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Using Neural Networks to Motivate the Teaching of Matrix  

Algebra for K-12 and College Engineering Students 
 

 

Abstract 

 

Improving the retention of engineering students continues to be a topic of interest to engineering 

educators.  Reference 1 indicates that seven sessions at the 2006 ASEE Annual Conference were 

devoted to this subject.  In order to be successful in an engineering program, it is recognized that 

students must have a solid background in mathematics.  Studies have shown that students will be 

more motivated to study and learn mathematics if abstract mathematical concepts are presented 

in the context of interesting examples and applications
2 – 5

.  To become appealing and relevant, 

abstract mathematical concepts should be connected to engineering and real life issues, as 

suggested by the guidelines of ASEE Engineering K-12 Centre
6
.   

 

In two previous papers
7 - 8

 the co-authors have presented methods for improving the teaching of 

important mathematical concepts to K-12 and college level engineering students. In reference 7, 

the co-authors provided a method of teaching the concept of infinity that combines a rigorous 

development of the concept of infinity in freshman level mathematics courses for engineering 

students and an intuitive approach to infinity with hands-on exercises for K-12 students. In 

reference 8, the co-authors developed materials on topics from number theory, essential to the 

field of data security and suitable for K-12 students, as well as for remedial or preparatory 

courses for engineering freshmen.   

 

This paper represents the third part in this continuing project of developing methods for 

improving the teaching and learning of mathematical concepts for engineering students. It 

presents an interesting context in which to teach simple matrix algebra, developing practical 

applications that can be used for both K-12 and college level algebra courses. The main 

application demonstrated in this paper is the design of a character recognition system, using a 

simple neural network. It leads to a series of interesting exercises with practical applications. The 

authors contend that these applications will motivate students to practice matrix operations which 

otherwise may seem tedious and to further motivate them to focus on their mathematics courses. 

 

I. Introduction 

 

The teaching of matrix algebra takes place in a variety of courses.  In K-12, students are typically 

introduced to matrix operations in their second year algebra courses and/or pre-calculus.  In 

college, students come across matrix algebra in pre-calculus, linear algebra, differential 

equations and linear systems courses.  In lower division college mathematics, the widely used 

application of matrix operations is typically the solution of simultaneous equations, based on the 

fundamental idea of viewing a system of linear equations as a product of a matrix and a vector 

(see for example, section 1.4 of reference 9).  

 

It is not until the upper division engineering courses that students see interesting practical 

applications of linear algebra. The standard college textbooks on linear algebra provide 

application models of matrix algebra and linear systems used in economics, computer graphics 
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and electrical circuit design
9-10

. Some of these models are relatively simple, such as the 

Cambridge Diet Formula (see Section 1.9 of reference 9). However, the models that are most 

important for engineering studies require specific knowledge. The mathematical models in 

economics widely use the notions of demand, consumption and equilibrium. The computer 

graphics requires understanding of 2D-3D topology. The mathematical model of electrical 

networks design is based on Kirchhoff's Laws 
9-10

.   

 

Introducing advanced topics of specific disciplines in a basic linear algebra course is a 

complicated task. It raises the issues of what are the applications that generate common interest 

among freshmen, and how much time-consuming advanced engineering knowledge should be 

allowed in a basic mathematical course without hurting freshmen interest. It also brings up the 

fundamental question of what is the meaning and essence of teaching mathematics in a way that 

is attractive and relevant for engineering students. As teachers, we know that often students are 

unable to connect practical matrix applications in upper division engineering courses with the 

basics of linear algebra taught during the first year of engineering studies. There is no doubt that 

we should think hard about how to teach mathematics to engineering freshmen in the most 

appealing and useful way
6
. 

 

In this paper, we present a design of a simple artificial neural network for character recognition 

that exercises basic matrix operations, such as adding and multiplying matrices and finding 

determinants. Artificial neural networks are based on the model of biological neural system, and 

they can be relatively simply explained to non-professionals.  Students will be surprised to learn 

that the simple neural network system they designed can correctly recognize a distorted character 

not recognizable by their own eyes.  The process of designing the network provides useful 

exercises for practicing matrix manipulations in an appealing and relevant way. 

