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Abstract

SIMULINK is a graphical user interface (GUI) to MATLAB for solving ordinary differential 
equations (ODE’s).  It is normally used as an analytical tool but may also be used as a design 
tool.  This paper describes how to use SIMULINK from within the MATLAB environment to 
determine a target value for a design variable.  This technique is applicable for use in a design 
course or in a numerical methods course, as well as for engineering practitioners.

Building a model in SIMULINK may be accomplished by following a process consisting of four 
distinct stages. These stages are model development, model definition, model analysis, and 
model verification.  Model development consists of developing a mathematical equation that 
describes in some manner a physical phenomenon.  Model definition consists of building the 
model in SIMULINK.  Model analysis consists of running the program to get a solution.  Model 
verification consists of making the assessment of whether the answer from the computer is right 
or wrong.  This paper describes how to use this process to create a dynamic simulation of a 
falling skydiver.  

Once the designer has a model describing the behavior of the system, it is often necessary to 
determine engineering targets for various parameters of the design.  Designers frequently need to 
make trade-offs among competing design parameters affecting system performance.  Thus, the 
designer must have a tool to predict how changing a particular design parameter will change 
system behavior.  This paper concludes with a description of how to determine the optimum 
value of drag coefficient for the deployed parachute for the simple skydiver model in the case 
where we cannot solve for the design variable directly.

Introduction

SIMULINK can be viewed as a graphical user interface (GUI) to MATLAB for solving ordinary 
differential equations (ODE’s).  In English, this means that SIMULINK is a way of getting 
solutions to ODE's from a computer using a programming language called MATLAB without 
having to write actual code.  This situation is very similar to Windows.  Windows is a GUI to 
DOS and when using Windows one normally does not have to type any actual DOS commands.  
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Building a model in SIMULINK is done in four distinct stages1.  We will use this process to 
create a dynamic simulation of a falling skydiver.  These stages are:

a. Model Development
b. Model Definition
c. Model Analysis
d. Verification

Analysis Problem

When a skydiver experiences a complete parachute malfunction, how much time does he or she 
have to take action before impact with the ground during a jump from 500 meters?  Plot position 
versus time.

Model Development 

Model development consists of developing a mathematical equation that describes in some 
manner a physical phenomenon.  In many ways developing the model is the most challenging 
part of solving the problem.   Often this is done once by some brilliant engineer and then 
modified to fit particular situations.  The example we will use will be that of a falling body.  
Newton was the originator of the differential equation we will be solving.  Specifically this ODE 
describes a falling body acting only under the forces of gravity and drag.  If we assume the 
ground is the origin and up is the positive y direction, the equation looks like2:
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where y represents displacement, g is the gravitational constant, c is the constant drag coefficient 
(12.5 kg/s), and m is the mass (70 kg or 154 lb for the skydiver). 

Equation (1) is a simple one-degree-of-freedom model of a body acting under the influence of 
(constant) gravity.  The power of SIMULINK lies in the fact that it can be used to model much 
more complex systems such as multiple-degree-of-freedom systems with variable parameters 
(like changing mass).  A detailed discussion of the modeling process is beyond the scope of this 
paper.  The interested reader is referred to references [3] and [6].

Model Definition 

Model definition consists of building the model in SIMULINK.  The steps required here are to:
a. Start SIMULINK.
b. Arrange the equation correctly.
c. Setup the equation in SIMULINK.
d. Establish initial values.
e. Document the model.
f. Verify the model definition.
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We will not cover the details of building the SIMULINK model here.  A brief description is 
included at Appendix A.  Several good tutorials are available, including one at the Mathworks 
web site3.

To arrange the equation correctly, solve for the highest order derivative in the equation.  For our 
example, the equation would look like:
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−−=                                                        (3)             

These two equations are ODE’s with constant coefficients and we can solve them in closed form.  
The solution for Equation (1) is made up of the complimentary and particular solutions of a 
second order ODE.  The complimentary solution depends on the roots of the characteristic 
equation

02 =+ r
m
cr                                                            (4)

and the particular solution depends of the forcing function, the constant g.  The total solution to 
Equation (1) is
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and the solution4 for Equation (3) is
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The solutions to Equations (1) and (3) will allow us to verify our SIMULINK model.  In a more 
complex situation, we might be unable to obtain the closed form solution.  In such a case, model 
verification is a more complex problem.

