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Utilizing Cluster Analysis of Close-Ended Survey Responses to Select 
Participants for Qualitative Data Collection in Mixed Methods Studies 

 
 

Introduction 

The purpose of this research paper is to discuss the application of cluster analysis within an 
engineering education mixed methods study to compare three clustering techniques (k-means, 
Ward’s, and Complete Link), and then discuss the impact of this analysis on the process of 
selecting participants for interviews.   

Cluster analysis involves the use of statistical methods to find groups within a set of data based 
on provided measures (Kaufman & Rousseeuw, 1990). This technique has been used within 
other disciplines to group different types of data and entities of systems, such as chemicals 
(Maccuish & Maccuish, 2014), manufacturing decisions (Lorentz, Hilmola, Malmsten, & Srai, 
2016), or planets (Jiang, Yeh, Hung, & Yang, 2006), based on a series of factors or variables. In 
engineering education, cluster analysis has been used to group participants who have similar 
attributes such as epistemic beliefs (Faber, Vargas, & Benson, n.d.), activities within a learning 
environment (Antonenko, Toy, & Niederhauser, 2012; Galloway & Bretz, 2015a, 2015b), 
relative risk of attrition (Chan & Bauer, 2014), or who exhibit certain behaviors in courses 
(Karabenick, 2003; Raker et al., 2015; Shell & Soh, 2013; Stewart, Miller, Audo, & Stewart, 
2012). Cluster analysis can help researchers who are using a mixed methods approach select 
participants for interviews when a variation of participant attributes or perspectives is desired. 
However, it is important to understand the underlying assumptions, boundary conditions, and 
limitations for cluster analysis, because the choice of algorithm will impact the type of clusters 
formed and the individuals assigned to those clusters. Within the context of this paper, we use 
cluster analysis to group participants based on closed-ended survey responses measuring 
different facets of engineering epistemic beliefs.  

Cluster Analysis Overview 

To ensure clarity throughout the paper, we first will define many of the terms that we will be 
using: population, participant, data set, data point, items, and factors. We refer to population in 
the statistical sense of all the individuals that meet our standard of criteria. For us, this is every 
student that received a recruitment email to participate in our survey. Anyone who choose to 
participate in the survey is called a participant. The data set is the collection of information that 
we have from our participants. A data point represents the participant during our data analysis 
and in the plots that we’ve provided. Items are the individual questions that the participants were 
asked on the survey. We grouped similar items together to create factors and calculated an 
average score for each factor.  

Cluster analysis is often used in exploratory work where researchers are uncertain of the number 
of groups (clusters) within a data set. This grouping technique is best used to divide the data into 
smaller groups (clusters) that have similar characteristics across a select number of dimensions. 
Lattin, Carroll, and Green most accurately describe cluster analysis as “undertaken with the 
objective of addressing the heterogeneity of the data… explicitly divid[ing] the [data set] into 
more homogenous subsets” (p.264, 2003). 



While cluster analysis is not a synonym for factor analysis, it does share some similarities. 
Antonenko, Toy, and Niderhauser relate cluster analysis “as complementary to factor analysis: 
factor analysis groups variables across cases (e.g. individuals), clustering algorithms group cases 
based on the variables of interest” (p. 384, 2012, emphasis in original). In other words, in factor 
analysis, the interest is in how variables group together and measure the same factor; in cluster 
analysis, the interest is in how individuals (cases) group together based on behaviors, beliefs, or 
other characteristics of interest.  

One major caveat to consider when applying cluster analysis is that the information gathered 
from cluster analysis alone is not sufficient to determine if there are actual clusters in the 
population that is represented by the data set. Cluster analysis, at its core, is a set of optimization 
algorithms that will provide the optimal solution for the combination of the input data set and the 
clustering algorithm. As such, each algorithm will provide a solution, regardless of whether 
actual clusters exist. To determine if actual clusters exist, additional measures of the spread of 
the data (i.e. local density analysis) should be used. 

