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Using Logarithms to Test the Solution of a Differential Equation in the Lab 
 

 

Abstract 

 

The mathematical modeling of the damping force on a spring-mass system oscillating in a fluid 

as a linear function of velocity (linear damping) is a simplifying assumption that leads to an 

ordinary and linear differential equation with constant coefficients. This model provides a simple 

means to account for the experimental fact that energy is dissipated during oscillations as the 

moving mass pushes against and displaces the surrounding fluid.  The analytical solution to this 

differential equation is compared with experimental data collected from testing a spring-mass 

system in the open air of a laboratory.  Collected data are analyzed using the concept of the 

logarithms.  It is shown that the model is reliable under special conditions. 

 

Introduction 

 

One way to bring excitement in the use of mathematics in the engineering classroom is to show 

that it can be applied to model physical reality accurately. This paper presents work conceived 

and implemented to test the extent to which an ordinary differential equation and its solution are 

valid for use in actual applications. The equation chosen is commonly used in mathematics, 

physics, and engineering courses
1-3

 

. 

We consider the ordinary differential equation given by 
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where x is a function of time, the dots indicate derivatives of x with respect to time, and ωn

2   and 

ς  are constants that characterize the system.   

 

 
Picture A. Photo of a smooth sphere on a linear spring oscillating in the open air of a laboratory. 
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Eq. (1) can represent the motion of a mass, m, suspended onto a linear spring of stiffness k that is 

oscillating in a viscous medium that has a constant damping coefficient c, as shown in Picture A.  

In these circumstances, ωn is the natural frequency of oscillation of the system defined as  

ωn

k

m
= .    

And ς  is the damping ratio for the motion defined as ς ω
=

c

m n2 .   Then, 

the general solution to Eq. (1), subject to initial conditions shown in Eq. (2), is given by
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Eq. (3) indicates that, when the damping force is proportional to the velocity, as is the case in 

viscous damping, the displacement of the mass is a product of two functions of time: a sinusoidal 

function that is very similar to that found in undamped motion, and an exponential function that 

decreases with time.  The latter indicates that the amplitude attained by the mass decreases 

(decays) exponentially with time while it is oscillating.  In geometric terms, the exponential 

function represents the envelope of the plot of the motion of the mass with time. 

 

When damping could be neglected, it was shown in earlier experimental work that the oscillatory 

motion of a sphere in air was almost perfectly sinusoidal.  Indeed, in this case, the results of 

analysis and those of experiments agreed with a maximum discrepancy of 2.5% 
5

 

.  Therefore, the 

focus in this work is on the effect of damping on the oscillatory motion. 

Analysis suggests that linear damping, as used here, has two effects on the motion of the 

suspended mass: it slows the system down by reducing its natural frequency from the undamped 

value, ωn , to the damped value, ωd . The ratio between the two is shown in Eq.(3b), where  

ς < 1 . 

  

ω
ω ς ςd

n
= − <1 12 , .

                                                                                                            (3b)
 

 
Damping also causes the amplitude of oscillation to decrease exponentially with time. The focus 

of the comparison between analysis and experiment will be on the exponential term, which 

amounts to comparing the mathematical nature of the envelope of the motion obtained in the lab 

with that indicated by the solution to the differential equation, Eq (3). 
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This paper discusses an experiment that was designed to test the validity of Eq. (3) in the 

laboratory.  The experiment demonstrates the extent to which Eq.(3) is a reliable model for the 

oscillations of a mass that is suspended to a linear spring in a laboratory setting when air 

resistance is taken into account. 

 

The remainder of this paper is organized in the following manner: first, we discuss how 

logarithms will be used to test Eq. (3) in the laboratory.  Then, the design of the experiment is 

presented.  Next, experimental data are presented and analyzed using Logarithms in two different 

ways.  Finally, these experimental results are compared to the solution of the differential 

equation itself.  