 

Section II of this paper briefly presents the topics in matrix algebra that are needed for these 

exercises. Since our paper is intended to serve the scientific community of mathematicians, 

including K-12 teachers, we feel that some explanation is needed for the terminology and notions 

used in the field of artificial neural networks. These explanations are provided in the next two 

sections. Section III presents the concept of artificial neural networks, and Section IV overviews 

the use of artificial neural networks in designing character recognition systems.  Section V 

details a method for designing and testing the character recognition system, suitable for both K-

12 students and engineering freshmen.  Section VI gives a number of meaningful exercises in 

basic matrix algebra that students can perform based on this design method.  Section VII 

summarizes the paper. 

 

II. Topics in Matrix Algebra 

 

As mentioned earlier, the teaching of matrix algebra takes place in a variety of courses for K-12 

students, and entry-level college students.  These courses provide ideal opportunities to use the 

exercises presented in this paper. Before using these exercises students should be exposed to the 

following concepts related to matrix algebra. 

 

Matrix Definition and Notation:  A matrix is a rectangular array of elements of the form: 
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The first subscript of each element denotes the row and second subscript denotes the column.  

The matrix that has m rows and n columns is said to be an m x n matrix, or a matrix of size "m by 

n". 

 

Matrix Addition and Subtraction:  The sum (difference) of two matrices A and B is written A+B 

(A-B).  Matrices must be the same size to be added or subtracted.  The entries in the resulting 

sum A+B are aij + bij for i = 1 … m and  j = 1 … n. The entries in the difference A-B are aij - bij 

for i = 1 … m and j = 1 … n. 

 

Matrix Multiplication:  Let A be an m x n matrix and B an r x p matrix.  The product of these two 

matrices, AB, is only defined if n = r.  The resulting product C = AB is an m x p matrix in 

which: 

                                        cij = aikbkj
k=1

n

! ;    i=1...m;   j=1...p  

 

Transpose of a Matrix:  The transpose of an m x n matrix A is an n x m matrix, denoted A
T
.  The 

transpose matrix A
T
 has as its rows, the columns of A, or: 
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Determinant of a Matrix:  We use the recursive definition of the determinant. If A is a 2x2 

matrix, its determinant D is given by:  

 

11 22 12 21det( )    D A a a a a= = !  

 

For m > 2, the determinant, D, of an m x m (square) matrix A is given by: 

 

                           
 
D = det(A) = a j1C j1 + a j2C j2 +!+ a jmC jm     j = 1,2,!,or  m  

or 

 

                           
 
D = det(A) = a

1 jC1 j + a2 jC2 j +!+ a
2 jC2 j     j = 1,2,!,or  m  

 

where Cij is the (i, j)-cofactor of A: 
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                                             Cij = !1( )
i+ j
M ij  

 

and Mij is the determinant of the submatrix of A obtained from A by deleting the row and 

column of the entry aij. 

 

Inverse of a Matrix:  If D=det(A) is not equal to zero, the matrix A is invertible. The inverse of 

an m x m (square) matrix A is given by: 
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where Cij is defined above. 

 

Inner Product of Vectors:  The inner product (or dot product) of two vectors, both of length n, is 

given by: 
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Orthogonal Vectors:  Vectors a and b are said to be orthogonal if their inner product is equal to 

zero. 

 

The reader is referred to any standard text
9-10

 that covers matrix algebra for treatment of these 

topics. 

 

III.   Overview of Neural Networks 

 

The human brain consists of clusters of neurons that are interconnected in a biological neural 

system. The strength of these connections is varied as people receive and process information, or 

in other words, learn. An artificial neural network, consisting of interconnected artificial neurons, 

is modeled after humans' neural system. The strength of artificial interconnections is varied as 

we train the artificial neural network to process the received information. In this way, the 

artificial neural network can learn
11-15

.  Throughout this paper, the term "neural network" will 

refer to this artificial neural network. 

