objectives and outcomes
were modified to reflect the scope of the course. The objectives and outcomes shown in Figure 3
represent the final product of the course development activity rather than an initial working set.

3.1.3 Scope

The scope of the course was determined by examining a number of constraints including both
time and funding. For this particular course, generous support was received both from ASU and the
National Science Foundation (NSF). The support resulted in a laboratory supplied with host ma-
chines and embedded devices for both the ESE course as well as other courses in the concentration
track.

It was during the scope stage in the course development that the software product line approach
was first considered. The motivating reasons for considering the approach included limited time
(15 week single semester) as well as the limited knowledge in student backgrounds necessary to
develop full-blown embedded systems applications (e.g., Computer Science, but not necessarily
Computer Systems Engineering, or Electrical Engineering).

Benefits of using product line development techniques include short development cycles and
increased levels of reuse. With respect to the course objectives and outcomes, we found that the
focus on application development and architecture qualities fit well into the strengths of product
line development. Specifically, the focus on a software and application architecture in the course
objectives was facilitated by the focus on application architecture reuse on the product line side.
In addition, the emphasis on component and asset reuse in product line platform approaches fit
well into long-term constraints of the course. That is, there was a strong desire to reuse the hard-
ware acquired to support the course. Furthermore, variability analysis allowed us to identify the

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.5



1. To be able to understand and address (within a software architecture) the critical issues most often
associated with embedded software including high availability, survivability, reliability, and safety

(a) The student can identify high-integrity concerns such a availability, survivability, reliability,
and safety that will impact the design and implementation of an embedded system

(b) The student can use well-known design patterns in the design and implementation of an em-
bedded systems to address high-integrity concerns such a availability, survivability, reliability,
and safety

2. To be able to model and analyze a system in order to observe system characteristics at the system
architecture level

(a) The student can design a system architecture that incorporates both hardware and software
behaviors

(b) The student can analyze a system architecture using different techniques including model-based
analysis and simulation

3. To be able to develop systems that utilize both hardware and software components

(a) The student can implement software for controlling basic embedded hardware components

(b) The student can implement applications that incorporate the use of both hardware and software
components in a networked environment

(c) The student can integrate hardware and software using middleware technologies such as Jini

(d) The student can perform system level tests of systems solutions

Figure 3: ESE Course Objectives and Outcomes

family of potential products that could be developed using the product platform. As such, the
course projects could be continually updated from semester to semester with little modification of
supporting course materials and lectures.

From the standpoint of software product line goals, the scope analysis for course development
facilitated the identification of organizational goals for current and future offerings of the ESE
course. Specifically, we were able to identify the need for a horizontal platform (e.g., a platform
that meets the needs of several markets), where products produced in the platform fall into a certain
class of products, and the how the production of those products would meet certain pedagogical
goals (namely, embedded systems application development).

3.2 Product Line Development

Our primary efforts in applying the software product line approach for course development
were encompassed in the development of appropriate course projects for ESE. As a primary guide-
line for our efforts, we used a number of process patterns suggested by Clements and Northrop2.
At the onset, we used the Factory process pattern2. Figure 4 shows a diagram depicting the com-
ponents of the Factory pattern, which is a composite pattern that includes the use of the What to
Build, Product Parts, Product Builder, and Assembly Line patterns. In addition, the Factory pattern
is impacted by the Cold Start, In Motion, and Monitor patterns.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.6



Each Asset*

Product PartsWhat to
Build

Product
Builder

Assembly Line

Cold Start In Motion Monitor

Figure 4: Factory Pattern 2

The Factory pattern works in the following way. As an initial activity, the What to Build pattern
is applied in order to determine the scope of the product line and to determine commonalities and
variabilities. Upon completion of the What to Build activity, the assets are developed (Each Asset*)
and appropriate assets necessary to assemble individual products are identified along with a product
architecture (Product Parts). Each Asset* represents the patterns necessary to create individual
assets. The Assembly Line pattern is used to develop organizational production capabilities in
regards to developing the products. Finally, the Product Builder is the activity of building a product
using the product line assets and production capability. In the context of the ESE course, the
Product Builder and Each Asset activities represent the tasks given to students enrolled in the
course. The Assembly Line pattern represents the lectures and laboratory assignments provided to
the students to build up their production capability. All other activities are performed by a course
development team consisting of the course architect, research assistants, and teaching assistants.

