
AC 2011-818: USING GRAPH THEORY VISUALIZATION TO MOTIVATE
SOFTWARE ENGINEERING CONCEPTS

Shane Markstrum, Bucknell University

Shane Markstrum is an Assistant Professor of Computer Science at Bucknell University. His primary
research focus is on the intersection of programming languages and software engineering–language tools.
His recent work in this area includes the JavaCOP pluggable type framework for Java, and refactoring
support in Eclipse for the X10 language. At Bucknell, he has taught the Introduction to Computer Science
courses, as well as courses on the theory of computation and theory of programming languages. Prior to
arriving at Bucknell, Prof. Markstrum received his Ph.D. in Computer Science from UCLA.

Prof. Gary M. Haggard, Bucknell University

c©American Society for Engineering Education, 2011

P
age 22.1621.1



Using Graph Theory Visualization to Motivate Software
Engineering Concepts

Abstract

Implementing a software system that is the solution of an open ended problem gives students the
opportunity to use a variety of programming tools and practice a software engineering method-
ology. In this paper, we describe a course Graph Theory, Algorithms, and Software Engineering
intended as an elective for second and third year students that has these opportunities as its learning
objectives. The course is structured around the implementation of a visualization tool for use in
explaining and demonstrating fundamental concepts and classical results of graph theory. Possible
graph theory topics to be included in the tool are search techniques, Euler circuits, and minimal
cost spanning trees. Many of the decisions about the project’s design and the topics covered are de-
pendent on the students. As a result, the resulting tool can appear quite different from one offering
to the next.

The project is intended to be developed by one or more student groups with all groups using
the same interface for the graphs and visualizations. Strict enforcement of interface usage allows
the opportunity to teach many design patterns that will aid in seamless integration of the code
developed by different groups. Additionally, user testing of prototype implementations adds a
sense of real development to the project. Since simple graph theory topics are an important aspect
of a computer science education, the project also gives an opportunity for the students to present
their tool at local and regional computer science meetings that encourage student participation.

1 Introduction

Many computer science programs include some type of capstone course in the senior year as a way
to challenge their students to apply all of the knowledge they have gained on a substantial project.
However, there are typically not many opportunities in the second and third year of these programs
to introduce students to a team-based, open-ended project in a setting that helps them prepare to
handle their culminating experience. From a development perspective, it is particularly difficult to
find the right context for a fairly large software project that uses the techniques of object-oriented
design or software development methodologies introduced earlier in the curriculum.

One approach to providing a larger software development experience is to assign a program-
ming project lasting three to five weeks during a required course sometime in the second or third
year. The scope of such projects requires a team-based approach for design and implementation.
However, given the short timeframe associated with such projects, there is little opportunity to
emphasize the software engineering process. These projects provide some open ended problem
solving but the time constraint makes it very difficult to develop all aspects of the project with the
attention one would like.

In this paper, we describe a different approach that eschews development of a familiar project
in favor of a project that emphasizes design decisions and the software engineering process. It also
reinforces essential mathematical foundations that a computer science student would be exposed

P
age 22.1621.2



to early in their program. We present a new elective course–Graph Theory, Algorithms, and Soft-
ware Engineering–that uses a whole term to develop a visualization project with clearly definable
problems from the domain of graph theory. The problems chosen can each be solved in reasonably
short time intervals. The topics are relatively self-contained such that all aspects of development
can be monitored without worrying about the number of topics the groups complete. The most
important aspect of the project is that enough parts get completed by a group that students gain an
understanding of how effective design can increase the flexibility and reuse of code. The students
will see why development accelerates once a careful design foundation is laid.

The objective of the course project is to put various graph theory topics and algorithms together
into an object-oriented visualization tool. This tool is intended to bring the abstraction of graphs to
life for beginning students in a discrete structures or graph theory course. The focus on the user of
the project, a group quite distinct from the developers, makes students see program development
is more than just a problem solving exercise. The number and variety of topics covered in the fin-
ished product can be modified to suit the level of understanding of graph theory and programming
experience of the students. If more time is needed with certain design topics, it is possible for the
instructor to cut more detailed topics so that the project still maintains a reasonable scope. Specific
testing of the intended users’ group at one or more points of the term should guide students to eval-
uate the design choices they have made throughout development. Each term the course is offered,
the class of students will bring a different set of experiences to the design process, resulting in a
new final product.

