
 Session 1520

Using Pre-Built Program Templates to Teach Numerical

Methods

David L. Silverstein

University of Kentucky

Abstract

Most engineering programs require students to learn some form of structured

programming early in their curriculum, but in many cases, students do not use their newly

acquired programming skills again. While outside of computer-related majors there may

not be a need to maintain programming skills, programming is still an effective way to

make certain that students understand how a numerical method is arriving at a solution.

A method called “template-based programming” was developed to enable use of high-

level computer languages in courses where programming is not explicitly part of the

course objectives. In this method, a student is given a fully functioning program, or

template, that only lacks the functional code for a numerical method to solve a particular

type of problem. Since the work of developing the interface and other portions of the

program has been completed for the student, all they need to concentrate on are the

aspects of the programming project that contribute toward the course objectives.

Examples of how this approach has been used in numerous chemical engineering courses

will be presented, including templates developed in Compaq Visual FORTRAN,

Microsoft Visual Studio.NET, and Microsoft Excel.

Introduction

In the University of Kentucky chemical engineering curriculum, students are required to

take a course in computer programming prior to taking their first “core” chemical

engineering course. Subsequent to that course, it is possible that a student will never to be

required to write a complete program from “scratch” again. This makes some sense in

chemical engineering and other disciplines where greater than 90% of practitioners never

program in a high-level language.
1

Computer programming concepts in some form are still required according to

Accreditation Board for Engineering and Technology (ABET) criteria.
2
 While most

curricula still require high-level languages such as C, C++, and Visual Basic,
3
 an

increasing number of programs are choosing to teach scripting languages within

mathematics applications such as Maple, MATLAB, and Mathematica.
4

Even though most practicing engineers will not program, it is often argued that

programming is an effective means of teaching problem formulation and problem

P
age 9.1385.1

2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

solving.
5
 Programming languages are “a novel formal medium for expressing ideas

about methodology.”
6
 Other researchers have presented counterarguments to that

premise.
7
 Nonetheless, the ability to develop a computer application is not a pre-requisite

for most jobs, and typically is not required to meet course objectives outside of the

programming course.

Since programming is still taught, students have a valuable skill that can be utilized to

achieve course objectives. A course involving numerical methods is a good fit for

programming assignments, but asking students to develop a computer application

requires substantial time commitment to activities outside course objectives. Students

enrolled in a thermodynamics course should spend their time pondering the meaning of

entropy instead of manipulating FORMAT statements. This paper describes the most

recent extensions of an approach demonstrated to allow focus on course objectives while

using computer programming, “Template-Based Programming”.
8,9

Template-based programming refers to the practice of providing students a completely

functioning application that compiles and displays an operational dialogue window

immediately upon retrieval from a class web site or other source. The only element

lacking from the program is the code from whatever routine is designated to perform the

required calculations. Typically, this is code for a numerical method acting upon inputs

provided by the user in the dialogue box. This differs from modifying existing programs

or scripts in that students still start from a blank file (except for comments) and generate

all required logical steps themselves instead of altering existing code. Clever students can

alter existing code without understanding the underlying logic in an algorithm. Students

are responsible for all elements requiring assessment under the course and project

objectives.

Previous publications
8,9

 have described the use of templates in Compaq Visual

FORTRAN and Microsoft Visual Basic. This paper describes the development issues

associated with those templates as well as new ones developed using Visual Basic for

Applications running under Microsoft Excel.

Use of Templates

At the time of writing, templates have been used in courses in stoichiometry and process

modeling. Both have course objectives associated with numerical methods.

The process modeling course has used two templates. The first is an exercise in

establishing a value for the machine epsilon, the smallest value that can be distinguished

from 1 by a computer. This serves as an introduction to the process of using these

templates as well as emphasizing a key point about the limits of computer-based

calculations. This template has been developed in both FORTRAN and Visual Basic in

order to be available to students having taken courses in either language. Figure 1 shows

the dialogue included in both the FORTRAN and Visual Basic Templates. Figure 2

P
age 9.1385.2

3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

shows the contents of the module students are instructed to “fill in” to complete the

program.

The second template requires the student to implement Gauss-Siedel iteration for a

system of linear equations. To date, this has only been implemented using FORTRAN, as

shown in Figure 3. A version of the template functioning in Visual Basic for Applications

within Excel is currently under development. The programming assignment reveals to

students how well they know (or do not know) how to use nested DO loops.

