Using Debate as an Inductive Learning Technique with Construction Case Studies

Dr. Denise Diana Gravitt, Western Illinois University

BS Civil Engineering, Purdue University; MS Engineering (Mechanical Engineering) Purdue University; PhD Technology Management (Construction Management), Indiana State University. Associate Professor of Construction Management at WIU. 10 years industry experience in commercial and industrial/process construction prior to beginning teaching career at Indiana State University in 1999.
Using Debate as an Inductive Learning Technique with Construction Case Studies

Western Illinois University

Introduction & Literature Review

This paper focuses on the use of debate as an example of an inductive teaching method in a Construction Management legal course. The 400 level course is one of the last courses to be taken by the students in the Construction Management program. Typically only the Soils and Foundations, Occupational Safety and Health, and Construction Management capstone courses are taken after this course, while and Estimating and Scheduling are taken the same semester. Having taught this class multiple times, the author found that traditional lecture, supplemental discussion and readings, exams and homework questions were not enough for students to gain the ability to think critically about the legal principles they were being introduced to during the course. Additionally, students were not motivated to read the text book or discuss the materials since they could not relate the topics to personal experiences.

Some students in the legal course had completed professional internships before taking the senior level course, but many had little or no construction industry work experience before taking the legal course. Many students could not see real industry applications of the course content beyond the example cases in the text book. An additional issue was related to students not understanding how some courses were related to other courses in the Construction Management program. Students often tend to compartmentalize knowledge learned in individual courses and Prince and Felder\(^1\) noted that students are less likely to learn topics if they see no connection to what they already know or believe.

Case studies have been used as examples to demonstrate the inter-relationships of construction program courses. Using case studies can be beneficial to student learning by exploring current industry situations and having students evaluate the issues or decide how knowledge they have gained from many courses may apply to unique situations. Case studies have been shown to motivate students by demonstrating the relevance of the instructional topics to students' careers and can be used to foster learning of difficult concepts and topics.\(^2\) Discussion of a case in a debate format adds an inductive teaching component and incorporates critical thinking.\(^1,2\) Debate allows all students to participate equally and can be tailored to increase student learning and understanding of difficult topics, encourage student interactions by using groups (collaborative learning), as well as further develop written and verbal communication skills.

In 2007 the author found that many students struggled with reading legal texts and understanding the legal principles or terms. After attending a professional development workshop on debates, the author saw potential applications for the method in the Construction Management program legal course. The goal was to see if adding a debate format to case study usage, an inductive learning technique, could motivate students to research topics (read the text book and articles) in addition to increasing student engagement and learning. Inductive teaching techniques may also be called learner-centered or student-centered since they require students take more responsibility
for their own learning compared to traditional lecture based or deductive teaching methods, can be more interactive and have been found to promote student engagement.¹

Debate has been researched as a pedagogical method used to improve critical thinking skills and oral communication skills since the 1990’s.³⁴ Learner-centered education programs such as nursing and pharmacy, marketing, engineering and economics among others have included various exercises to foster critical thinking development in their students including case studies and debate, but have not been widely documented as being used together.²,⁵,⁶,⁷,⁸,⁹,¹⁰,¹¹,¹²

Debate can be summarized as a five step process¹³. The debate process begins with the gathering of information about the debate topic. Step two follows with the student exploring all sides of the issues. Step three has the students forming initial opinions, followed by the students defending their positions in step four. The final fifth step is then allowing the students to refine their opinions through the knowledge and information gained in the debate.

The debate format used by the author is a three by three format. This format was selected so that there would be three student groups participating in the debate process for three debates rotating group roles for each debate. The Alternative Dispute Resolution method of mediation was chosen since a “mock mediation” format allowed for three groups: Owner/Designer, Contractor, and Mediator.

Mock Mediation Debate

The author has used debates of case studies for over seven years in a legal course, refining and revolving the debate instructions, assessment, and case studies as needed. The number of students in the course varied from 14 to 30 students, but averaged around 20 students in a section. The legal course content is divided into roughly three learning modules based upon the course text book and supplementary materials. At the end of first module the students are randomly assigned into three groups which they stay in for all mediation debates. All debates follow the introduction of the topics and terminology in class lectures and discussions, but were prior to the module exams. The group roles of Owner/Designer, Contractor, and Mediator force students to think critically about all parties’ perspectives, roles and responsibilities in the construction industry. The three mediation debates were based upon relatively current industry case studies where the issues were related to the materials just covered in the course. The last mediation debate was a comprehensive case study that incorporated many issues learned throughout the legal course as well as professional ethics.