Visualizations for algorithms and graph theory topics have been shown to be an effective ped-
agogical device. For example, the Algorithms in Action project12 uses animations to explain data
structures, sorting algorithms, and some graph algorithms. The Math Cove8 system is a graph the-
ory course taught primarily through visual examples and animations. Other visualization systems
are designed to support advanced graph theory topics like Tutte polynomials,13 or feature advanced
assessment tools to measure student learning such as the JAVENGA1 and JHAVE10 tools. Deter-
mining the effectiveness of visualization on learning is difficult, but some studies have shown that
students grasp advanced topics better with visualizations such as sorting algorithms11 and network
flow algorithms.1 To this end, as the students develop their own visualization tool, they will show
a deeper understanding of the material they are presenting with their tool.

Another advantage that developing visualizations for graph theory provides, in addition to those
already discussed, is that the topics often work naturally with many of the standard design patterns.
In particular, the object creation design patterns such as abstract factory, prototype, and singleton
as well as certain behavioral design patterns are useful for building graphs and animating graph
manipulation algorithms.

The rest of this paper is organized as follows. The second section explains some of the graph
theory topics that an instructor could reasonably expect undergraduate students to implement. The
third section deals with the the software engineering process and design issues with regard to
implementing the project. The fourth section discusses some specific details about results from
an earlier version of this course offered at Bucknell University. Finally, we conclude with a brief
summation of the paper and future thoughts.

P
age 22.1621.3



2 Graph Theory Topics

The graph theory and combinatorial topics in the course are designed to engage students both in
learning about graphs and the software development process from the first week of the term. The
first problem is designed to see what tools students bring with them and which tools they associate
with successful software development. The first problem can be introduced during the first week
of class and students can be asked to write specifications as preparation for implementation of the
first topic. With the specifications, students can also write a black-box testing protocol that gives
them some idea of the users’ needs. Students will already begin to see that coding is only one part
of the software development process.

One of the strengths of designing the software around graph theory in the course is that the
project topics can be built around relatively little theory. The first topic can be built on something
as simple as the degree of a vertex. The remaining topics primarily involve two major themes. The
first theme is connectedness. Finding connected components involves some kind of a search of the
graph and so depth first and breadth first search are topics that naturally build up to finding compo-
nents. The second theme is tree structures. The classical minimal cost spanning tree problem has
three classical solutions and each can be implemented and explored for strengths and comparisons.

The problem of drawing a graph and representing various features permeates all the topics. One
of the natural problems that arises in graph theory is determining whether two drawings represent
the same graph. This gives students a chance to discuss the isomorphism problem and show how
it can be solved for small graphs. The design decision for representing graphs and solutions to
problems should be kept as uniform as possible knowing this is an issue with each topic. With
good design decisions incorporated into the specifications, it should be possible to revisit this and
other issues while maintaining a uniform output design for each topic.

Since many graph problems are NP-complete, the students should not be faced with trying to
develop efficient implementations for such problems. While it is worthwhile to discuss problems
such as Hamiltonian cycle in relation to the other graph theory topics, we consider it best to forgo
a requirement that the students implement solutions for even restricted classes of graphs.

2.1 Problem 1: Degree Sequences

Degree sequences provide a graph theory topic that can be discussed, and possibly implemented,
before the discussion of design criteria for the implementation of graphs is complete. A degree
sequence of length n for any integer n is a multiset of n numbers such that each value is between 0
and n−1. The total number of degree sequence for n = 8 is 12344. It is possible to devise a purely
combinatorial algorithm to generate each degree sequence for a given n but the size of the solution
set for relatively small n limits the exercise to n ≤ 8. Some degree sequences of size n represent
the degrees of the vertices of a graph on n vertices. The degree of a vertex v in a simple graph is
the number of edges incident to v. The multiset of n numbers between 0 and n− 1, consisting of
the degrees of the vertices of a simple graph on n vertices, is a special kind of degree sequence
called a graphical sequence. For example, {0,1} is not the sequence of degrees of the vertices of a
graph with two vertices but the multiset {1,1} is. Interestingly enough, the combinatorial problem

P
age 22.1621.4



of generating all degree sequences of a given size is a solvable problem–but the solution is not
so obvious to prevent students from discovering different algorithms to use.6 The fact that this is
a purely combinatorial problem makes it ideal for a first project while design decisions are made
about a common interface for graphs.