In the stoichiometry class, students are expected to use a root-finding technique to solve a

cubic equation of state. Three versions of this template have been used, two of which

were described previously. Both the Visual Basic and FORTRAN versions of the

template require the students to use Newton’s method to solve for an unknown amongst

temperature, pressure, and specific volume using the Soave-Redlich-Kwong equation of

state. The dialogue generated is shown in Figure 4. The most recent version of the

template combines a Microsoft Excel Spreadsheet template to calculate parameters for

the Peng-Robinson equations of state; the student then works with a Visual Basic for

Applications (VBA) template to solve for compressibility using Newton’s Method.

Figure 5 shows a portion of the Excel spreadsheet including a “button” which activates

the VBA routine, shown in Figure 6.

Developing Templates

The choice of what environment to use to develop templates should be dependent on the

language in which students have prior instruction and experience. Since the point of this

approach is to minimize time spent away from course objectives, it would be counter-

productive to teach extensively about a new language or environment. Additionally, there

are challenges associated with each language which should be considered by the person

preparing the template.

Compaq Visual FORTRAN is the most challenging environment amongst these three in

which to prepare a template. This environment, more akin to Visual C/C++ 6.0 and

earlier versions than the current .NET environment, requires understanding of how to

develop and interface with non-trivial user dialogues. It would be easier for most non-

professional programmers to attempt to modify existing programs to suit their needs,

though even this approach requires a substantial time investment. While FORTRAN is an

excellent language in which to write numerical algorithms, this particular implementation

of the language is a non-ideal platform for application development. More recent

implementations by Lahey make this portion of template development much easier for

the visual programmer.
10

 Other issues that arise are project source file paths which may

not automatically update when files are transferred from the developer’s computer to the

student’s; incompatibilities between versions of the compiler (in particular, improved

error checking in later versions); and compatibility issues on lab computers when more

current versions of other application development environments are installed.

 P
age 9.1385.3

4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Visual Basic has from its beginning been a relatively easy way of developing applications

which function well under Microsoft Windows. Templates are also easy to develop

under VB, though there is one issue that often arises. Issues of variable scope are often

encountered since the template approach recommends that the student’s work be self-

contained in its own module. These issues are most directly addressed by making

important variables global, abandoning any pretense of following best practices in object

oriented application development.

Both of these environments suffer from one flaw. While the program developed is useful

to the student and does facilitate achievement of project objectives, it passes up the

opportunity to develop a skill that would actually be used in a workplace environment.

Students can solve very interesting and complex problems using Maple, Mathcad,

Matlab, or Mathematica. They can even develop sophisticated applications using an

application development environment of some sort. When they enter most plant

situations, however, they will likely not have these resources available to them. They

will, in most cases, have access to Microsoft Excel, which has VBA available to them.

Teaching students to implement their numerical methods as an extension to Excel not

only maintains the focus on course objectives, but enables them to perform similar

functions later in any work environment in which they may find themselves.

The most recent template-based project combined elements of spreadsheet

“programming”, taught in an introductory class, as well as VBA programming, building

off concepts taught in a programming course. Several types of programs are possible

using VBA under Excel, including macro automation, custom functions, and custom

subroutines. The latter two are of interest for numerical methods. The function approach

enables access to a numerical routine which behaves in the same manner as an intrinsic

function such as SIN(). It takes inputs from the values or references in the argument list

and returns a single value (or an error message). A function cannot alter any cell in the

spreadsheet other than the cell it contains. A subroutine can alter any property of the

spreadsheet, including values, formulae, and formats. For iterative calculations, it will

often make more sense to use a subroutine for a program to remain general purpose,

while a function is an elegant approach to many common solution methods.

Summary

The use of programming templates to facilitate use of high-level languages to teach

numerical methods is presented. Templates enable focus on project and course objectives

while still taking advantage of the pedagogical benefits of programming. The currently

preferred platform is Visual Basic for Applications under Microsoft Excel, building on

student instruction in both Excel and Visual Basic. Students demonstrate algorithmic

understanding by programming, and build their skills with a software tool with near-

universal availability. Other environments, including Compaq Visual Fortran and Visual

Basic have programming issues which can be overcome with some programming skill

and investment of developer time. The template product, regardless of the development

P
age 9.1385.4

5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

environment, is useful for enabling focused instruction in numerical methods. All of the

templates described in this paper are available on the author’s web site.
11

References

1
 Davis, J., Blau, G., & Reklatis, G.V. Computers in undergraduate chemical engineering education: A

perspective on training and applications. Technical report, CACHE Corporation. Draft 3.1. (1993).