The general process of cluster analysis begins with determining where the data are located 
relative to one another. This is done by using a proximity measure which calculates the distance 
between each piece of data relative to the variables of interest. The most common proximity 
measure is squared Euclidian distance which provides higher weight to larger distances and can 
be calculated beyond three dimensions. Another commonly used metric of proximity is the 
within-cluster sum of squares or the variability within a cluster. After the proximity measure is 
determined, the clustering algorithm is used to group similar data points together. Clustering 
algorithms mostly differ on their methods for grouping data, their robustness to outliers, and 
computational efficiency.  

Two types of clustering algorithms are commonly used in data analysis: hierarchical and 
partitioning algorithms. Hierarchical algorithms typically begin with placing each data point in a 
separate ‘cluster’ and then pairing nearby clusters (with low proximity values) together until a 
single cluster exists. Criteria evaluating multiple clustering solutions (described in detail below) 
are analyzed and an optimal number of clusters is determined. Partitioning algorithms separate 
data points into a pre-specified number of clusters (partitions) and place data points into each 
cluster such that data points within the cluster are similar and data points outside the cluster are 
dissimilar. Again, criteria for multiple solutions are compared and an optimal number of clusters 
is determined. In this paper, we discuss selecting three algorithms are to be used in clustering our 
participants. The data set consisted of average scores of the participants’ response to closed-
ended survey items probing their engineering epistemic beliefs. The three algorithms we selected 
include two hierarchical (Ward’s and Complete Link) and one partitioning (k-means). Each 
algorithm will use the same data set to show how the use of a method can affect the results.  

We selected the three algorithms based on anticipated cluster behavior. Prior to clustering, we 
plotted the data in the first two principal components to visualize its behavior. The two primary 
principal components are the axes that show the most amount of variability in the data. In some 
areas of the plot, data points were clumped together and in other areas the data points were 
spread apart. To mitigate the effects of the data behavior on the cluster shape, we selected 
clustering techniques that would be less sensitive to the clumping: Ward’s, Complete Link, and 
k-means.  



Ward’s Clustering Algorithms 

Ward’s algorithm systematically combines the clusters that, when merged, contribute the 
smallest increase to the within-cluster sum of squares (i.e. the group variability). Because cluster 
variability is affected by the number of data points within the cluster and their relative distance to 
the cluster centroid, Ward’s method tends to produce clusters that have a similar number of data 
points and are relatively spherical. Spherical cluster shapes indicate that the variables being 
analyzed are equally important. Oblong cluster shapes would indicate that one or two variable(s) 
dominates the data behavior.  

Complete Link Clustering Algorithm 

The Complete Link algorithm, also known as the “farthest neighbor” (Rencher, 2002) algorithm, 
determines the furthest Euclidean distance between clusters and combines the two clusters that 
have smallest distance from the data points that are furthest apart. By using the data points that 
are furthest from each other in the clusters, Complete Link “ensures that each [data point] added 
to a cluster is close to all [data points] in the cluster and not just one” (p. 282, Lattin et al., 2003). 
Because the Complete Link algorithm evaluates data points that are the furthest apart, it is more 
sensitive to outliers than other methods.  

K-means Algorithm 

K-means is the most commonly used partitional algorithm. Although there are other partitioning 
algorithms, they are typically used for very specific partitioning needs and are not robust to a 
wide range of data sets. The k-means algorithm divides the space into k number of groups and 
concurrently minimizes the within-group variability and maximizes the between-group 
variability. The algorithm typically begins by randomly sectioning the space to the pre-defined 
groups and calculates the centroid of each group. Then evaluates the distance of each data point 
relative to the centroids. The data point is then assigned the group that it is closest to (smallest 
distance from the centroid). After all the data points are assigned to groups, the centroids are 
recalculated and the process is repeated. The repetition continues until there are no changes to 
the groups. Because the number of groups (i.e. partitions) is pre-determined by the user, k-means 
is best used when there is theoretical support for the number of groups selected. Since the initial 
centroids are randomly selected, the algorithm should be run multiple times to ensure robustness 
in the solution.  