2.2 Problem 2: Drawing a Graph

Dealing with how to display a graph is a major area of interest in its own right. You must find a
balance between the possible ways to display a graph and how to convey the important information
in a way that is easily seen in the representation. One relatively simple approach for graphs of
reasonable size–for graphs of at most 20 vertices–is to display the vertices equally spaced around
a circle and represent edges as lines drawn between adjacent vertices inside the circle. This gives
the students the task of finding the locations for the vertices and deciding how large the circle
should be. The size of the display area should be part of the overall design discussion and can be
specified by a parameter that can be adjusted according to design decisions. The students must
also think about screen layout and text positions for explaining the graphs. The students find it
challenging to start thinking of this project as not a simple input-compute-output program, but as
a communication tool that explains complex ideas to an audience.

In most cases, the display of the vertices equally spaced around a circle of some radius gives
rise to an effective way to represent a graph. Unfortunately, the display of vertices around a circle
does not convey the information one expects to see when a depth first search or breadth first search
is being carried out. A second output pattern is needed that displays vertices at different vertical
locations depending on how many edges are between a new vertex and the root of the tree rather
than having all the vertices around a circle. It is still possible to have a meaningful output if the
tree edges of a search tree are displayed as other graphs. Not every feature need be implemented
immediately, but the students should provide extension points for future enhancements in their
design.

2.3 Problem 3: Depth First and Breadth First Searches

There are several ways to approach the topic of graph searches. For basic understanding, the
user needs to be shown how the search proceeds from one vertex via edge traversal. Both the
depth-first and breadth-first search processes can generate a number of different trees based on
the traversal order. The output in the visualization tool should either show the search tree as it
exists after the search or try to show the search tree in a step-by-step fashion as it is being formed
one edge at a time–a sort of animation. The search implementation itself should not control the
display, as the user may want to manually step through the process until a new edge is seen in
relation to other tree edges or its position in the original graph. An additional feature of the display
would be the opportunity for the user to choose different starting vertices for the search process.
Finally, a third option for this topic would be to show both searches as they develop starting from
the same vertex on the same output display panel. Here the step-by-step adding of edges would
clarify the differences in the search orders. Since both searches have the same number of edges in
their search trees, the step-by-step process would show the same stage of each tree’s development
simultaneously.

P
age 22.1621.5



2.4 Problem 4: Connected and Non-separable Components

As students study more complex graph algorithms, they often find it is sufficient to solve the
problem only for connected or non-separable graphs. The reduction occurs because the solution for
the original graph can be found by putting together solutions for either each connected or each non-
separable component of the original graph. To make use of this technique, a better understanding
of what these components are and how they are found for a particular graph is needed.

Finding the connected components of a graph is a straightforward modification of a depth first
search algorithm so that it keeps track of the vertices reached from a fixed starting vertex. If the
algorithm is modified in this way, this set of vertices is a connected component of the graph. If the
set of vertices does not include all vertices of the graph, the process can be repeated on a vertex
that has not yet been visited. Eventually all the connected components will be identified.

Finding non-separable components is an even more interesting exercise. The reason is that you
are not only interested in which vertices you can visit but also how far back towards the root of the
search tree vertices can get by being part of a cycle from a vertex in the search tree back to a vertex
earlier encountered in the search. The equivalence relation that defines non-separable components
is an equivalence relation on edges. Because the relation is defined on edges, a vertex can be in
more than one non-separable component. The vertices in more than one non-separable component
are called cut vertices–i.e., vertices whose removal along with their incident edges will disconnect
the graph.