Web sites such as ConstructionRisk.com and ENR’s online journal site were used to find relevant cases that could be used as the basis of a case study for a mediation debate. These sites in addition to many others had also been shared with students during the first week of the course as sources for more current articles and information on the legal and ethical issues covered in the course. The cases selected by the instructor were then written up with a general history given to each of the three teams. The first mediation case study did not have many distractors, or additional irrelevant information, added. This was done so that students could determine the “core” issue(s) more readily. However, the information given to the three teams could be enhanced or modified so that some parties had different information than the others, which they
then must decide to disclose or not during the debate. Extra information, not relevant to the case resolution, can also be provided to be more realistic. Students will then need to determine what information is relevant to the case study issue(s) - a critical thinking challenge.

This customization of information to different groups provided opportunities to introduce ethics in post-debate discussions and the differences between mediation, arbitration, litigation and discovery rules. The case information was distributed to the student teams sufficiently in advance of the mediation debate sessions to allow them time to research the relevant case law and ethical issues in addition to preparing their team positions and student speaking order. Typically this was a week prior to the debate, but for the third debate the students had two weeks to prepare since it was a more involved case and they were provided with less legal case information which required them to do more in-depth research. Using a real industry case allows students to use online published articles for information valuable to their position and case. Examples of two mediation scenarios used in fall 2016 are included in Appendix A.

The students were introduced to the debate format and the mediation session procedures developed for the legal course with the first mediation case study. They were reminded to review the instructions prior to the remaining two debates- see Appendix A. It was explained to them that this format did not follow typical industry mediation sessions, but was organized in a debate format to maximize student participation and learning. This debate format controlled the contributions of the more vocal students, and allowed participation from the less confident students that needed more time and preparation in order to share their thoughts.

The students that were in the Contractors team (1st person affirmative position in debate terms) went first in presenting their position in the debates. In debates, each person on a team can speak only once, unless addressed by the Mediators at the end of the session. The next person to speak was the 1st negative position, or for this course, the first person speaking for the Owner/Designer. Each sequential speaker could present new information, and/or rebut the previous speakers’ arguments. Since each person was allowed to speak only once, the order of speakers for the opposing parties was very important, with the stronger debaters going later in the sequence to allow for counter arguments.

The lead Mediator directed the debates allowing only one person to speak at a time, in order, with no interruptions from either party until all students from each party had spoken. The last person from the Owner/Designer and Contractor groups summarized their positions and arguments for the Mediators. Mediators were required to take notes of student’s names/roles and pay strict attention to the cases and arguments presented during the debates. Students in either presenting group also had to take notes in case they needed to rebut a specific point made by a student in the opposing group. At the conclusion of the mediation debates, the Mediators asked their prepared questions of the students from both the Contractor and Owner/Designer teams in order gain clarity and assist them in determining a case resolution.

The students from the Contractor and Owner/Designer groups needed to research the case scenario from both group perspectives in order to be prepared for rebuttal. The Mediators needed to be just as informed about the case law as the opposing parties since at the conclusion of the debate between the Owner and Contractor groups, the Mediators were allowed to ask questions
of either party to help them with their decision. Sometimes Mediators would ask questions the students in the other groups would not be able to answer with the available case information which resulted in some frustration. However, this allowed for further instructor emphasis and post-debate discussion on the need to document everything during a construction project so there will be documentation available in the event of future claims.

After all Mediator questions are asked, both Constructor and Owner/Designer student groups left the room and the student Mediators then caucused to determine their resolution of the case. The Mediators needed to address the case information provided, the relevant case law, professional ethics and the information that they obtained during the debate and write a concise statement that was then shared with the other two groups when they returned.

At the conclusion of each mediation debate there was a class discussion. This included the real industry case results if it had been concluded already, the merits of student arguments, any exceptional points made by students, and any other pertinent ethical or legal issues not previously covered in the debates.

Assessment

Assessment of the mediation debate sessions occurred in two parts. The first part of each student grade was based upon the quality of mediation debate participation, following debate guideline rules, verbal communications skills, arguments and/or rebuttals during the debates. Students that were absent the date of the Mediation received no score for this component. The second part of their assessment grade was based upon the written research report for the case study. See Appendices A and B for instructions and point criterion. The typed research papers were due before each debate and required students to cite referenced materials, cases and summarize their legal position and arguments. Students had to attach any supporting articles so that the instructor could review their sources for relevance to the case.