3.2.1 What to Build

The purpose of the What to Build activity is to identify the appropriate scope of the product line
and an associated business case that justifies the product line for a target market. The activities that
embody this pattern include performing market analyses, studying technology and the domains in
which a product release would operate within. With respect to the ESE course, these markets and
domains had the constraint of needing to meet course objectives. For the course, it was settled that
the market and domain would fall under home automation products. Table 2 shows the products
and definitions identified during the scope analysis. In the table, those products listed in italics
were ultimately excluded from the product line scope due to the nature of the control necessary to
complete the products. However, these products remain as potential products for future product
line evolution.

The remaining set of products in the product line scope allowed for easy entry into the “market”
through the use of X10-based products and were candidates that facilitated future evolution to more
complex product capabilities. In addition to the X10 decision, the Java-enabled TINI processor was
selected as the controller platform. TINI is an internet enabled controller that is small, cheap, and

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.7



Product Description

Security Used to identify when unauthorized personnel gain physical
access to restricted areas. The security products consist of sensors
that identify when doors, windows, drawers, or other ”locked”
areas have been accessed without proper authorization.

Lighting Used to control the lighting within a control area. Capabilities
include on and off functions, timed lighting, and dimmer control.

Environmental Control Used to control heating and cooling within a control area.
Capabilities include on and off functions and environmental
programming based on expected access to an area.

Lawn and Garden Used to control watering functions in a lawn and garden setting.
Capabilities include on and off functions, environmental sensing,
and timed watering.

Entertainment Used to control home entertainment functions including audio,
visual, and gaming products.

Area Access Used to control physical access (as opposed to the security prod-
ucts which perform detection). The area access products consist
of actuators that physically control locks to doors, windows, and
garage doors, etc.

Power Control Used to control of the On/off and timing of power outlets.

Fire Suppression Used to monitor and control anti-fire systems including alarms,
sprinklers, and notification.

Smart Appliances Used to control kitchen and other domestic appliances.

Water Control Used for hot water control, water flow control for managing leaks
(burst pipes, unusual water usage levels associated with disasters),
water pressure monitoring

Air Quality Monitoring Used for the monitoring of Radon, CO2, Smoke, and other
dangerous accumulations of gases and subsequent notification of
their presence.

Swimming Pool Access Control Used for the monitoring and detection of pool safety and security;
entry to pool area, monitoring of floating bodies, splashing, etc.

Swimming Pool Maintenance Used for the monitoring and control of pool maintenance activities.

Italics indicate exclusion from product line
Table 2: Product Line Scope

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.8



simple to use5. This decision was motivated by the backgrounds of the students and allowed for a
clear justification of the project business case as it would allow students to develop products with
a moderate amount of educational overhead. Figure 5 depicts the chosen laboratory environment
that includes the use of host machines for development, server or application machines, the target
systems (TINI) and the home automation infrastructure (X10).

Control Server

(PC Workstation,

JINI Server)

Embedded Systems

(TINI & STEP cards)

Home Automation

(X10 and Internet-Enabled

Devices)

Development Workstation

(PC Workstation,

Java Development Tools

Figure 5: ESE Laboratory Environment

3.2.2 Commonality and Variability Analysis

One of the approaches that was applied to address scope and requirements issues was com-
monality analysis6. This section describes the approach and our experience applying it to course
project development.

Process. Weiss describes a process for identifying commonalities and variabilities for product
families6. The approach, called Family-Oriented Abstraction, Specification, and Translation or
FAST, is a five-step process that involves a team of domain experts along with a moderator in
a series of meetings meant to identify the scope and requirements for a software product line or
software product family. In the approach, a commonality is a product feature that is expected to
exist in every possible product within a product line. The term variability is the anti-thesis of
commonality; it refers to those behaviors that vary between products within the product line.