2.5 Problem 5: Identifying Graphs with Six or Fewer Vertices

Graph isomorphism is one of the really interesting problems in graph theory because it really is an
open problem for which a complexity result is not known. Identifying a graph as an isomorph of a
particular canonical graph is a useful termination condition in algorithms. The project associated
with graph isomorphism makes use of a catalog of graphs with six or fewer vertices.7 Usually
graphs with up to six vertices can be effectively used as termination conditions because the identi-
fication process relies on few invariants of graphs. Fortunately for students most of the graphs with
five or fewer vertices can be readily distinguished by their degree sequence alone. The purpose of
this topic is to take any graph with six or fewer vertices and minimum degree 1–thus, eliminating
isolated vertices–and not only draw them, but also identify certain properties of each graph. In ad-
dition, the nullity of the graph (|E|− |V |+ k where k is the number of connected components) and
other invariants like girth, circumference, and eccentricity can be listed after short computations.

2.6 Problem 6: Minimal Cost Spanning Trees

The construction of a minimal cost spanning tree is one of the problems that every computer sci-
ence student encounters at some point. One of the nice features about this problem is that the
greedy algorithm is optimal. There are three major algorithms for finding a minimal cost spanning
tree. The algorithm of Prim uses a priority queue to test edges in increasing order until enough
edges are found to form a spanning tree. The algorithm of Kruskal maintains connectedness as an
invariant in the process of finding enough edges for a spanning tree. The idea for the Kruskal algo-
rithm is to add the edge with smallest weight to one of the vertices already connected by previously

P
age 22.1621.6



chosen edges. Finally Boru̇vka’s algorithm uses the Kruskal approach but goes through each step
by adding all the edges that can join two connected components of the process so far generated
subject to a minimality constraint. When all these edges are added, the process is repeated with
at most half as many disconnected components to consider. These three algorithms use priority
queues, the union/find algorithm, and stacks during execution. The very different order of selec-
tion for the same set of edges is instructive for the students. The output for the algorithms shows
how edges are added one at a time until a minimal cost spanning tree is found.

As a special feature for the output, it is interesting to show the Prim and Kruskal algorithms
operating on the same screen. Much of the code used to display depth first search and breadth first
search on a single screen can be reused for this option. The steps of each algorithm would show
the status of the partial solution.

2.7 Problem 7: Euler Circuits

Finding an Euler circuit in a graph is a well known as the “first” problem of graph theory. The
necessary and sufficient conditions that a graph be connected and that each vertex have even degree
is easy to verify. In fact, this is one of the instances where code written for another topic can be
enlisted to provide part of the answer. The verification of the existence of an Euler circuit makes
use of the code to determine if a graph is connected, but more interesting is to actually find an
Euler circuit and figure out how to display that information in a useful way.

There are two algorithms for finding an Euler circuit. The first simply starts out from a vertex
and adds edges until a circuit is formed and the traversal is located at the starting vertex with no
more edges left to be added to the circuit. The complement of this circuit is a union of the connected
components of its complement for which each connected component has an Euler circuit that can
be recursively processed. All of the separate Euler circuits can be spliced together to find an Euler
circuit of the original graph. Pseudo code for this algorithm can be found in Haggard et al.5 The
second algorithm builds an Euler circuit so that the partial result is always connected. To make this
algorithm work requires that an edge considered as the next possible edge in the Euler circuit be
deleted and the remaining graph tested to see if it is connected. If the resulting graph is connected,
the edge is included in the solution. If the resulting graph is not connected and if there are more
edges incident to the vertex that is currently the end of the solution so far, another edge is tried
so that if at all possible after adding the new edge, the partial solution is a connected graph. This
solution is attributed to Fleury.3

The algorithms are both straightforward to code. More interesting is the question of how to
display the solution. After all, the solution is just all the edges of the original graph. This is
another opportunity for students to use the one-at-a-time, simple animation method used to show
how to build search trees and minimal cost spanning trees.

3 Design

The graph theory problems described earlier are a reasonable set of topics for which implemen-
tation would take up most or all of an academic term. None of the topics involves very complex

P
age 22.1621.7



algorithmic material, but just enough for students to begin to understand how to leverage the de-
velopment of one algorithm in sufficient generality that other topics could easily make use of the
code.