 

Summary of Mixed Methods Study 

This work is situated within a larger, explanatory mixed-methods project focused on 
understanding how undergraduates conceptualize their identities as researchers and their 
engineering epistemic beliefs. The first phase of the project was a survey with closed-ended and 
open-ended items to probe students’ perceptions of themselves as researchers, their contributions 
to their field, their beliefs about knowledge and where it comes from, and their need for 
cognitive closure. The second phase entails in-depth interviews of selected participants from the 
survey respondents to understand their beliefs and views on research, their researcher identity, 



and epistemic beliefs. We will select interview participants based partly on the results of the 
cluster analysis of survey data (responses to close-ended questions).  

Survey Design and Participant Population 

While open and closed-ended items were on the survey, for the cluster analysis we only used the 
responses to the closed-ended items. We selected closed-ended items from previous studies to 
represent the following six factors: (1) Closed-mindedness (Webster & Kruglanski, 1994), (2) 
Discomfort with Ambiguity (Webster & Kruglanski, 1994), (3) Certainty of Knowledge (Yu & 
Strobel, 2012), (4) Sources of Knowledge (Yu & Strobel, 2012), (5) Simplicity of Knowledge 
(Greene, Torney-Purta, & Azevedo, 2010; Yu & Strobel, 2012), and (6) Justification of 
Knowledge (Ferguson & Braten, 2013; Greene et al., 2010; Yu & Strobel, 2012). Two factors 
(Closed-mindedness and Discomfort with Ambiguity) were used to measure a participant’s need 
for cognitive closure (Webster & Kruglanski, 1994). The other four factors were used to probe a 
participant’s epistemic beliefs in engineering (Ferguson & Braten, 2013; Greene et al., 2010; Yu 
& Strobel, 2012). Table 1 shows the six factors with an example item in the factor. All forty-five 
items and the factors with which they are associated are listed in Appendix A. Prior to the work 
discussed in this paper, we conducted a pilot study that probed participant’s interpretations of 
item wording to help formalize item wording and ensure the participants were interpreting the 
items similarly (Faber et al., n.d.).  

Table 1: Summary of factors that were evaluated during cluster analysis with an example item. 
The factors with associated items are all described in Appendix A. 

Factor Example Item Within Factor Reference that Originally 
Used Item 

Closed-Mindedness  I dislike questions which could be 
answered in many different ways. 

Webster & Kruglanski, 
1994  

Discomfort with 
Ambiguity 

I feel uncomfortable when someone’s 
meaning or intention is unclear to me. 

Webster & Kruglanski, 
1994  

Certainty of  
Engineering Knowledge 

Theories in engineering cannot be 
argued or changed. 

Yu & Strobel, 2012 

Sources of  
Engineering Knowledge 

You can trust the information you find 
in engineering textbooks. 

Yu & Strobel, 2012 

Simplicity of 
Engineering Knowledge 

Engineers can solve engineering 
problems by just following a step-by-
step procedure. 

Yu & Strobel, 2012 

Justification of 
Engineering Knowledge 

I believe everything I learn in my 
engineering classes. 

Greene, Torney-Purta, & 
Azevedo, 2010 

 

Participants responded to the forty-five anchored questions on a 7-point scale (1 – strongly 
disagree, 7 – strongly agree). Prior to data analysis, negatively worded items were reverse coded 
to ensure alignment within each factor. We performed all data analysis using the statistical 
analysis software R (version 3.3.1) (Team, 2016) using the psych, fpc, cluster, car, psy, rgl, and 
MASS packages.   
 