The overall point values increased from the first to the third mediation. All mediations had a 25 point verbal debate component grade. However, the written research component point values increased with each subsequent debate case study to reflect the increasing level of difficulty of topics and the decreasing amount of information provided by the instructor. The students were provided with a scored points outline (see Appendix B) attached to their written research papers so they were aware of the strengths and weaknesses of their research and debate preparation for each case study.

Summary and Lessons Learned

The legal course was taught two times with the same text book before introduction of debates in the course. The reason for introduction of the debates was not to improve overall course grades, which were in the 83% to 85% overall for those two semesters, but in the hopes of improving student participation, motivation for learning the materials, and understanding of how important the legal course content was for the students in their future careers. In terms of grades, data indicate that the summary class grades after incorporation of debates consistently ranged between a 75% (rounded) and 85% (rounded) overall, or between a C and a B with no rounding
of any exams or final grades. The lower grade ranges were after moving from teaching in one larger state university to a different and smaller university in another state. An overall decrease in student skill levels or preparation for college level courses, both in language and mathematical ability, and different student body demographics between the two universities was observed which may relate to the lower summary course grades as this was also observed in other similar major courses taught at both universities. It was clear that the students in one university had better K-12 education in one state compared to the second state based upon the students enrolled in the Construction Management program and university admission standards. However, the course design was not modified for the differing student bodies. Also, the summary grades cannot be attributed to the use of debates and mediations alone, since the course design is set up to foster student learning and success with a variety of assessments. The demonstrated understanding, retention of the material, and increased discussion participation and student enthusiasm for the subject matter was only seen after the introduction of the debates.

One of the most widely documented benefits from debate is the enhancement of critical thinking skills.\footnote{14} The value of small group debates has been examined by others and found to be representative of inductive learning or learner-centered education; additionally, it has been confirmed that debate can foster better development of skills in interpretation of data.\footnote{4, 3} Many universities and programs have been placing more emphasis on learner-centered (inductive) instruction, especially with the increasing number of web courses.\footnote{15, 16} Debate can be incorporated into a course to demonstrate the inclusion of learner-centered activities, and it can work well with traditional classroom settings or with web based courses using real-time chat sessions to foster student critical thinking and learning.\footnote{17, 2}

The author found that the students gained confidence and skill with the debate process with each subsequent debate. Multiple mediations debates were needed in order for the students to get fully familiar and comfortable with the process. The student debate performances, as well as the depth, and clarity of arguments for their mediation roles improved with each session. Students became more engaged in the course discussions, participated more in class, and shared their knowledge of industry applications when they began to see the connections to their experiences. In addition to the students being more engaged in the legal course, other Construction Management program instructors reported students demonstrating their knowledge and ability to see relevance and applications of legal principles, especially in the capstone course.

Most students reported the debates were enjoyable, informative, and helpful in demonstrating the importance and application of the classroom and text materials. However, the instructor may be needed to enforce rules of order and remove students that cannot control their actions. Some students get very enthusiastic in their participation. Note passing is encouraged rather than random interruptions of the proceedings and interjections from students, which are not allowed per the instructions to the students. Comments from students (in their own unique phrasing) from the fall 2016 course include:

- “…We debated real life scenarios. It helped us research precedents or material to back the stand we had to take on the issues. This gave us nearly firsthand experience as to what aspect apply and what each side could legally do in each situation.”
“…I believe (the mediation process) was very beneficial for our class to actually discuss as different parties of why one parties to blame and not the other. This ensured that we have to have knowledgeable legal documentation to defend our case. This pushed us to really dive into the legal laws of construction which forced us to become familiar with them.”

“I liked the mediations the most because they give real world experience to what we might see. Although they may not be exactly what will happen, but they give a good understanding to what to expect.”

It is helpful to have case studies where there is no singular party at fault and where multiple parties share responsibility for an issue, as is common in industry. Not having black and white issues forces students to develop an understanding of higher order critical thinking. The example mediation case studies included in the Appendix A were used by the author for the second and third mediations of the fall 2016 course. Both cases involved professional ethics, legal issues such as termination, roles and responsibilities of parties, notification policies, materials and methods, and soils and foundations issues. Other cases studies have been used in past semesters that integrated scheduling and documentation issues. The cases chosen can be used to focus on multiple program topics or singular issues. The legal course chosen by the author for incorporating these debates is a 400 level course where the instructor has incorporated higher level critical thinking challenges in accordance with the departmental and program goals. Less complex case study debates may be more appropriate for lower level courses.