 

Neural networks have applications in classification, pattern recognition, and function 

approximation problems.  They are used in communications, aerospace, defense, financial, 

manufacturing, and medical applications.  This paper will focus on an application of neural 

networks in the area of pattern recognition: a simple character recognition system.  

 

The diagram for a single neuron in a neural network is shown in figure 1.  A neuron usually 

receives many simultaneous inputs, that are represented by the input vector of information, p. 

We assume that p is a column vector of length, R, or an R x 1 matrix. Some inputs, i.e. the 
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coordinates of the input vector p, are more important or intensive than others. Each input, i.e. 

each coordinate of p, has its own weight that determines the intensity of the input signal and its 

interconnection strength. A vector of weights, W, is assumed to be a row vector of length R, or a 

1 x R matrix.  As its human prototype, the artificial neuron starts to process this input vector of 

information.  It multiplies the weight vector W by the input vector p, obtains a scalar Wp, and 

adds to it a bias term, a scalar b. The result, a scalar, n = Wp + b, is referred to as the net input 

for a transfer function, f, which then produces the final output scalar, a. 

 

W +

b

p
n

a = f ( Wp + b )f

 
Figure 1.  Single Neuron in an Artificial Neural Network 

 

When we design a neural network for character recognition in section V, we shall use a scheme 

with no bias term b (b = 0), simplifying the explanations of the design process needed for 

freshmen and high school students who do not have any experience or knowledge with neural 

networks. 

 

A variety of functions, f, are used in neural networks depending on the application.  In this paper 

we will utilize the so-called Symmetrical Hard Limit function. This function is denoted hardlims 

and defined as follows: 

 

                                    hardlims(x) =
!1,    x < 0

+1,    x " 0

#
$
%

 

 

Thus the input of the single neuron is an R x 1 matrix p, and its final output is a scalar a = 

hardlims(Wp + b), depending upon whether the result n = Wp + b is positive or negative.   

 

A neural network can contain multiple neurons.  Each neuron receives the same input vector, p, 

but produces a separate output.  A network of S neurons has S outputs and can be represented in 

a manner similar to the single neuron network shown in figure 1. However, the weights are now 

the rows of a weight matrix W of size S x R. Accordingly, b, n, and a become column vectors of 

length S, or S x 1 matrices.  Thus, for an S neuron neural network with input p, we obtain S 

outputs, which are contained in the S x 1 matrix: 

 

                                     a = f ( Wp + b ) = hardlims(Wp + b) 

 

The design of the neural network refers to the process by which the values of W and b are 

determined to optimize the network performance.  The values of W and b that will provide the 

appropriate output for a given input are determined by training the network.  There are many 

methods for training neural networks.  The network in this example is trained using supervised 

learning.  In supervised learning we use a set of input vectors for which the desired output vector 
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is known.  The desired output for a particular input is referred to as the target output, t.  Based on 

these given input/output pairs (p, t) we will find W and b.    

 

IV.  Character Recognition Systems 

 

A character recognition system takes an input that corresponds to a particular character 

(alphabetic, numeric, symbol, etc.). The input characters may be printed or in cursive writing.  

For example, optical character recognition systems are able to identify the characters in 

handwritten or typed images and are used by post offices to read the zip codes on mail.  

Character recognition problems are particularly difficult because of the large number of 

variations that can appear on the input for a particular character. 

 

In this example we want to design a neural network that will recognize the numerical input that 

is applied and output the appropriate character.  Assume that the input characters are formed by 

pixel patterns on a 6 x 5 grid as the numbers 0 – 6 are shown in figure 2. 