Since there are many designs possible, rather than make design a group decision, we choose to
make design a class decision so code can be shared and reused. There are two ways to organize this
part of the project. The first is to have the students code two topics with the understanding that the
two topics should be accessible from a single driver class that has a visual interface. This will lead
to a number of possible but quite different solutions. The issue then becomes about convergence on
a single design. This design process is a good opportunity for students to start to see the importance
of clear specifications so that everyone is building the same structure. Another possible approach
is to give the basic structure of the final design and allow a class discussion of specific options
to decide how the design should be finalized. If this second approach is used after the first two
topics, the backtracking to get everyone on the same design scheme will not be too difficult. It is
important that whatever decisions are made at this time become the specifications against which
everything is measured. Black-box tests based on the specifications written for each topic can be
developed and used to verify that the specifications are met. At the end of the term it is always
healthy to have each student present a one slide list of both design decisions that helped and design
decisions that the student would like to make in a different way. The most successful offerings of
the course will result in at least one student finding a better or different alternative for each major
design decision. The lesson is usually not lost that freezing the design was the only feasible way to
get the whole project done and that changes can be more easily incorporated because of the design
and specification work done in the beginning.

3.1 General Decisions

Beyond the design decisions that the students must make, some choices must be made by the
instructor of the course that will facilitate development of the project. These decisions include the
language to use; how student collaboration will be facilitated; what set of software tools should
be used; and whether students will follow a particular kind of software development methodology.
For example, in previous preparations for this course, the students were required to do planning
with an off-the-shelf UML tool and develop in Java, where use of the Java standard library was
emphasized. They were also required to use the Subversion tool for concurrent group development.
However, the approach is adaptable to any language which offers good support of object-oriented
design and user interface libraries. Even if the tools used in the course have not been previously
seen by all of the students, start up costs are minimal since students with experience using the tools
help their classmates to learn them. As a result, the less experienced class members increase their
proficiency over the whole term.

The instructor should also help to identify the target audience at the school for the visualization
tool. This should be done in collaboration with another instructor so that the students have a ready
set of students who can act as subjects for a practical user study. The decision about the intended
audience is important because it helps the students determine an appropriate test plan and keeps the
level of documentation at an appropriate level. The design with a set of users in mind, as opposed
to their instructor or themselves, is a new idea for most students as they primarily program to

P
age 22.1621.8



satisfy a course requirement in most of their early courses.

When undertaking an open ended and rather extensive system development project, students
need to grapple from the start with developing specifications carefully. In addition, students need to
realize that they must build a system that matches the specification without modifications along the
way to the specification because of problems encountered during design activities or implementa-
tion itself. The usual ad hoc manner of dealing with design problems becomes an issue that cannot
be resolved at the group level but must be filtered through project leaders, mirroring how such
decisions are made in a professional development group. Exercises during the implementation of
the components of the project that include co-mingling code developed by different groups will
demonstrate the strength or weakness of the design being implemented. This emphasis on specifi-
cations can be instilled in groups by requiring black-box testing plans along with the specification.
Once a part of the project is implemented, the black-box testing should be undertaken and the
results should be recorded. When there is a design change or a modification of the specifications,
this level of testing can be used to see if the project is back on track.

3.2 Project Design

Developing specifications and design documents such as UML diagrams for a project is often the
first step in the software process. However, we believe that the students in this course should im-
plement simple, text-based solutions to a couple of graph theory problems before trying to design
the more flexible visualization tool. When the students have implemented two of the topics as
separate classes with independent implementations, they will recognize the commonalities in their
solutions. This provides a clue as to how interfaces for components in graph theory topics should
be extracted or created. It also removes any possible confusion the students may encounter in the
sometimes tedious thinking required to implemented a graphical user interface.

Once the students have tackled the initial challenge of implementing the graph theory algo-
rithms, they must begin thinking about what the users of a visualization for graph theory topics
would want. Presenting choices to the user requires a feature associated with each topic that intro-
duces the topic so the users can determine which topics they would like to explore. For example, in
a previous iteration of the course, the students decided to use a hyperlinked set of screens contain-
ing enough documentation about each topic that the user could get an elementary understanding
of the topic. Implementation details associated with this choice required the students to design
a menu with a large number of listeners waiting to be activated by a mouse click. Because any
design decision the students make for a modern graphical user interface will involve event-driven
programming, the students will naturally encounter the observer design pattern and become famil-
iar with callbacks.4

As with any good user interface, the students should apply consistent interface design across
the varied topics. For example, the same pattern of screens and the same placement of features
should be sought for each topic. When the students have implemented more features, the design
of the interface can be evaluated for clarity and usability. An ideal solution would maintain only
superficial interaction between the graph theory components and the visualization components. In
such a situation, the students will be able to change their interface design to better suit their user

P
age 22.1621.9



base. One feature of robust design is that any one of the topics can be broken away and used
separately without making any changes to the overall system. This is necessary for independent
development of topics by different groups in the class.