Registering for daily or weekly news letters relating to professional industry are helpful for finding current case studies that can be adapted to many courses in a program. In addition, reading industry journals are helpful. Engineering News Record legal postings (ENR.com), Construction Risk newsletters (ConstructionRisk.com), and the Construction Dive online news summaries (ConstructionDive.com) were all helpful to the author in identifying different case studies and keeping current on how those cases were resolved.

References

Appendix A

Mock Mediation Debate Instructions and Example Case Studies

Note: Only first Mediation needs to include Instructions.
Mediation Session Rules:
Your “party” Owner, Contractors, or Mediators needs to appoint a spokesperson or leader for each session- a different person each time. This person will be responsible for coordinating the efforts of the team during the actual mediation debate session. They will decide, with input from the group, the order of speakers and the content of their turn- i.e. what legal point they will discuss. Often, in addition to their topic, they may have to rebut what the previous opposing team person has said. The last person from each team summarizes the overall party position and arguments. This is also the last chance to rebut previous opposing team arguments as well. Contractor’s team goes first, and then second to speak is the owner’s team, etc. back and forth until all team members have spoken.

In-Class Debate Rules:
1. Each person from each team must speak and address an issue related to the case.
2. Each person can only speak once. Thus a person may bring up a new issue, and/or they may rebut an issue/point brought up by the opposing party.
3. Supportive cases, legal precedents, state & federal laws, AIA documents etc. are all materials that can be used to support arguments.
4. Unless specified otherwise, assume that AIA contractual documents and General Conditions were used on the project.
5. Mediators may ask questions for clarification at the end of the debate. They can address questions to any person on any team. No unsolicited input will be allowed from any other group/person. After all questions have been addressed the Mediators will caucus and come to a decision.
6. Only one person speaks at a time- no interruptions. Violators will be asked to leave.
7. Each person can speak for no longer than 5 minutes.
8. Grading of the debate will be based upon compliance with rules, preparation, arguments, verbal communication skills, and professional deportment. (25 pts)

Preparation- Case Write-up
Each person will submit a copy of their case research with supporting arguments, relevant case and law notes for part of the overall mediation session grade. See Grading/Content write-up sections and content points values (Appendix B).

Example Case #1:
Roles & Responsibilities, Ethics

Owners: Metropolitan Transportation Authority
Contractors: DMM Construction, a joint venture firm.
Mediators: Construction Specialty Mediation.
Task is to determine the fair distribution of cost/damages to all parties concerned. This includes the Owner, and Contractor

DMM was hired in 1993 to construction a 20ft diameter, 6 mile long tunnel for a new subway line. In June of 1995, when the contract was approximately 90% complete, a 70’ wide by 60’ deep sink hole developed under a major street after a water main burst and washed away surrounding soils. MTA terminated DMM within days of the sinkhole formation for default
stating they had allegedly used inadequate wedges and grout on the tunnel as reported by a “whistle-blower”. The whistle-blower was a safety inspector on the project. He also accused DMM of underestimating costs, inflating claims, and using improper construction techniques. DMM is in a separate settlement process with the whistle-blower whom they fired.

In July, MTA hired another joint venture firm to fix the sink hole and complete the subway tunnel contract. Also in July 1995, a Dispute Resolution Board (DRB) that specializes in underground tunneling was formed with members from each dissenting party. The DRB found that the MTA was not justified in their termination of DMM since they had violated the contractual requirement of notice and not allowing DMM to cure any defaults.

In August 1995, DMM filed suit for wrongful termination in the amount of $130 for past work, seized equipment, and materials, and stated MTA had failed to provide sufficient notice or opportunity for cure of faults, and failure to inform them that the soil was five to six times harder than they were led to expect from the initial soils reports. The also requested to be reinstated on the project. MTA fired their DRB member for “obvious bias” towards the contractor, ignored the DRB decision and filed a counter-suit against DMM for $100 million. An Appeals Judge upheld MTA’s decision to fire their Dispute Board member, even though it was against precedent.