Notice that this problem can be represented either as a first or second order ODE.  We could 
solve the first order ODE numerically using Euler’s method or some other numerical technique.  
(In fact, this is exactly what SIMULINK does.)  Setting up the second order equation in 
SIMULINK allows us to model both the position and velocity of the falling skydiver.  We create 
the model by opening various categories of blocks available in the block library, dragging them P
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into the file window, and hooking them together.   A SIMULINK model to solve Equation (1) is 
shown in Figure 1.

Model Analysis 

Using a 4th and 5th order Runge-Kutta solver with adaptive step size, we ran the model for 20 
seconds and obtained the results plotted below for velocity (Figure 2) and displacement (Figure 
3).  The results show that the skydiver would reach the ground in about 14 seconds with a speed 
of 50 m/s.  The acceleration plot (not show) indicates that the skydiver has not reached terminal 
velocity but is still accelerating slightly.  The key question now is whether we should believe the 
results of the SIMULINK simulation.

Yddott

Model of a falling skydiver

12.5/70

c/m

s

1

Ydot(t)
s

1

Y(t)

XY Graph

-9.81

Gravity
Displacement (m)

Clock

Acceleration (m/s^2)
Velocity (m/s)

Figure 1.  Model of the Falling Skydiver (asee_jumper)

Verification 

Verification is where engineers earn their pay. It is the step that separates the real engineer from 
the computer operator. Basically it consists of making the decision of whether the answer from 
the computer is right or wrong.  Many techniques exist for doing this ranging from 
rationalization (i.e., does it look right and, if not, why?) to running the problem on a different 
program, to making additional assumptions that simplify the model allowing approximate 
answers, to doing experiments.  Verification is vital and without it all the work to this point is 
just pie in the sky.
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Figure 2: Velocity Results

Figure 3: Displacement Results
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In this case, the closed form solution for velocity is shown at Equation (6).  Substituting in the 
given parameters for c, m, and g and looking at 10 seconds we see that the analytical solution 
yields a speed of 45.72 m/s.  The SIMULINK model predicts a velocity of 45.72 m/s*.  See 
Figure 4.  The displacement is given by Equation (5).  At 10 seconds it gives a value of 206.7 m.  
The SIMULINK solution predicts the same displacement.  Thus, we can have confidence that the 
SIMULINK model is reasonably accurate.

Analysis Problem Solution

We are now in a position to answer the question posed earlier.  We assume that the skydiver 
must be at least 100 m above the ground in order for the reserve chute to deploy successfully and 
slow the jumper to a new terminal velocity.  By zooming in on the SIMULINK scope for 
displacement, we see that the skydiver will reach 100 m in about 12.25 s – not a lot of time.  See 
Figure 5.  (This helps explain the need for skydivers to be well trained in emergency procedures!)

Figure 4: Close-up of Velocity Results

* There is no discrepancy between the two solutions out to seven significant figures. P
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Design Problem

Analysis is an important part of the design process.  Analysis allows the designer to predict the 
performance of a system based on the values of various operating parameters.  Often, however, 
the designer needs to set engineering targets for design variables.  For example, the engineer may 
try to achieve specific values of speed, acceleration, and fuel economy by varying weight, drag 
coefficient, and engine power.  In this case, the designer needs a way to determine the optimum 
values for these design variables.  

We will now look at the effect of changing the drag coefficient on the terminal speed of the 
skydiver.  Clearly, there is an upper limit on the safe landing velocity of the skydiver.  What drag 
coefficient must the deployed parachute have to achieve this speed?  

Equation (6) describes how the velocity changes as a function of time and drag coefficient.  
However, we cannot solve Equation (6) for c5.  We cannot use Equation (6) directly to find c
given v.  We need another way to find the optimum value for the drag coefficient.

Figure 5: Close-up of Displacement Results

The most straightforward way to answer this question is simply to assign values to the drag 
coefficient, c, in the SIMULINK model, run the model, and observe the predicted final velocity.  
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If that velocity is too high, increase c and try again.  In a more complex situation, it may not be 
obvious what the effect of design variables will be on system performance.  Alternatively, there 
may be several design variables to be considered.  In either case, it would be helpful to be able to 
automate the process.

Since SIMULINK works inside MATLAB (and, in fact, writes MATLAB code) we can use 
MATLAB to control our SIMULINK model and search for an optimum value based on whatever 
criteria are appropriate.

There are several ways to do this optimization procedure.  One way is to use the Optimization 
Toolbox 6 found in MATLAB.  This procedure is discussed in reference [6].  Another method is 
to write our own simple optimization routine.  We will look at a way to do the latter.  (An 
instructor in a numerical methods course might have their students solve this problem as an 
exercise, for example.)