3.3 Using Interfaces vs. Abstract Classes

From the definition of a graph, students will quickly determine what methods and data are needed
for a graph class. In terms of data, some representation of vertices and edges will be necessary.
In variants of a simple graph, other information might need to be stored, such as directionality or
weight. General methods associated with a graph will also be apparent. For example, the students
will determine that a graph should be able to determine whether vertices are adjacent. Thus, any
graph object will need to supply a method for answering this question. Beyond the graph itself,
the students will have to provide a class implementation for either vertices or edges. In the past,
students have chosen to provide an implementation for vertices, since edges can be defined as pairs
of vertices.

When writing specifications for an edge or vertex class, the students need to pay special at-
tention to use of interfaces and abstract classes for the implementation. The students will quickly
learn that some form of interface abstraction is necessary to separate the data from the application.
Choosing to use an interface or an abstract class should be left to the students so that they can learn
the advantages and disadvantages each offers. However, for pedagogical purposes, the instructor
should require that at least one topic be implemented using each approach. The minimum cost
spanning tree problem is especially ideal for use of an abstract class since the algorithms all share
the same template. Ultimately, they will find that either option will work, but that their choice
may affect ease of implementation of other components. In prior offerings of this course, students
have chosen to work primarily with interfaces as they felt they created a more visible separation
between the data and the application.

The students find that interface abstraction is useful here because graph theory topics involve
the use of different kinds of graphs. Simple and multigraphs can have the same representation
and are processed the same way. Weighted graphs should behave the same as simple graphs for
problems that do not take into account weights. A digraph can also be converted into a simple
graph by splitting each vertex into a connected input vertex and and output vertex. Thus, a digraph
can be used where a simple graph is expected if an adapter is provided for the digraph objects.

Graphs with more features require class and interface extension, but should maintain a subtype
relationship with a simple graph and its components. For example, a weighted graph should make
use of weighted edges. If both graphs and edges are independent classes, then weighted graphs
need to be used only with weighted edges. Depending on the language used in developing the
project, the students will discover that it is often difficult to define and use such families of types
properly.

P
age 22.1621.10



3.4 Using Libraries

One powerful tool for coding purposes in Java, and most other widely taught/used languages, is
the extensive libraries that accompany them. Since use of libraries is pervasive in professional
software development, the students should be required to use as much functionality from libraries
as possible. This requirement has three additional benefits beyond matching industry best practices.
The first benefit is that students will learn a great deal about writing good interfaces from library
usage. The second benefit is that code from one group will be much more understandable to other
groups if libraries are used. The third benefit is that debugging of code will be easier.

The students should further view the creation of their tool as implementation of a new library
(or set of libraries) specific to graph theory visualization. This analogy extends to viewing their
interfaces as a common language with which to present and discuss their work. It cannot be
stressed enough that all this common language makes it much easier for collaboration on aspects
of a problem. The idea is that the project is not a competition but a learning experience that
is enhanced by collaboration. Common testing protocols for the groups require that a certain
amount of similarity exists among the groups’ software. Use of libraries, and more generally good
teamwork, can be encouraged through in-class exercises that stress components from the libraries.

3.5 Design Patterns

As all software engineers know, design patterns are one of the most effective tools for good object-
oriented software development. However, as an abstraction, this idea does not gain too much
traction with students because they do not see many applications that benefit much from use of
design patterns. With graphs it is very easy to introduce some very useful design patterns. In
particular, the abstract factory and builder patterns are of particular benefit for coding graph theory
applications.