The survey was distributed to Mechanical Engineering (ME) and Biomedical Engineering 
(BME) students at five institutions varying in size, type, and location within the United States.  
Department representatives, such as undergraduate coordinators, in ME and BME departments 
distributed the survey through email to potential participants in their departments. The survey 
was reviewed and approved by University IRBs prior to its distribution in the Spring 2016 
semester. Of the 113 students who began the quantitative portion of the survey, 109 students 
answered every question. 59.3% of the students were male, 40.7% female. Racial distribution 
was 68.1% Caucasian, 1.8% Black/African American, 12.4% South Asian, 11.5% East Asian, 
2.7% Other Asian, 1.8% American Indian/Alaskan Native, and 11.5% identified as ‘other’. Most 
respondents were from the two institutions with the largest total number of enrolled engineers 
(65.4%), with most of the responses coming from the largest institution (50.4%). Respondents 
were spread across grade levels with 4.4% in their first year, 20.4% in their second year, 23.0% 
in their third year, 38.9% in their fourth year, 9.7% in their fifth year, and 3.5% in their sixth 
year. Students who stopped the survey mid-way or missed a question were not included within 
the cluster analysis. A single participant provided the same response for each item, including 
reverse coded items, and was also removed from analysis. A more in-depth summary of the 
institutions, the survey distribution, and student responses can be found in a previous publication 
(Benson et al., 2016).   
 
Evaluation of Survey Factors  
 
Prior to performing cluster analysis, we determined the reliability of each factor, removed items 
that affected the reliability measure, and calculated composite scores for each participant. Due to 
the limited number of respondents relative to the number of items on the survey, a factor analysis 
was not performed. Internal consistency reliability was evaluated using Cronbach’s alpha, which 
is often used to determine whether items are measuring the same construct within a factor 
(Tavakol & Dennick, 2011). Each item was systematically removed from the factor, Cronbach’s 
alpha was recalculated and items found to lower Cronbach’s alpha were reviewed to determine if 
there was sufficient evidence to remove them from the factor. A total of eleven items were 
removed from five of the factors. A summary of the factors and the final Cronbach’s alpha 
values are in Table 2.   
  
Table 2: Summary of final factor sizes and optimization by removal of items lowering 
Cronbach’s Alpha. Specific items excluded are noted in Appendix A.  

Factors Initial Number 
of Items within 

each Factor 

Number of Items 
Excluded from 
Factor During 

Reliability 
Analysis 

Final Cronbach’s 
Alpha (after items 

were removed) 

Closed-Mindedness 7 1 0.708 
Discomfort with Ambiguity 8 2 0.602 
Certainty of Knowledge 8 1 0.725 
Sources of Knowledge 10 4 0.630 
Simplicity of Knowledge 3 0 0.494 
Justification of Knowledge 9 3 0.608 



 
One factor (Simplicity of Knowledge) was excluded from the cluster analysis due to a 
Cronbach’s alpha below 0.6. Cronbach’s alpha is dependent on the number of items in the factor 
(Sijtsma, 2009; Tavakol & Dennick, 2011); therefore, the Simplicity of Knowledge factor may 
have too few items.   
 
Once factors were finalized, we calculated the factor scores for each participant by averaging 
their scores on items within the factor. Participant factor scores were then used as the inputs in 
the clustering algorithms. 
 
Evaluating Outputs to Determine the Number of Clusters 
 
There are measures to help in determining the number of clusters for the various clustering 
algorithms: within sum of squares, between sum of squares, and the CH index. Within sum of 
squares (wss) is a variability measure looking at how dispersed data points are within a single 
cluster and is calculated as the sum of the square of the distances between the data point and the 
centroid of the cluster. Between sum of squares (bss) is representative of how dispersed the 
clusters are within the space and is calculated as the sum of the square of the distances between 
the centroids of the clusters. Based on the definitions of wss and bss, we see that wss tends to 
zero as the number of clusters increases and bss tends to infinity. The ultimate goal of cluster 
analysis is to have data points within a cluster be similar and between the clusters be dissimilar, 
thus, we are looking to minimize wss while maximizing bss. If wss will continue to decrease and 
bss will continue to increase with any increase in the number of clusters, how do we know how 
many clusters to choose? Calinski and Harabasz introduced an index to help answer this 
question, which  has since been coined the “CH index” (Equation 1) (1974).  
 
 𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘)/(𝑘𝑘−1)

𝑤𝑤𝑏𝑏𝑏𝑏(𝑘𝑘)/(𝑛𝑛−1)
   (1) 

 
The CH index normalizes wss and bss relative to the number of clusters (k) and data points (n) 
such that the CH index is at its maximum for the best solution. Many other selection criteria 
exist; however, the CH index was found to be one of the most reliable (Milligan & Cooper, 
1985). Note that the CH index is not defined at k = 1. As such, we cannot determine if the ideal 
solution is a single cluster using the CH index. This may be more concerning if the CH index 
was the only aspect of the data we used to determine the ideal number of clusters; however, with 
redundancy in our analysis we can ensure that this caveat does not negatively impact our results.  
 
Hierarchical Clustering Methods 
 
The first step to performing a hierarchical cluster analysis is to calculate the proximity measure. 
In both Ward’s and Complete Link, we used Euclidean distance (Equation 2) to calculate the 
proximity of data points relative to each other.  
 

 𝐼𝐼𝑖𝑖𝑖𝑖 = �∑ �𝐼𝐼𝑖𝑖𝑘𝑘 − 𝐼𝐼𝑖𝑖𝑘𝑘�
2

𝑘𝑘 �
1
2  (2) 

 



After the distance matrix is calculated, we used it as the input in the clustering algorithm. In the 
statistical language R (Team, 2016), the same function (hclust) can be used for many commonly 
used hierarchical clustering algorithms, including Ward’s, Complete Link, and othersThe output 
of hierarchical cluster analysis is a dendrogram (Figure 1), or tree, that is used to visualize the 
merging of the data into a single cluster. On one axis are the data points within the set and on the 
other is a normalized distance between cluster solutions. The dendrogram allows the user to 
visualize every merge the clustering algorithm created and determine the appropriate number of 
clusters.  
 
To determine the ideal number of clusters requires a strong command of the underlying 
constructs being analyzed within the data, and the assumptions made by each clustering 
algorithm used. Criteria to determine the number of clusters include the height of the cluster 
branches in the dendrogram (Figure 1A), dramatic decreases in wss (an observed ‘elbow’ in the 
plot, Figure 1B), dramatic increases in bss (Figure 1C), and the maximum CH index value 
(Figure 1D).   
 
Cluster Solution of our Data Set Using Ward’s  
 
Ward’s algorithm seeks to optimize wss. In Ward’s, two clusters are merged that provide the 
smallest increase in wss until a single cluster exists. Ward’s algorithm tends to create clusters of 
equal size but is not as sensitive to outliers in the data as much as other hierarchical approaches.  
 
Using Ward’s clustering algorithm on our survey data set, a two-cluster solution is consistently 
indicated (Figure 1. There is strong agreement between all four measures used to determine the 
number of clusters. The undulating nature of the CH index (Figure 1D) seems to indicate a small 
tendency towards subgroups in this cluster solution. Because the intended purpose of our cluster 
analysis is to select participants for follow-up interviews, these subgroups may become more 
useful in elucidating the differences between individuals within a larger cluster. 
  



  

  
Figure 1: Plots used to determine the ideal cluster solution using Ward’s algorithm and this data 
set is a two-cluster solution. The large height difference between one and two clusters in the 
dendrogram (A) as indicated by the dashed line, the “elbow” in the within sum of squares plot 
(B), and the “elbow” in the between sum of squares plot (C) all suggest a two-cluster solution. 
Additional confirmation is through the maximum CH index (D) occurs for two clusters.  

  
The final check on the cluster solution is a plot of the data points within their assigned clusters. 
The further apart the clusters are in the plot, the stronger the indication of a reliable clustering 
solution. The two-dimensional visualization of the Ward’s clustering solution (Figure 2) shows 
each participant and where they are located within their respective clusters for our data set. The 
outliers (data points 92 & 87) may be exacerbating the overlapping behavior of the clusters. As 
we intend to use this potential solution to help guide our participant selection for further 
interviews, we are less concerned with the overlapping behavior of the clusters.  
 