In 1997 the State’s Attorney failed to file criminal fraud charges against DMM arising from the “whistle-blower” allegations, however MTA still is pursuing their suit alleging DMM committed fraud and failed to comply with the contract due to the inadequate wooden wedges and grout in the tunnel support system. The MTA legal counsel costs are approximately $3 million per year for pursuing this action. Years of conflicting analyses have followed for who is at fault for the sink hole with no clear consensus.

Example Case #2
Mediation Session: Soils, Foundations, Roles & Responsibilities, Ethics
Note: Owners & Designers can be combined to have only three groups

Contractors: Webcor Builders; Concrete/Foundations Regional Corporation.
 Owners: Millennium Partners.
 Designers: Handel Architects LLP; DeSimone Consulting Engineers.
 Mediators: Construct Mediation.
 Costs to be mediated: $1,000,000,000,000 (the costs associated for buying out all owners for all units)
 Questions to be answered: What were/are the legal/contractual and ethical obligations of the construction group? What were/are the legal/ethical obligations of the owner? What fault/liability do they own for the design, location, choices made? What were/are the legal/ethical obligations of the designers? What fault/liability do they own for the design, location, choices made? Which party(ies), if any is/are liable for damages to unit owners due to the sinking/tilting of the building?

Background: Millennium Tower stands 645 feet and is the tallest reinforced concrete structure situated in a seismic zone 4 region, as well as the 4th tallest structure in the city of San Francisco. The $350 million project is comprised of a 59-story tower and a 12-story building connected by a 3 level podium structure. The above ground structure contains approximately 900,000 sf with an additional 250,000 sf of parking and support space located below-grade. This
The project required a 75-ft deep excavation, which is one of the deepest in San Francisco. The tower's immense height posed many challenges and required the creative use of technologies and cutting edge innovation. Concrete, while a unique choice for this high-rise tower, is utilized most effectively to make this project a financial success for the developer. Millennium Tower has demonstrated that concrete is a safe and secure building material, even in seismically challenging situations.

To resist the large seismic forces placed on a building of this size, a dual lateral system was employed, which is comprised of a 36-inch-thick concrete shear wall core with outriggers and a partial perimeter special moment resisting frame (SMRF). Four-story tall outrigger walls connect the core walls to large outrigger columns at three elevations to control the building's lateral deflections. One-story deep, diagonally reinforced link beams connect each outrigger to the supporting column and are designed as the fuses intended to yield in the event of a major seismic event. A capacity design approach was used for the design of the outrigger columns to insure that they remain elastic even if all six connecting link beams yield at the same time.

In order to meet the owner's floor height requirements, wide-flange steel link beams were used as the shear wall core coupling beams. Conventional diagonally reinforced coupling beams require significantly more depth. The embedded region of the beam extends 4 ft into the wall and transfers the beam moment by bearing on the concrete above and below the embedded beam.

A tower of this height creates a higher bearing pressure below the core (14,000 psf). To provide support for such a high concentration of force, 950 14-inch square precast piles were installed. While overturning due to earthquake is a significant factor, the number of piles was governed by gravity design. In order to provide a high-confidence against a possible foundation shear failure, vertical shear reinforcing is added in the 10 ft thick pile cap.

The project's five-story basement extends 75 feet below grade, nearly 45 feet below the site's water table. This open cut required special waterproofing. A unique shotcrete mixture containing Caltite was employed at perimeter walls, eliminating the need for a conventional adhered waterproofing membrane.

The foundation supports two very different types of structures. The two towers are separated by a horizontal joint, and hinge slabs connect the two structures allowing for additional settlement to occur beyond the expected of up to 5”. The area between the towers supports only three levels above grade and requires tie-downs to resist the hydrostatic uplift at the bottom of the deep excavation.

High-rise buildings usually exhibit significant higher-mode effects. This higher-mode effect significantly changes the load distribution applied to the building. A historical inverse triangular load distribution push-over analysis is the wrong approach for high-rise analysis. The design team explored other options such as multi-mode pushover analysis as described by FEMA 440 and non-linear time history analysis.

For the heavily reinforced walls, beams and columns, grade 75 ductile reinforcement was used to minimize the amount of rebar required. This solution reduced rebar tonnage by 25%,
significantly reducing congestion and facilitating concrete consolidation. A robust testing procedure was implemented to gain confidence in the rebar and the mechanical devices used with the rebar, and demonstrated to the city of San Francisco Department of Building Inspection the safety and efficacy of this solution.