 

 

 

 

 

Figure 2.  Numerical Inputs to a Character Recognition System 

 

If the numeral is input to the network with the correct pixel pattern, a properly designed system 

will output that character.  However, if a numeral is input to the system with a deviated pattern 

(say with noise) we would also like for the system to recognize that numeral and for the correct 

numeral pattern to be output.  Figure 3 shows an example of a neural network that correctly 

identifies a  “2” with noise at the input and outputs the correct pattern. 

 

 

 

 

 

 

 

 

 

Figure 3.  A Neural Network that Correctly Recognizes a Noisy “2” 

 

A robust character recognition system will be able to recognize characters with many variations, 

or a significant noise component. For a given system, it is generally true, that if the number of 

characters to be recognized increases then its ability to recognize characters with noise decreases.  

 

 

 

 

 

Neural

Network
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V. Design of a Neural Network Character Recognition System 

 

In this section we develop a simple procedure for designing a neural network to recognize 

numerical inputs described in Figure 2. The method we use can be applied to the design of neural 

networks to recognize other character sets. We start by presenting the problem. 

 

The Problem:  A neural network receives numerals that are presented on a 6 x 5 pixel grid as 

shown in figure 2.  These inputs may be corrupted by noise.  Design a neural network to 

recognize the numeral at the input in the presence of noise and output that numeral with the 

correct pixel pattern on the same 6 x 5 grid. 

 

Input Vectors:  As stated in section III, the input to a neural network is a column vector.  In order 

to describe the numeral inputs we need to form this column vector.  In the case of the 6 x 5 

patterns, since there are a total of 30 pixels in each numeral we will use a vector of length 30. A 

1 in the vector will represent a black grid square and a -1 in the vector will represent a white grid 

square.  The 6 x 5 grids will be traversed from left to right and top to bottom to form a column of 

1s and -1s to apply to the neural network.  For example, the numeral “0” is represented by the 

vector p0 as shown in figure 4.  Note that throughout this paper many of the vectors and matrices 

are shown as transposes to save space. 

 

p0 = [ -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
         1,1, -1, -1, -1, 1,1, -1, -1, -1, 1,-1, 1, 1, 1, -1 ]T

 
Figure 4.  Representation of a “0” as an Input Vector (shown as a transpose)  

 

Creation of Training Set:  The training set refers to the set of known input vectors paired with 

their target output vectors (p, t).  In this problem if a “0” is input we want a “0” to be output, or 

we have a training pair (p0, t0) where p0 and t0 are both defined as shown in figure 4.  Similarly 

we can create a training pair for each input that we want the network to recognize. 

 

Hebb Rule:  The heart of the design of neural network is to find the values of the W and b 

matrix/vectors.  There are many methods for determining these values, or training the network.  

The training method selected is based on the particular application of neural networks.  In the 

case of pattern recognition Hebbian Learning is often used.  Within the learning rules that are 

categorized as Hebbian Learning, the best known is the Hebb Rule, introduced by Donald Hebb 

in 1949. The Hebb Rule is surprisingly simple: if a neuron receives an input from another 

neuron, and both are highly active (i.e. have the same sign), the interconnection between the 

neurons (i.e. the weight) should be strengthened.  

The simplicity of Hebb Rule makes it attractive for working with high school and other students 

who do not have any experience or knowledge of neural networks.  The Hebb Rule uses no bias 

vector, which means that in figure 1, b = 0, and the final output a is given by: 
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a = f ( Wp ) = hardlims(Wp ) 

 

The weight matrix is found using the formula
11

: 

 

                                                                 W = TP
T
 

where 

 

                 T = matrix with target vectors as columns 

                 P = matrix with input vectors as columns 

 

We begin with a system that will recognize the numerals “0” and “1” only.  Thus, we have two 

input/target pairs.  Corresponding to the “0” we have the value of p0 shown in figure 4.  The 

target vector, t0 = p0 since we want the output to display the letter that is input.  Corresponding to 

the “1” shown in figure 2 we have: 

p
1
= t

1
= [!1,1,1,!1,!1,!1,!1,1,!1,!1,!1,!1,1,!1,!1,!1,!1,1,!1,!1,!1,!1,1,!1,!1,!1,!1,1,!1,!1]

T

Thus, the P and T matrices are given by: 
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Now that P and T have been determined we can find the weight matrix W using the formula 

shown above.  Note that T is a 30 x 2 matrix and P
T
 is a 2 x 30 matrix.  Thus, the multiplication 

is defined and the resulting W matrix will be 30 x 30, or: 
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T
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In addition to providing practice with matrix multiplication, this provides students with an 

opportunity to think about the sizes of the matrix and verify that the multiplication is defined. 