Suppose the maximum safe landing speed for the skydiver in this problem is 3 m/s.  To achieve 
this terminal velocity, we must increase the drag coefficient of the parachute (presumably by 
making the parachute larger.)  However, larger parachutes cost more and are heavier, so we want 
to find the drag coefficient that gets us as close to 3 m/s as possible.  We first need to bound the 
problem.  Using our SIMULINK model, we set c to a large value – say 500 kg/s – and find the 
terminal velocity is about 1.5 m/s.  So the optimal value lies somewhere between 12.5 and 500.

One method to follow is to search the design space.  We will implement a bisection search 
method7 to do this.  The code below represents a MATLAB m-file which implements the 
bisection search, calls the SIMULINK model (asee_jumper), and finds the optimum value for the 
drag coefficient:
% This M-file calculates the optimum value of the parachute
% drag coefficient required to achieve a specified landing speed.
% It uses a bisection search technique between previously 
% established limits for the drag coefficient.
% Establish initial values
cl=12.5; % Lower limit for drag coefficient
cu=500;  % Upper limit for drag coefficient
test=1.0;% Initial value for stopping criterion
cr=(cl+cu)/2; % Calculate estimate for optimum c
%Use the bisection method to search for the optimum c
while abs(test) > 0.001 % Are we close enough?
   [t,vel,y] = sim('asee_jumper') %Run the SIMULINK model
   test = vel(30) + 3; %Update the test variable

if test > 0
      cu = cr

else
cl = cr

end
   cr = (cl + cu) / 2 %Update the estimate for optimum c
end
[t,vel,y] = sim('asee_jumper') % Run final simulation with optimum c

copt = cr %Return the optimum value P
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We have to make one change to the SIMULINK model shown in Figure 1.  We replace 12.5/70 
in the gain block (c/m) with the value cr/70.  Now, each time MATLAB calls the SIMULINK 
model ‘asee_jumper’, the current estimate of the drag coefficient (cr) will be used in the 
simulation.

Design Solution

The results of using the m-file are shown below:
copt =  228.9948
» test
test =-3.1809e-004
» vel(30)
ans =   - 2.9988

The velocity as a function of time is shown in Figure 6.  We see that velocity stabilizes at about 3 
m/s (actually 2.9988 m/s, given our stopping criterion).  Thus, the designer can set an 
engineering target for the drag coefficient of the parachute (229 kg/s).  This engineering target 
can be used with others in a design tool such as Quality Function Deployment to trade off among 
competing design parameters.

Figure 6: Velocity Results for Optimum Drag Coefficient P
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Conclusion

In this paper, we have seen how to use SIMULINK and MATLAB together as both an analytical 
tool and as a design tool.  The ease of programming in MATLAB and of passing information 
back and forth between MATLAB and SIMULINK facilitate the use of this software in 
undergraduate engineering education.  The power and flexibility of MATLAB as a programming 
environment make it useful in courses ranging from basic computer programming through 
numerical methods to mechanical design.

We have solved a well-known single degree of freedom dynamics problem to validate the 
proposed methodology.  A more interesting problem is to apply this method to more complex 
problems such as multi-degree of freedom problems with variable coefficients.  This is beyond 
the scope of this paper and will be addressed in a future paper.

1 This procedure is adapted from a tutorial written by CPT Thomas O’Donovan.
2 Chapre, Steven C. and Raymond P. Canale, Numerical Methods for Engineers, 4th Ed., (New York, McGraw Hill, 
2002) p. 14. 
3 http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/simulink.shtml
4 Chapre and Canale, p. 14.
5 Ibid.
6 Dabney, James B. and Thomas L. Harman, Mastering SIMULINK 2, (Upper Saddle River, NJ, Prentice Hall, 
1997), pp. 213-216.
7 Chapre and Canale, p. 122.
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Appendix A: Model Development

Open SIMULINK by starting MATLAB and clicking the SIMULINK icon. We will start by 
clicking on the MATH Library Block. This opens the Library and shows us what blocks are 
available.  Position the mouse on the SUM block and push down with the left-hand mouse 
button, then move the pointer into the file window and release the mouse button.  This is called 
click and drag and moves the SUM block into the file window.  Click and drag the GAIN block 
into the file window.  Open the CONTINUOUS Library and drag two INTEGRATOR blocks 
into the file window. You can close the libraries by clicking the + box next to the Library name.  
Open the SOURCES Library and drag the CONSTANT block and open the SINKS Library and 
bring the SCOPE block into your file window. 