 

 

Use of logarithms in analysis of data 

 

An important property of logarithms that is often exploited in analyzing nonlinear data is that the 

logarithm of a product AB equals the logarithm of A plus the logarithm of B.  Thus, one can 

write 

 

                                                                                                       (4) 
 

This property is particularly useful when one expects data to vary exponentially, with say, time, 

as is the case in damped harmonic motion.  By taking the logarithms of both sides of the 

equation and changing variables, one transforms the exponential relationship into a linear one, 

which is much easier to analyze. For example, consider the equation 

 

                                                                                                                                     (5) 
 

After taking the logarithms of both sides of this equation, one gets 

 

                                                                                                                   (6) 
 

Letting z = ln(y), one can then think of this as z vs. t, which makes the relationship  

linear.   

 

                                                                                                                          (6a) 
 

A plot of z vs.t alloys one to identify b as the slope of the resulting straight line and the ln(a) as 

its z-intercept.  One solves for a by using the inverse relationship between logarithms and 

exponentials. This leads to 

 

                                                                                                                                  (7) 
 

This type of operation is used routinely in Microsoft Excel to fit an exponential curve to 

experimental data.  This will be illustrated below by using data from oscillating spheres. We will 

fit an exponential function to experimental data two different ways: by using Microsoft Excel 
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and by doing it manually. We will then compare the results to show that they are identical. 

Comparing the term that multiplies ( )cos ω φd t − 0 in Eq.(3) with Eq.(5), it can be deduced that 

X 0  and b
n

= −ςω . 

 

The experiment and collected data 

 

We designed a load cell and used it with computer data-acquisition equipment to collect data on 

a variety of spheres. The test setup, equipment, and procedures pertaining to this experiment 

were detailed in earlier work 
6

 

.  The two spheres that were used for this paper are described in 

Table 1.  A sample set of data is shown in Table 2, where the instantaneous position of each 

sphere is tabulated versus time.  Only data for amplitudes achieved in the upper half plane are 

shown in Table 2. Data in the lower half plane have the same magnitude but opposite algebraic 

signs. This is because the envelope for the motion of the mass is symmetrical about the time axis. 

Table1.  Data on the tested spheres 

Type of sphere Diameter Mass Natural Frequency 

 (cm) (kg) Radians/second 

Metal ball 37.1 0.245 12.87 

Golf ball 40.1 0.055 27.19 

 

In Table 1, we show data for two different spheres: a metal sphere and a golf ball. They were 

suspended to the same linear spring of stiffness k = 40.6 N/m separately and tested one after the 

other.  The metal sphere was suspended from this spring and the resulting motion was studied 

earlier.   It was shown that the ensuing oscillations were essentially viscously damped, with a 

maximum discrepancy between theory and experiment of 5% 
6

 

.  The motion of that sphere is 

being used here as a convenient reference with which that of the golf ball can be compared. 

Table 2. Sample experimental data for two spheres 

 

 

Metal Metal Golf  Golf  

Time(s) x(cm) Log(x) x(cm) Log(x) 

0 1.94 0.662688 1.875 0.628609 

25 1.645 0.49774 1.525 0.421994 

50 1.4 0.336472 1.3 0.262364 

75 1.3 0.262364 1.1 0.09531 

100 1.15 0.139762 0.93 -0.07257 

125 1.01 0.00995 0.775 -0.25489 

150 0.905 -0.09982 0.675 -0.39304 

175 0.875 -0.13353 0.6 -0.51083 

200 0.775 -0.25489 0.55 -0.59784 

225 0.7 -0.35667 0.5 -0.69315 

250 0.65 -0.43078 0.41 -0.8916 

275 0.59 -0.52763 0.375 -0.98083 
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300 0.49 -0.71335 0.35 -1.04982 

325 0.425 -0.85567 0.325 -1.12393 

350 0.375 -0.98083 0.325 -1.12393 

375 0.3 -1.20397 0.3 -1.20397 

400 0.3 -1.20397 0.3 -1.20397 

425 0.275 -1.29098 0.275 -1.29098 

450 0.25 -1.38629 0.275 -1.29098 

475 0.24 -1.42712 0.275 -1.29098 

500 0.24 -1.42712 0.275 -1.29098 
 

     In Table 2, the first column represents the time elapsed since the oscillation started.  In both 

cases, data were collected continuously for 500 seconds.  The second column represents the 

instantaneous positions of the metal ball at the times shown in the first column. These values are 

measured from the position of static equilibrium of the mass while suspended on the spring. The 

third column is the natural logarithms of the positions of the spheres. The fourth and fifth 

columns represent similar data for the golf ball, respectively.    