The five steps in the FAST process include Preparation, Planning, Analysis, Quantification,
and Review6. The main activity within this process is the analysis step, which involves the cre-
ation of a commonality analysis document. The steps of the analysis activity include creating a
dictionary of terms for the given product line scope, identification of commonalities based on the
definitions, identification of variabilities, and resolution of issues. With respect to the definitions,
Weiss has found that definitions often lead to identification of commonalities6.

Application to the ESE Course. In addition to identifying a product scope, the course develop-
ment team was involved in a significant commonality and variability analysis. Using the approach
suggested by Weiss6, the team spent a significant amount of effort in the analyze task by first
identifying and refining definitions relevant to the home automation product line and subsequently

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.9



translating those definitions into either commonalities or variabilities. To facilitate this activity, a
definition to product map was created as shown in Table 3. The table shows definitions along the
vertical axis while products are shown along the horizontal axis. The “+” in a given cell indicates
that the definition or concept is pertinent to the given product context.

Term S
e
c
u
ri

ty

A
c
c
e
s
s

P
o
o
l 
A

c
c
e
s
s

L
ig

h
ti
n
g

L
a
w

n
 a

n
d
 G

a
rd

e
n

P
o
w

e
r

F
ir
e

A
ir

 Q
u
a
lit

y

Sensor + + + + + + + +

Monitor

Device Controller + + + + + + + +

Actuator + + + + + + + +

Alarm + + + + +

Device + + + + + + + +

User + + + + + + + +

Unauthorized user + + +

Authorized user + + +

Interface + + + + + + + +

User Interface + + + + + + + +

Validation Authorization + + +

Access + + +

Alarm Event + + +

Event + + + + + + + +

Signal + + + + + + + +

Receiver + + + + + + + +

Transmitter + + + + + + + +

Trigger + + + + + + + +

Automation + + + + + + + +

Home Network + + + + + + + +

Web Interface + + + + + + + +

Keypad + + + + + + + +

Product

Table 3: Definition to Product Map

While this table indicated that several of the definitions may initially appear to be common-
alities, we found that variabilities existed in the way certain activities may occur. For instance,
while all the products required sensing, variabilities existed in the way each product performed
sensing. Nonetheless, Table 3 was used as the basic guideline for constructing the product line
commonalities. The product line requirements were formed by using the commonalities as the
basic identification of generic product capabilities. Additionally, after a product domain analysis
was performed for each individual product, product line variabilities were developed to account for
envisioned product behaviors. These definitions of product line requirements, as well as product
variabilities, served as the basis for defining course projects. In this respect, the product line re-
quirements serve as the general description of the projects that are intended to remain constant over
the lifetime of course offerings, and the product variabilities serve as per offering course project
descriptions. Furthermore, since all products are built from a single platform, variability can ex-

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.10



ist within a product domain. For instance, within the security product domain, several different
security product variations can be created.

3.2.3 Product Parts

The Product Parts pattern2 involves the development and identification of the parts needed to
construct a product within the product line. Figure 6 shows a diagram depicting the context of the
Product Parts pattern. With respect to this pattern, the activity involves the development of re-

Each Asset
(Requirements)

Each Asset
(Architecture)

Make/Buy/Mine/Commission Analysis

Each Asset
(Components)

Mining
Existing
Assets

COTS
Utilization

Developing
An Acquisition

Strategy

Each Asset
(Testing)

Testing Software
Systems

Integration

Architecture
Evaluation

Figure 6: Product Parts Pattern 2

quirements (Each Asset* - Requirements), an architecture (Each Asset* - Architecture), evaluation
of that architecture, development of components via a number of different approaches, and inte-
gration. This series of activities is a one-time only process and is intended to be used at the product
line level. The requirements and architecture along with identification of some of the commercial
off-the-shelf (COTS) components were performed by the development team. Other activities are
left to the students as part of their product development task.