The reason for the value of the builder design pattern is that graph theorists over the years have
developed a myriad of input formats for large libraries of graphs. It is not realistic to expect all
these libraries to be converted to a common format nor is it really necessary for such a conversion to
take place. The builder design pattern handles this problem in an extensible way so that developers
need not worry about using a library with a different format for storing graphs. With the builder
design pattern, the program can look at an input file; identify what format is being used for storing
a graph; and select the the appropriate concrete builder based on that format type. The students
can then write and use a director object that calls the builder methods and returns a graph.

Constructing graphs can be tricky, though, because edge and vertex objects for a graph need
to maintain certain relationships during construction. While a builder is useful for handling the
multiple input formats, it does not really address this issue. In this case, the students will find
use of the abstract factory design pattern to be helpful. An abstract factory will not only allow
the code to remain independent of the actual type of graph being constructed, but will remove any
direct creation and manipulation of vertices and edges which might result in an incorrect graph.
As far as the end programmer is concerned, a graph built by a factory is a list of edges that can
be updated and queried as needed. The students will need to define concrete factories for simple

P
age 22.1621.11



graphs, weighted graphs, and directed graphs.

Since the implementations of the builder and abstract factory design patterns are relatively
straightforward, students immediately see the benefits of interface abstraction. Using these patterns
decouples the difficulty of parsing files and constructing graphs in the implementation. Instead, the
files are parsed by a concrete builder which in turn delegates the hard and tedious work of building
graphs to a factory.

An additional design pattern which is beneficial for a graph visualization tool is the prototype
design pattern. With the prototype design pattern, a graph can be cloned as necessary for use in
many of the (somewhat) destructive graph theory algorithms. Students can also see how prototyp-
ing can be used in combination with the abstract factory to quickly construct graphs via caching or
memoization.

When alternative algorithms are implemented to solve the same problem, the template design
pattern gives structure to the code that makes the implementation more readable. For example, with
the three minimal cost spanning tree algorithms, the students can use the template design pattern
because each algorithm is an instance of a greedy algorithm that follows the same basic outline.
The first step should be to select the next edge to examine, followed by a step that examines the
edge. The final step incorporates selected edges into the solution. For two of the algorithms the
selection step not only chooses a next candidate but chooses a candidate that will be part of the
final solution. In all three cases, the algorithms have three parts that can be defined in a parent
class as abstract methods and, thus, given a different implementation in the concrete subclasses
that correspond to the different algorithms.

There are a number of design pattern textbooks at the appropriate level for students in this
second or third year elective course. Previous offerings of this course have relied on a free on-
line textbook describing design patterns in a Java context can easily be required reading for each
student.2

3.6 A Template for Additional Topics

Since the number of topics that can be included is in no way exhausted by the list given, a clear
description of how to add a feature would make the addition of new topics easier for students
who were not involved in the original development. The students should be tasked with providing
documentation and hooks for additional add-ons to their system that do not require an overhaul
of their original specification. This discussion and its results may include the study of additional
design patterns such as the chain of responsibility and state patterns.

3.7 Test Results

One feature of this project that is not usually part of a course project is realistic testing of at least
part of the software with a typical group of users. The process of using human subjects will often
require the instructor to be certified on campus as qualified to carry out experiments on human
subjects. The students’ part in the testing starts with the decision of what to focus on in the test.

P
age 22.1621.12



The easiest decision at first is to focus on how effectively the user can navigate through the system.
Adding additional questions can focus on the use of color or animation for the display of certain
results. Testing can be viewed more as an iterative process with the convergence of the designer’s
perspective and the users’ perspective being brought together through a series of testing sessions
as the developers gets a better idea of the users’ perceptions.

One feature that is particularly difficult to get right is the level of documentation provided
with help screens or some help feature. Elementary graph theory is a relatively straightforward
subject but most students, and even other faculty who are not regularly involved with the subject,
sometimes have a hard time remembering what all the terminology means and what some of the
outputs represent. The development of help screens is a bigger issue than students typically expect.
Since the tool being developed is designed as a visualization aid, the help screens should contain
adequate illustrations so that the abstractions defined are coupled with a picture. This strategy
for documentation helps with, but does not always overcome, the problem of familiarity with the
material.