A 

D C 
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Figure 2: Two-dimensional visualization of the Ward’s two cluster solution for the survey data 
set. The red and blue ellipses are the minimum area that incorporates all the participants within 
the cluster. 

Cluster Solution of our Data Set Using Complete Link 
 
The Complete Link algorithm merges clusters based on distance between points currently within 
the clusters. The cluster solution for our data set is similar to the Ward’s solution in terms of the 
branch heights in the dendrogram for multiple cluster solutions (Figure 3A), the elbows observed 
in wss (Figure 3B) and bss (Figure 3C), as well as the maximum behavior of the CH index plot 
(Figure 3D) all strongly indicate a two-cluster solution. In the dendrogram we also see 
participant 92 remaining in their own cluster until the very end. This would indicate that this 
participant has very different views relative to the rest of the group and thus could provide an 
especially unique viewpoint in an interview.   
 



  

  
Figure 3: Plots used to determine the ideal cluster solution using the Complete Link algorithm 
and this data set is a two-cluster solution. The large height difference between one and two 
clusters in the dendrogram (A) as indicated by the dashed line, the “elbow” in the within sum of 
squares plot (B), and the “elbow” in the between sum of squares plot (C) all suggest a two-
cluster solution. Additional confirmation is through the maximum CH index (D) occurs for two 
clusters.  
 
The Complete Link cluster plot (Figure 4) is similar to the Ward’s cluster plot. Again, the 
outliers are impacting the size of the ellipse of cluster 1. The differences between cluster 
assignment between the Ward’s and Complete Link algorithms is most likely occurring in the 
overlap of the two clusters.  
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Figure 4: Two-dimensional visualization of the Complete Link two-cluster solution for the 
survey data set. The red and blue ellipses are the minimum area that incorporates all the 
participants within the cluster. 

Cluster Solution of our Data Set Using K-means 
 
A partitioning algorithm requires the user to input the number of clusters prior to optimization, 
thus, it is important to either have strong theoretical support for the number of clusters selected 
or run the algorithm for multiple cluster solutions. Because of the previous solutions with 
hierarchical algorithms, we anticipate the solution will indicate two clusters; however, we still 
need to confirm this prediction. Similar to our approach with the hierarchical algorithms, wss, 
bss, the CH index will be plotted for cluster solutions up to 15 clusters and then the number of 
clusters will be determined from the plots of our data set. As this is a partitioning algorithm with 
many cases switching cluster assignments on the same iteration, a dendrogram is not created. 
Wss, bss, and the CH index (Figure 5) all indicate that an appropriate number of clusters for this 
data set is two. K-means also seems to provide the best visual solution for our data set, seen in 
the cluster plot (Figure 6), as there is the most amount of separation of the clusters.  
 



  

 
Figure 5: Plots used to determine the ideal cluster solution using the k-means algorithm and this 
data set is a two-cluster solution. The “elbow” in the within sum of squares plot (A), and the 
“elbow” in the between sum of squares plot (B) all suggest a two-cluster solution. Additional 
confirmation is through the maximum CH index (C) occurs for two clusters. 
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Figure 6: Two-dimensional visualization of the k-means two cluster solution for the survey data 
set. The red and blue ellipses are the minimum area that incorporates all the participants within 
the cluster. 

Comparing Cluster Solutions 
 
As described above, cluster solutions indicate that a two-cluster solution is the ideal number of 
clusters for our data set. A summary of the construct means for each cluster and algorithm 
combination is shown in Table 3. 
 



Table 3: Summary of the average scores for the clusters on each factor used during cluster 
analysis. The total number of participants in each cluster is also provided at the bottom of the 
table. 