Technology Assessment. Part of the Product Parts activity involved the identification of tech-
nology that was appropriate for constructing the end-products. For instance, one of the course
objectives was to expose students to the use of middleware as an enabling integration technology.
As a result, appropriate middleware technology had to be identified by the course development
team that met course constraints (specifically the use of X10 and TINI processors).

3.3 Learning Activities

This section describes the learning activities that resulted as a result of applying the software
product line approach to development of the ESE course and course project.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.11



3.3.1 Projects

The Product Builder pattern2 serves as the basis for every course project currently underway
or planned in the future for the ESE course. Figure 7 shows a diagram depicting the elements
of the Product Builder pattern. As is typical with a generic waterfall software product lifecycle,
the Product Builder pattern begins with a requirements definition for a specific product within the
product line. The product requirements lead to the definition of a product architecture, which in
turn leads to component development, integration, and finally testing. The difference within this
context is that many of the assets needed to complete this process have been developed as part
of the Product Parts activity, leaving the students to develop the controllers and product specific
capabilities. For instance, given a home security product, the product architecture is based on the
product line architecture with modifications created in order to handle requirements specific to
home security.

Requirements Engineering

Architecture
Definition

Product Requirements

Product Requirements

Architecture
Evaluation

Informs

Product
ArchitectureTesting

Informs Component
Development

Product
Components

Software
System

Integration

Figure 7: Product Builder Pattern 2

3.3.2 Laboratories

The course laboratories for ESE consist of exercises meant to familiarize students with the
chosen implementation language (Java), the hardware technology (TINI and X10), and the inter-
connection platform (JINI7). The ESE course laboratories were developed with the intention of
supporting training on the various technologies to be used within the applications developed from
the product platforms. In this respect, the course was designed to use a collaborative learning ap-
proach, whereby an initial amount of information is provided through lecture but the responsibility
of finding and understanding the technological details is left to the students. The intent being to
allow the students the freedom to explore and identify those capabilities that were available for the
course projects while leaving the decision on which capabilities to use up to the individual teams.
In the context of the Factory pattern, the laboratories were viewed as part of the training, which is
part of the assembly line pattern2.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.12



3.3.3 Lectures

The project for the ESE course dominates the architecture of the course. Specifically, the
utility appears to come from the experience gained in the development of the individual products.
The focus of the lectures for this course primarily center upon two aspects: general issues for
the development of embedded software, general issues necessary to develop the course project
(product). The product line notion is in effect hidden from the students in that we do not provide
any instruction on the product line approach. The reason for this is that the product development
task, which the students are most concerned with appears to be exactly the same structure seen in
previous software engineering courses and the fact that a reuse structure underlies that becomes
superfluous.

3.4 Lessons Learned

We have found that the product line approach has helped to provide structure to the course
project development activity. Specifically, it has facilitated long-term planning regarding the of-
fering of the ESE course and has helped to identify the set of course project assignments that will
be used in years to come. Furthermore, the product line approach has made the identification of
course laboratories natural rather than contrived. Finally, the creation of the product line has al-
lowed us to develop a software and embedded systems product line that can be used in the context
of both education and research.

A number of questions remain open regarding the effort described here. For instance, we have
yet to determine the impact on student experiences, for which only time will tell. Specifically, we
are interested in determining how the use of the Product Builder pattern will impact how projects
are developed by students and the effect of structuring a course to mirror product line capable
organizations on instruction and final student capabilities. Additionally, we are interested in deter-
mining the impact of the product line approach upon course evolution issues. As such, we plan on
applying software product line evolution techniques to the issue of course evolution.

4 Related Work

Recently software product lines have been used successfully by several companies including
work by Cummins Inc., NRO and Raytheon’s CCT2.

Cummins Inc. Cummins Inc. was in the process of developing six software projects, each work-
ing independently of each other and each using its own approach to development2, pages 417–442. They
also had another twelve projects on the schedule with insufficient staff to handle the additional
workload. The solution Cummins took was to stop all current development and instead use a prod-
uct line approach. Although the change in the way software was developed caused a small amount
of employee turnover, organizational capacity increased dramatically. It also resulted in a reduc-
tion of both product delievery time and staffing requirements. Another side benefit was improved
efficiency allowing for reduced risk in exploring other markets. In their projects they were able to
get a 75% rate of reuse while significantly reducing average product cycle time.