3.8 User Manual

As with all large software projects, some form of documentation for the end user is necessary to
accompany its release. The students should prepare a thorough user manual that demonstrates they
know how to explain their tool to the end user. The documentation should show an understanding
that a user manual is different than a design specification in terms of the details provided about
the tool and the level of readership associated with the document. Many tutorials for software
are built around screen captures showing how the software operates. This model works especially
well for visualization tools such as the one described here. In addition, a manual provides an
interesting model for future classes tasked with implementing a similar project. Such a manual can
be developed one topic at a time so that prototype user manuals would be available at the time of
formal user testing.

4 Sample Implementation: Graph Works

A notable implementation of this project from a previous offering of this course is the Graph Works
project. In earlier parts of the paper, certain aspects of the design and implementation of Graph
Works were described as examples of choices the students can make. Some screenshots of this
prototype visualization tool are shown in Appendix A.

The entire tool was accomplished in one semester by two student groups. First year computer
science students in their second computer science course were chosen as the users of this system
and participated in a user study coordinated with the instructor of that course.

Because of the visual nature of the project, it is easy for the students to prepare a poster of their
work for presentation at regional, national, or international levels. In the case of Graph Works, the
students were able to present a poster at the 2010 ACM Symposium on Software Visualization,
which gave them exposure to the wider world of research in software visualization.9

P
age 22.1621.13



5 Conclusion

In this paper, we have described a course in which students develop a large, open-ended visual-
ization tool for graph theory topics. The development of the project enables the students to gain a
deeper understanding of graph theory and its algorithms. Additionally, it provides a natural way
to explore fundamental decisions of the object-oriented software process and common design pat-
terns. Students enhance their understanding of the software engineering techniques introduced in
earlier courses. A real benefit to the project is that students can bring their experience to cap-
stone projects and to future software development opportunities. Since the material covered in
the course is fundamental to nearly all computer science and software engineering curricula, we
believe that the Graph Theory, Algorithms, and Software Engineering course is a viable elective
for any program after students have taken the core introductory classes.

References

[1] T. Baloukas. Javenga: Java-based visualization environment for network and graph algorithms. Computer Appli-
cations in Engineering Education n/a. Wiley Subscription Services, Inc. Hoboken, NJ. doi: 10.1002/cae.20392

[2] J. W. Cooper. The Design Patterns Java Companion. http://www.patterndepot.com/put/8/JavaPatterns.htm,IBM
Thomas J. Watson Research Center.

[3] Fleury. Deux problemes de geometrie de situation. J. de Mathematiques Elementaires. (1883), 257-261.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Publ., 1994.

[5] G. Haggard, J. Schlipf, S. Whitesides. Discrete Mathematics for Computer Science. Brooks Cole Publ.,2007.

[6] S. Hakimi. On the realizability of a set of integers as degrees of the vertices of a graph. J. SIAM Appl. Math. 10
(1962), 496-506.

[7] F. Harary. Graph Theory. Addison Wesley Publ., 1969.

[8] C. Mawata. Math Cove. http://www.mathcove.net/petersen/lessons/index, 1998.

[9] D. Medani, G. Haggard, C. Bassett, P. Koch, N. Lampert, T. Medlock, S. Pierce, R. Smith, A. Yehl. Graph
works - pilot graph theory visualization tool. In SOFTVIS’10: Proceedings of the 5th International Symposium
on Software Visualization. Salt Lake City, UT, October 2010.

[10] T. Naps, J. Eagan, L. Norton. JHAVE—An environment to actively engage students in web-based algorithm
visualizations. ACM SIGCSE Bulletin 32 (2000), 109-113.

[11] R. Baecker. Sorting Out SORTING: A Case Study for Teaching Software Visualization in Computer Science, in:
J. T. Stasko, M. H. Brown, and B. A. Price, editors. Software Visualization, MIT Press, Cambridge, MA, 1997

[12] L. Stern, L. Naish, H. Sondergaard. Algorithms in Action. http://www.csse.monash.edu.au/˜dwa/Animations/index.html,
2000.

[13] B. Thompson, D. J. Pearce, C. Anslow, G. Haggard. Visualizing the computation tree of the Tutte polynomial.
In SOFTVIS’08: Proceedings of the ACM Symposium on Software Visualization. Herrsching am Ammersee,
Germany, September 2008.

P
age 22.1621.14



A Screenshots

P
age 22.1621.15



P
age 22.1621.16