 

The raw data, position vs. time, from Table 2 are plotted in Fig.1.  It can be seen that, in both 

cases, the amplitude of oscillation of each sphere decreases with time, although in different 

manners.  

 

 

 
 

Fig. 1. Envelopes of the plots of position vs. time for two oscillating spheres 

 

 

Curvefitting Using Microsoft Excel 

 

 An important task that remains to be done is to characterize the nature of these envelopes 

mathematically.  To do that, we used Microsoft Excel to fit an exponential function to each set of 
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data shown in Fig.1. The choice of exponential functions was indicated by the solution of the 

differential equation shown in Eq. (3).  The plots with the fitted curves are shown in Fig. 2, 

where the continuous curves are the predictions of analysis and the discontinuous lines represent 

experimental data.   

 

 

 
 

Fig. 2. Exponential curves fitted to the raw data shown in Fig. 2. 

 

 

 
 

Fig. 3. The ln (amplitude) vs. time with straight lines fitted to the data 
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Curvefitting Using Logarithms  

 

Processed data, log (position) vs. time, from Table 2 are plotted in Fig.3.  It can be seen that, in 

both cases, the logarithms of the amplitudes of oscillation of each sphere decrease with time, 

although in different manners.  We will fit a straight line to each set of data; then determine the 

slope and z-intercept of each line.   To do that, we used Microsoft Excel.  The choice of straight 

lines was indicated by Eq. (6).  The plots with the fitted lines are shown in Fig. 3, where the 

continuous curves are the predictions of analysis and the discontinuous lines represent 

experimental data.   

 

Table 3. Quantities determined using curvefitting of the raw data in Fig. 2. in Microsoft Excel. 

 

Sphere ωn rad s( / )  ωd rad s( / )  a X cm= 0 ( )  b rad s
n

= ςω ( / )  R
2
 

Metal ball 12.912 12.874 1.810 -0.00435 0.990 

Golf ball 27.19 26.982 1.355 -0.00385 0.919 

 

Table 4. Quantities determined using curvefitting and logarithms of data in Fig. 3. 

 

Sphere ωn rad s( / )  ωd rad s( / )  a X cm= 0 ( )  b rad s
n

= ςω ( / )  R
2
 

Metal ball 12.912 12.874 e 
0.593

-0.00435  = 1.810 0.990 

Golf ball 27.19 26.982 e 
0.304

-0.00385  = 1.355 0.919 

 

It can be seen by inspection of the graphs in Fig. 2 and Fig. 3 that the data from the metal sphere 

generated better fits than those from the golf ball.  The experimental values of the coefficients 

found in Eq.(3) that were extracted from those graphs were tabulated in Tables 3 and 4 , 

respectively.  It can be verified, by comparisons, that the two methods yielded the same exact 

values.  Therefore, finding curves to fit data with exponential trends in Microsoft Excel amounts 

to using natural logarithms. 

 

Comparisons: Analysis vs. experiment 

We examined the goodness of the curve fits to our experimental data using the quantity R
2

If at each time t

, the 

coefficient of determination.   

i, a set of experimental data has a measured value yi , we let  be the arithmetic 

average of the measured values yi.  After fitting a curve to the data, at each time ti, there will be a 

corresponding value fi  computed using the mathematical model on which the fitted curve was 

based. A common measure of the departure of the data from the fitted curve is called the 

coefficient of determination, R
2

                                                                                                                  (8) 

, defined by 

In statistics, it measures the match between the data being analyzed and the trend line used to 

represent them; indeed, when R
2
 = 1, it is evident that yi  = fi  , for each i, and the measured data 
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fit the curve perfectly.  The smaller the value of R
2
, the worse the match.  Thus, in this study, R

2

 

 

helps determine the extent to which experimental data conform themselves to what is supposed 

to happen when the damping force is viscous, that is, a linear function of velocity of the sphere.   