National Reconnaissance Office (NRO) and Raytheon. NRO was facing the prospect all gov-
ernment agencies faced in the 1990’s, a reduction in their budget and staffing without a reduction
in workload. One of the solutions they used was to incorporate a product line approach to the
development of their satellite C2 software2, pages 443–483. The NRO with assistance from SEI con-
tracted Raytheon to develop a package containing the core assets needed to develop any satellite

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.13



C2 software and tools to assist in producing the final product. The NRO knew it would reap fu-
ture benefits with a reduction in production times and project costs. Raytheon, who completed the
CCT project on schedule and within budget, hoped to benefit by winning future contracts in the
Spacecraft C2 business. The CCT was used in the development of the Spacecraft C2 System with
great success.

In this paper, we describe the application of product line approaches to the development of
course projects. The goal is to achieve reuse and cycle time benefits similar to the ones discussed
in the above projects.

5 Conclusions and Future Investigations

The benefits of using a software product line approach are beginning to be realized in some
fairly significant projects2. The strength of the approach is that it allows an organization to re-
alize enterprise level reuse within domains where the scope is well-known. In the context of a
project-oriented course, the challenge from semester to semester is the definition of new and inno-
vative projects while maintaining a minimal amount of administrative overhead required to modify
projects. By using a product line approach, the scope and infrastructure of course projects be-
come well-defined, thus allowing for significant amounts of variability while maintaining the core
infrastructure.

As of the reporting of this work, the course produced based on this product line concept is
underway. Initial benefits have been in the area of course planning and development. Specifically,
the use of the product line approach has made the definition of course projects, laboratories, and
support lectures straightforward. As part of future investigations, we plan on studying how other
product line research issues like evolution impact course maturation and development.

Acknowledgements

The authors would like to thank Yu Chen, Shilpa Murthy, Divya Ramasubban, and Swami
Venkataramani for their contributions to this work.

Bibliography

[1] G. Gannod, F. Golshani, B. Huey, Y. Lee, S. Panchanathan, and D. Pheanis. A Consortium-based
Model for the Development of a Concentration Track in Embedded Systems. In Proceedings of the
2002 American Society for Engineering Education Annual Conference and Exposition. ASEE, June
2002.

[2] Paul Clements and Linda Northrop. Software Product Lines. Addison Wesley, 2002.

[3] Cliff I. Davidson and Susan A. Ambrose. The New Professor’s Handbook. Anker Publishing Co., Inc.,
1994.

[4] Consortium for embedded and internetworking technologies. [Online] Available
http://www.eas.asu.edu/embedded. Arizona State University.

[5] Don Loomis. The TINITM Specification and Developer’s Guide. Addison–Wesley, 2001.

[6] D. Weiss. Commonality Analysis: A Systematic Process for Defining Families. In Second International
Workshop on Development and Evolution of Software Architectures for Product Families, Feb. 1998.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.14



[7] W. Keith Richards. Core Jini. Prentice-Hall, 1999.

Biographies

GERALD C. GANNOD is an assistant professor in the Department of Computer Science and Engi-
neering at Arizona State University. He received the MS(’94) and PhD(’98) degrees in Computer
Science from Michigan State University. His research interests include software product lines,
software reverse engineering, formal methods for software development, software architecture,
and software for embedded systems. He is a recipient of a 2002 NSF CAREER Award.

JOHN J. DOHERTY is a graduate student in the Department of Computer Science and Engineering
at Arizona State University. He received a BA(’92) in Mathematics from University of St. Thomas.
He previously worked at Simula Safety Systems as a Logistics Engineer. His research interests
include software product lines and software development for embedded systems.

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright c
2003, American Society for Engineering Education

P
age 8.1237.15