We will now begin hooking these blocks together as dictated by our equation.  First, note that our 
highest order derivative is equal to the sum of two items.  So we start by positioning the SUM 
block in the middle of an open area within our file window.  The first term coming into the SUM 
block is a constant, so we position the CONSTANT block just to the left of the SUM block and 
connect them with a line by positioning the cursor near the output point on the CONSTANT 
block, holding down the left mouse button, moving over to an input point on the SUM block, and 
releasing the mouse button.  The result will look like the blocks in the left side of the figure 
below.

-9.81

g

Velocity

Sum

Position

1/s

Integrator1

1/s

Integrator

12.5/70

Gain

Acceleration

Figure A-1: Model of a falling skydiver

If we double click on the CONSTANT block we can set what the constant is in the window that 
opens.  Do this and set the constant to -9.81.  This is our gravitational constant in m/s2.  Now we 
create the second term.  This one is a little more complex as it involves a constant, c/m, times the 
velocity.  To use this term, we must calculate the velocity.  Recalling that velocity is the integral P

age 7.1274.11



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright  2002, American Society for Engineering Education

of acceleration, we move the INTEGRATOR block into position to the right of the SUM and 
connect them with a line.  The output from the INTEGRATOR block will be velocity, which we 
can now use after first multiplying it by the c/m factor.  To do this we need to use the GAIN 
block. We position the blocks and connect them as shown in Figure A-1.  Position the 
INTEGRATOR1 block and position scope as in the figure above.

We set the magnitude of the gain by double clicking the gain box and filling in the value with the 
c/m value for the jumper, 12.5/70.  We have now completed modeling the equation; however 
what we are interested in is a plot of the jumper's velocity with respect to time.  To get this plot 
we need to use the SCOPE block from the SINKS library.  We position it as shown above.

Using the right mouse button will allow you to branch a line off of an existing line as shown 
above.  We have now completed our setup of the equation in SIMULINK and are ready to 
establish the initial conditions. 

To set the initial conditions for the problem we simply double click on the INTEGRATOR block 
and set the initial value to the initial velocity of the jumper.  If he just stepped out of the plane 
this would be zero, the default value.  In the INTEGRATOR1 block, set the jump altitude to 
500m.  The output of the second integrator is position.  This demonstrates a powerful 
SIMULINK capability: SIMULINK can quickly model and solve a second order ODE. 

Now we need to document our model.  This consists of editing the labels under each block and 
adding labels or titles so that they show very clearly to the user what is actually going on.  To 
change a block label, click on it once and then edit it.  To add text somewhere in the file window 
just click there and start typing.  You can also click and drag text.  Also it might be a good idea 
to save your file at this point by clicking on FILE>SAVE and filling in the appropriate name. 
(NOTE: Do NOT use the name SIMULINK.) 

We now must verify our setup by working through it in a logical manner.  Starting at 
Acceleration in the figure above we can trace back by noting that our SIMULINK model says: 
"Acceleration is the sum of g and c/m times Velocity."  This in fact is wrong, as we actually want 
to subtract the c/m times Velocity term.  To correct this we double click on the SUM block and 
change the signs appropriately.  We now have completed model definition (compare with Figure 
1).

Model analysis consists of running the program to get a solution.  To do this we first double click 
the three SCOPE blocks and set their parameters for viewing.  First, we move them to convenient 
locations out of the way.  Then we set the horizontal and vertical ranges.  We will run this model 
for 20 seconds so we set the horizontal range to 20.  We don't know how fast the skydiver is 
going to go but we can estimate it by noting that actual terminal velocity for free fall parachutists 
is about 60 m/s.  This brings out an important point: YOU BETTER HAVE A GOOD IDEA 
ABOUT THE SOLUTION BEFORE YOU RUN YOUR MODEL or you're headed for trouble.  
Now with the ranges set, we need to establish the parameters for the solution process.  To do this, 
we click on SIMULATION at the top of your file window and then PARAMETERS. First, we 
select the appropriate solution method.  We will use a fixed step solver for the Euler Method P
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(ode1).  Change the stop time to 20 seconds.  Close the parameters window and click START to 
run the model.  Watch your SCOPE for a plot of velocity over time.  Note how the jumper picks 
up speed very quickly until terminal velocity is reached.  Save the model.
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