To further simplify placement of concrete during construction, a Baugrid system of welded grid reinforcement was also employed. Welded wire grid reinforcing confines shear wall boundaries and provides cross-ties at the beams and columns. This tie system eliminates all hooks and significantly reduces the volume of rebar within the shear wall boundary elements, SMRF columns, and SMRF beams. The flanges of the shear wall core are reinforced by continuous Baugrads which provides resistance for confinement and shear.

When the project was initially conceived in the late 1990's, it was assumed that structural steel would be selected for the project. Steel had long been the material of choice for residential and office buildings in California, as the reduced overall structural weight leads to reduced seismic design forces. By the time the project gained traction in 2003, two things had changed in the local industry.

The first change involved the availability of high strength concrete in the local market. Prior to year 2000, 7,000 psi was the highest specified strength for any building in San Francisco. However, higher strengths were required for the new Bay Bridge construction. That project eventually utilized material with strengths as high as 12,000 psi. Utilizing advice from the local construction industry, Millennium Tower's solution ultimately specified 10,000 psi elements.

The second change within the industry was the development of new slip-form technology that allowed a concrete shear wall core to be constructed rapidly and in advance of the floor plates. This innovation changed the economics on the construction side, facilitating faster concrete construction schedules.

These developments in tandem with residential construction's preference for concrete (due to building codes and fire resistance) enabled the Millennium Tower concrete solution. The use of flat plate construction reduced overall floor to floor heights, thus allowing more floors to be constructed within the given building height, which is limited by zoning regulations. All of these items, combined with the clients' preference for selling a concrete structure, led to the selection of a concrete system.

In 2013, the building sold its final unit. In 2016, the building was found to be sinking and tilting, perhaps as a result of driving piles only 80 feet deep and not 200 feet. An examination in 2016 showed the building had sunk 16 inches to date with a two inch tilt towards the North West; much more than the originally expected settlement of up to 5 inches over time.

Millennium Partners has largely blamed the Transbay Joint Powers Authority (TJPA) for disturbing the tower while building its Transbay Transit Center on an adjacent lot. The TJPA countered that if the Tower had built on piles drilled down to the bedrock—about 200 feet down—it would not be tilting. The Millennium Tower is built on a concrete slab, with 14-inch square precast piles extending 60 to 80 feet down, but is built on fill, as it rests beyond where the
shoreline of the San Francisco Bay originally was, and loosely consolidate sands. Not everyone believes the uneven settlement poses an immediate risk for the building. An earthquake-safe design expert hired by the developer issued a report saying that the building was safe to occupy, even in the event of an earthquake. The Tower is the largest concrete building in a seismic zone such as San Francisco Bay. The location makes the building vulnerable to liquefaction.

See multiple links and videos below for further information to research your mediation write-up and mediation/debate arguments.

https://www.youtube.com/watch?v=b_aIm5oi5eA
https://www.youtube.com/watch?v=-eH5fh0YEuQ
https://www.youtube.com/watch?v=tW1iUAAMZZU

Additional Sources:

http://sf.curbed.com/2016/9/14/12919764/millennium-tower-sinking-transbay-powers
Appendix B

Assessment Point Values for Mock Mediation Written Component

Mediation Grading: 1st mediation written score 25 pts, 2nd 50 pts, 3rd 100 pts possible.

1. Summarize the case from an overall, general perspective; List and explain the pertinent case laws, statutes etc. that are pertinent to the mediation session and result in liability for all of the parties- contractors, Owners, A/E etc. (10/25, 20/50, 40/100)

2. Summarize your defense- do not re-write the case scenario, but summarize the points to be made in the mediation session that support your position. If mediators, summarize your position & questions/answers needed for clarification if necessary. (5/25, 10/50, 20/100).

3. What are the relevant legal/ethical principle(s) involved in your defense/position? Discuss why these positions/points are relevant. (5/25, 10/50, 20/100)

4. References- in APA format list all sources used for your write-up. Attach any supporting cases document/articles that you found to support your arguments/conclusions. (2/25, 4/50, 10/100)

5. Lastly, discuss potential arguments from the opposing parties. How can you “discredit” or counter their potential arguments? (Mediators- you need to research both sides of the case also- often no one party is at fault- it is shared responsibility). (3/25, 6/50, 10/100)