 

Testing the Neural Network Performance:  We begin testing the neural network by applying the 

0 and 1 without noise.  Applying the input vector p0 we obtain an output: 

 

                                                a = hardlims(Wp0) 
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which we find to be equal to the target vector t0.  Similarly, we find that if we apply the p1 

vector, as an input the t1 target vector is output.  Again the student will have a chance to practice 

matrix multiplication. 

 

These calculations confirm that the neural network recognizes the inputs without noise.  Next, 

we want to see how well it recognizes the two inputs in the presence of noise.  For example, say 

we apply the “0” with five pixels that have been reversed as shown in figure 5. 

 

 
Figure 5.  A “0” with 5 Reversed Pixels 

 

If we form an input vector, p05 corresponding to this noisy “0” and compute the output we find 

that the output vector is exactly equal to the vector representation of the noiseless “0”, or a = t0.  

In other words, the neural network is able to correctly detect an input in the presence of five 

pixels of noise and output the target vector, t0 correctly.  

 

As we continue to increase the number of pixel errors and test the network we find that for up to 

eight pixel errors, or over 25% of the pixels in error, in either the “0” or the “1” the neural 

network correctly outputs the target vector.  For example, the noisy “1” shown in figure 6 has 8 

pixel errors.  It is barely recognizable as a “1” to the human eye yet the neural network is able to 

correctly detect it.  

 

                                                                 
Figure 6.  A “1” inputs with 8 Pixel Errors 

 

If the number of pixel errors is increased to nine or more the neural network begins to produce 

incorrect outputs.  As the number of pixel errors increases the probability of error increases.  

Testing the neural network can provide many matrix multiplication problems for a class of 

students. 

 

Testing the Capacity of the Neural Network:  Thus far our neural network has only been 

designed to detect two numerals.  We would like to increase the capacity of the network so that it 

can detect a larger number of numerals.  We can repeat the procedure described above for the 

complete set of seven numerals (0 – 6) shown in figure 2 and repeated in figure 7.  The 

procedure is the same.  All that changes is the sizes of the vectors and matrices.  Now the P and 

T matrices each have seven columns (30 x 7).  The resulting W matrix is still 30 x 30.  Once W 

has been determined we test the system by applying each of the seven digits without noise.  The 

Neural 

Network 
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outputs shown in figure 7 are found in this case.  Note that only three of the numerals are output 

correctly (1, 3, and 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Inputs/Outputs for Neural network with Seven Numerals 

 

An analysis of the Hebb Rule
11

 shows that it only works perfectly for input vectors, p, that are 

orthogonal.  This gives students an opportunity to check and verify that the seven input vectors 

used here are not orthogonal.  For example: 

  

                                         p
0
!p

1
= 0  

 

Thus, the vectors represented “0” and “1” are orthogonal.  This is expected since the network 

recognized the “0” and “1” inputs in the two numeral case.  However, 

  

                                           p
0
!p

2
= 6    

 

Thus, the “0” and “2” vectors are not orthogonal.  This (and other examples) may explain the 

error in the expanded system. 

 

Pseudoinverse Rule:  A modification of the Hebb Rule has been found that improves the 

performance of the character recognition system in the case of non-orthogonal input vectors.  