Using this coefficient as a measure, it can be seen from Tables 3 and 4 that the data for the metal 

ball match the fitted curve  99%, while for those from the golf ball, such a match is 92% perfect.  

If one considers this coefficient as a statistical measure of accuracy, then, it can be concluded 

that the oscillations of the metal sphere differed from the prediction of analysis by 1%, whereas 

those of the golf ball did so by 8%.  

 

The major parameter in the mathematical model that distinguished one sphere from the other was 

the magnitude of the frequency of oscillations. The frequency of the golf ball was a little more 

than twice that of the metal ball.  We attribute the differences in the behaviors of the two spheres 

to their frequencies of oscillation.  Accordingly, we concluded that our data suggested that, when 

testing spheres in air, the natural frequency of their oscillations is a very important parameter, if 

one expects to observe damping behavior that is viscous.  Furthermore, the data presented in this 

study indicate that, to achieve viscous damping in air, the natural frequency frequencies of  the 

oscillations of spheres should be below 13 radians/s, or 2 Hz.    

 

Conclusions 

 

It is very common to model the free oscillation of a mass that is suspended to the end of a linear 

spring using an ordinary differential equation of second order with constant coefficients, the 

solution to which consists of circular functions. When damping needs to be accounted for, it is 

routine to assume that the damping force is viscous, that is, directly proportional to the first 

power of the instantaneous velocity of the mass.  

 

An experiment was designed and carried out to test the validity of this model for practical 

applications.  The chief purpose was to see the extent to which the mathematical solution is a 

reliable model for actual oscillations of a mass in the laboratory.  The emphasis in this project 

was to examine the effect of the damping term on the solution, because the model that neglects 

damping was tested in previous studies and found to be in excellent agreement with analysis
5

 

.  

Instantaneous positions of a mass suspended onto a spring were collected versus time using a 

sensor that was connected to computer data-acquisition equipment; the envelopes of the plots of 

position vs. time of two different spheres were analyzed using logarithms and compared with 

what was expected from analysis.  Results indicated that the frequency of oscillation has an 

important effect on the extent to which the model matches the actual behavior.  This suggests 

that the damping coefficient is a dynamic parameter that depends on the dynamics of motion in 

addition to the expected dependence on the viscosity of the fluid and the geometry of the 

oscillating object.  Indeed, the research literature in fluid mechanics has shown that the motion of 

a sphere in viscous fluid is a problem that presents researchers with considerable theoretical and 

experimental challenges 
7-16

. The purpose of this work is to show that, under carefully chosen 

circumstances, the simplified concept of viscous damping that is used to model the vibration of a 

mass in a viscous fluid gives results that are in excellent agreement with experiments and that 

logarithms can be useful in that assessment. 
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When the frequency of oscillations was relatively low, the differential equation being 

investigated represented the motion of the mass accurately.  Indeed, at a frequency of 13 rad/s, 

experimental data and the analytical solution to the differential equation itself differed by about 

1%, on average.  However, at a frequency of 27 rad/s, experimental data and the analytical 

solution to the differential equation differed by about 8%, on average. The amplitude of motion 

decreased more abruptly with time during most of the motion at high frequencies, such decreases 

were particularly abrupt at the beginning. 

 

The key finding, however, is that the accuracy of the model varies with the natural frequency of 

the motion at hand. Our experiments suggest that this is due to the fact that the coefficient of 

viscous damping is a dynamic variable rather than a fixed parameter that solely reflects the 

interaction among the viscosity of the fluid, the geometry of the oscillating mass and its surface 

condition. 

Finally, in addition to their use to check the validity of the solution of the differential equation 

shown in Eq.(1), the data included in this paper (Table 2) could also be used in class by 

instructors to demonstrate the process of fitting an exponential function to experimental data as a 

practical use of natural logarithms in physics and engineering. 
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