 Ward’s Complete Link k-means 
Factor Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 
Closed-
Mindedness 

2.75 ± 
0.75 

3.68 ± 
0.73 

2.69 ± 
0.71 

3.72 ± 
0.71 

2.53 ± 
0.74 

3.43 ± 
0.75 

Discomfort 
with 
Ambiguity 

4.84 ± 
0.92 

4.74 ± 
0.76 

4.85 ± 
0.94 

4.74 ± 
0.72 

4.71 ± 
0.93 

4.87 ± 
0.82 

Certainty of 
Knowledge 

2.04 ± 
0.59 

3.27 ± 
0.72 

2.06 ± 
0.63 

3.14 ± 
0.80 

1.80 ± 
0.51 

2.92 ± 
0.76 

Sources of 
Knowledge 

3.81 ± 
0.80 

4.48 ± 
0.74 

3.76 ± 
0.80 

4.50 ± 
0.70 

3.42 ± 
0.74 

4.46 ± 
0.61 

Justification of 
Knowledge 

3.24 ± 
0.75 

4.33 ± 
0.60 

3.21 ± 
0.75 

4.30 ± 
0.59 

2.93 ± 
0.66 

4.08 ± 
0.67 

Number of 
Participants 
(n) 

71 37 68 40 44 64 

 
 
We compared the sets of clusters to each other to determine if there was a statistically significant 
difference between the cluster means. First, we performed a multivariate analysis of variance 
(MANOVA) to determine if there were differences between cluster groups when considering all 
five factors at the same time and the interaction between the clustering technique with the 
assigned cluster. Significant differences were observed with a p-value p < 2e-16 for the 
interaction test indicating that some differences existed, but did not specifically indicate the 
differences.  
 
To determine where the differences occurred, we conducted individual analysis of variance 
(ANOVA) tests on each factor to determine which factor(s) were significantly different between 
the sets of clusters. The cluster means were significantly different on four of the five factors: 
Closed-Mindedness (p < 2e-16), Certainty of Engineering Knowledge (p < 2e-16), Sources of 
Engineering Knowledge (p < 2e-16), and Justification of Engineering Knowledge (p < 2e-16). 
The only factor that was not significant was Discomfort with Ambiguity (p = 0.964). The results 
of the ANOVA tests indicate that at least one of the six clusters (cluster 1 or 2 from any of the 
three techniques) is different than the other six clusters for the factors that showed significant 
differences.  
 
To determine which clusters differed and in what ways, we performed a Tukey HSD test for each 
factor that indicated significance in the ANOVA. The only factor that we did not conduct a 
Tukey HSD test on was the Discomfort with Ambiguity factor, because no significant 
differences between any of the clusters were identified by the ANOVA test. A Tukey HSD test is 
a pairwise test to evaluate the differences between all combinations of clustering technique and 
cluster assignment.   



 
Results of the Tukey HSD tests indicated that the significant differences observed were between 
clusters within a single technique (i.e. cluster assignment) and not between clustering techniques. 
For example, in the Certainty of Knowledge factor, the significant differences only occur 
between clusters within a single technique: Cluster 1 from the Ward’s algorithm aligned with 
Cluster 1 of both the Complete Link and the k-means algorithms. Cluster 2 from the Ward’s 
algorithms aligned with Cluster 2 for both the Complete Link and k-means algorithms. 
Differences between clusters are summarized in Table 4 and Figure 7. A full summary of the 
Tukey HSD results is included in Appendix B.  
 

Table 4: Summary of Tukey HSD results. Scores are based on a 7-point scale where 1 is strongly 
disagree, 4 is neutral, and 7 is strongly agree. An asterisk (*) is placed on the averages that differ 
within a single technique (i.e. Cluster 1 compared to Cluster 2 in the k-means column). 