2
 Criteria for Accrediting Engineering Programs, Accreditation Board for Engineering and Technology,

Inc., Baltimore, MD (2002). URL: http://www.abet.org/

3
 URL: http://www.che.utexas.edu/cache/survey.html; CACHE: Survey Results

4
 Dahm, K.D., Hesketh, R.P., and Savelski, M.J., Chem. Eng. Ed., 36, p. 192 (2002).

5 Stephanopoulos, G. & Han, C. Languages and Programming Paradigms. In B. Carnahan (Ed.),

Computers in Chemical Engineering Education, Austin, Texas: CACHE Corp. (1996).

6
 Abelson, H. and Sussman, G., Structure and Interpretation of Computer Programs, Cambridge, MA, MIT

press (1985).

7
 Urban-Lurain, M. and Weinshank, D.J., “Do Non-Computer Science Students Need to Program?”, J. Eng.

Ed., 88, p. 535 (2001)

8
 Silverstein, D.L. “Template Based Programming in Chemical Engineering Courses”. Proceedings of the

2001 ASEE Annual Conference & Exposition. American Society for Engineering Education, (2001).

9 Silverstein, David L., “Increasing Time Spend on Course Objectives by Using Computer Programming to

Teach Numerical Methods”, Chem Eng Ed., 37, p. 214 (2003)

10 URL: http://www.lahey.com/; Lahey/Fujitsu Fortran v7.0

11 URL: http://www.engr.uky.edu/~silverdl/TBP

DAVID L. SILVERSTEIN

David L. Silverstein is currently an Assistant Professor of Chemical and Materials Engineering at the

University of Kentucky College of Engineering Extended Campus Programs in Paducah. He received his

B.S.Ch.E. from the University of Alabama in Tuscaloosa, Alabama; his M.S. and Ph.D in Chemical

Engineering from Vanderbilt University in Nashville, Tennessee; and has been a registered P.E. since 2002.

He has over twenty years experience in microcomputer programming, most recently in development of a

prototype automatic custom videotape editing and production device. In addition to teaching and research

in interfacial phenomena, Dr. Silverstein is developing a computer framework for applying learning styles

to a multimedia computer-based supplement to engineering courses.

P
age 9.1385.5

6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Figure 1. Dialogue boxes for machine epsilon calculator templates in FORTRAN

(above) and Visual Basic (below). Some differences arise from development choices to

simplify formatting of output data.

P
age 9.1385.6

7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Public Module EpsilonCode

 'Routine to actually run the epsilon determination calculations

 '

 'It accepts its start value and stepping factor from the dialog

 'It must return the value of epsilon and the number of iterations

 'Minimal error checking is performed

 Public Sub EpsilonCalc(ByVal StartValue As Double, ByVal

SteppingFactor As Double, ByRef Epsilon As Double, ByRef Iterations As

Double)

 'The following variables initialized from the form are available

to you.

 ' StartValue = a double precision real value

 ' SteppingFactor = a double precision real value between 0 and 1

 '!You must specify values for the following two variables before

 ' exiting the subroutine so the form can be updated

 'Epsilon = a double precision value indicating the machine epsilon

 'Iterations=an integer indicating the number of times your

calculation looped before finding the answer

 'For an added challenge, make the stop button allow you to exit

the subroutine!

 'YOUR CODE STARTS HERE

 'YOUR CODE ENDS HERE

 End Sub

End Module

Figure 2. Visual Basic module which students complete to implement the numerical

method. The solution for this calculation is about 6 lines of code. Note that the

comments inform the student regarded the variables used to access dialogue box

variables.

P
age 9.1385.7

8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Figure 3. Dialogue for solution of a system of linear equations under Compaq Visual

FORTRAN. The data entry method is somewhat awkward and could be improved by

using a grid interface such as a spreadsheet (coming February 2004).

P
age 9.1385.8

9

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Figure 4. Dialogue for SRK calculator under Visual Basic.

P
age 9.1385.9

10

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Figure 5. Spreadsheet used to calculate coefficients to populate the Peng-Robinson

equation of state. Students were expected to program all cells highlighted in red. Yellow

cells represent inputs to a simulation run. The green cell highlights the value to be

calculated by the VBA subroutine. About 70% of the spreadsheet is visible.

P
age 9.1385.10

11

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ø 2004, American Society for Engineering Education

Figure 6. VBA module containing the subroutine called by the button on the spreadsheet

and the function that it calls. The reason for the multiple levels of code was to isolate

student code from the Excel generated response to the click event. A function could not

be used alone in this case since the routine will need to evaluate updated values of the

function to be solved and its derivative, which require that the spreadsheet be modified

during the program execution. Other approaches would have reduced the general

applicability of this Newton’s method solver.

P
age 9.1385.11