This method is called the Pseudoinverse Rule.  In addition to improving system performance this 

new rule provides another excellent opportunity for students to practice matrix algebra. Using the 

Pseudoinverse Rule, the weight matrix W is found using: 

 

                                      W = T*P
+
 

where 

                                    P+ = PTP( )
-1

P
T  

P+ is known as the Pseudoinverse matrix
11

.  For the character recognition system with numerals 

0 – 6, the P+ matrix is found to be: 

 

inputs 

outputs 
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and  

 

W = TP
+
=
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Testing the neural network with the p0 – p6 input vectors into this new W matrix we find that the 

outputs correspond correctly to the target vectors as shown in figure 8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Neural Network Inputs and Outputs Using Pseudoinverse Matrix 

 

This neural network can now be tested to see how well it responds to inputs with noise.  Figure 9 

shows an example of inputs with five pixel errors in each numeral input.  The outputs 

inputs 

outputs 
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corresponding to the 0 – 3 numeral inputs have no errors.  The outputs corresponding to the 4 - 6 

numeral inputs have only one pixel error each. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Outputs Corresponding to Inputs with Five Pixel Errors Each  

 

Further testing will show that as with the first case the probability of error increases as the 

number of pixel errors increases and/or the number of numerals being stored by the network 

increases. 

 

VI.  Exercises for High School and College Students 

 

Repeating the calculations performed in the design example of Section V will provide students 

with practice in matrix multiplication.  This section contains other exercises that can be used to 

further motivate students to practice matrix manipulations.  Simple exercises such as those found 

in 1 – 3 below may be more appropriate for K – 12 students, while exercises 4 – 5 provide 

additional challenges for more motivated college students. 

 

Exercise 1 - Testing the System:  For the system designed in section V we would like to check 

the occurrence of error for each character as the number of pixel errors is varied from zero to 30.  

Begin with a system that is designed to recognize only two numerals (0 and 1).  Apply each of 

the two inputs with varying numbers of pixel errors and observe the output.  For each case vary 

the position of the pixel error.  Students can use a calculator or existing software, or even write a 

program to repeat these calculations.  Repeat the tests for systems that recognize more than two 

numerals.   

 

Exercise 2 - Increasing the Character Set:  Repeat the design performed in section V for more 

than seven numerals.  How many characters can the system recognize? 

 

inputs 

outputs 
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Exercise 3 - ABC Character Recognition:  Design a neural network to recognize the letters A, B, 

and C.   

 

Exercise 4 – Alternate Character Sets:  Have students create their own character set by writing on 

a grid.   Design a character recognition system for this new character set. 

 

Exercise 5 - Create an orthogonal character set:  Modify the character set in exercise 3 so that the 

characters are orthogonal.  Compare the performance of this system to the one in exercise 3. 

 

 

Many similar exercises can be created.  Once a student understands the concepts they may invent 

their own exercises. 

 

VII.  Summary and Conclusions 

 

This paper represents the third part in a continuing project of developing methods for improving 

the teaching and learning of mathematical concepts for engineering students.  The focus of this 

paper is on teaching basic matrix operations and applying them to design a simple neural 

network for character recognition.  The procedure for carrying out this design is presented, and a 

number of exercises that can be performed by college freshmen and advanced K-12 students are 

given. The authors contend that these applications will motivate students to practice matrix 

operations which otherwise may seem tedious, and to further motivate them to focus on their 

mathematics courses.  The educational philosophy behind the methods and applications 

presented in this paper is based on the "computation-to-abstraction" sequencing of teaching 

linear algebra to engineering students, as opposed to the "abstraction-to-computation" 

approach
16

.  

 

Regarding K-12 students, the authors suggest that a collaborative effort of experienced teachers 

in biology, physics and mathematics is required to produce good results and to benefit the 

students.   

 

The authors are now testing the practice of teaching the concept of infinity, as described in 

reference 7. In the upcoming years, the authors will be testing the ideas of teaching the topics of 

number theory, presented in reference 8 and relevant to data security.  In the sequel, the authors 

will test the methods and exercises described in this paper, to assess their effect on student 

learning.  
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