 Ward’s Complete Link k-means 
Factor Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2 
Closed-
Mindedness 

2.75 ± 
0.75* 

3.68 ± 
0.73* 

2.69 ± 
0.71* 

3.72 ± 
0.71* 

2.53 ± 
0.74* 

3.43 ± 
0.75* 

Discomfort 
w. 
Ambiguity 

4.84 ± 
0.92 

4.74 ± 
0.76 

4.85 ± 
0.94 

4.74 ± 
0.72 

4.71 ± 
0.93 

4.87 ± 0.82 

Certainty of 
Knowledge 

2.04 ± 
0.59* 

3.27 ± 
0.72* 

2.06 ± 
0.63* 

3.14 ± 
0.80* 

1.80 ± 
0.51* 

2.92 ± 
0.76* 

Sources of 
Knowledge 

3.81 ± 
0.80* 

4.48 ± 
0.74* 

3.76 ± 
0.80* 

4.50 ± 
0.70* 

3.42 ± 
0.74* 

4.46 ± 
0.61* 

Justification 
of 
Knowledge 

3.24 ± 
0.75* 

4.33 ± 
0.60* 

3.21 ± 
0.75* 

4.30 ± 
0.59* 

2.93 ± 
0.66* 

4.08 ± 
0.67* 

Number of 
Participants 
(n) 

71 37 68 40 44 64 

 
 



 
Figure 7: Visual representation of the cluster means on each factor. Cluster means are plotted on 
each factor scale. Ward’s clusters are indicated by the blue triangles, Complete Link by the 
orange circles, and k-means by green squares. The dark shapes represent the mean for Cluster 1 
and the light shapes represent the mean of Cluster 2. Neutral point was indicated with a black 
dash and descriptors of the ends are provided.  
 
Conclusions 
 
With our data set, we see agreement between three clustering algorithms in the number of 
clusters and overall cluster means. After reviewing the within-cluster sum of squares, between-
cluster sum of squares, CH index, and cluster solution plots, we determined the most reliable 
clustering algorithm for this data set to be k-means. Using multiple clustering algorithms ensured 
we had strong agreement in the number and shape of the clusters. Additionally, we identified 
outlier participants that may be interesting to recruit for our follow-up interviews.  
 
Choosing an appropriate clustering algorithm to sort data into homogenous groups depends on 
the nature of the data (number of data points, the spread of the data, etc.), and whether there is 
underlying theory that would help predict the number of clusters. Algorithms differ in terms of 
how they group the data, their sensitivity to outliers, and computational efficiency. Hierarchical 
methods are typically chosen when there is not strong underlying theory and small sample sizes. 
It runs through the range from n to 1 clusters. Ward’s tries to minimize within-group sum of 
squares and maximize between-group sum of squares. Complete Link algorithm can be sensitive 
to outliers because it evaluates items that are furthest apart. K-means is the most commonly used 
partitioning method and is computationally efficient; however, the number of clusters is assumed 
based on a priori knowledge (underlying theory, the nature of the data, other clustering 
solutions, etc.). Based on the data presented above, the clustering algorithm that seems most 
ideal for the data set analyzed in this study is k-means. The k-means solution had clusters that 
were visually furthest apart and cluster means that are sufficiently similar to the other clustering 
solutions. Wss, bss, and the CH index strongly indicated across all three solutions that two 
clusters was the ideal number of clusters for this data set.  
 



Limitations and Future Work 
 
Although differences in the clustering solutions and the factor means are observed, we do see 
sufficient convergence of the results at the completion of this portion of the study. Due to the 
foundational assumptions of all three clustering algorithms, we may not be able to determine the 
natural tendency of our population of interest (in this case, undergraduate mechanical or 
biomedical engineers with research experience) from these results; however, we are able to 
group individuals with similar scores together. Since we are utilizing the results of the cluster 
analysis for participant selection only, grouping participants is sufficient, even if it might not be 
the natural tendency of the data. If we were to use the cluster analysis results to create develop a 
new theoretical framework on epistemic beliefs, a more rigorous analysis of the clustering results 
additional measures of the participants relative to the cluster data would be required.  
 
Now that we have selected our clustering algorithm and have determined the cluster solution, we 
will be able to select participants for interviews based on their location within the cluster. In this 
mixed-methods study, we will use the cluster assignment to ensure that we select participants 
with a range of epistemic beliefs and need for cognitive closure. This approach will help use 
ensure that we are interviewing participants with a wide-range of beliefs to inform the 
development of our grounded theory.  
 
Implications for Practice 
 
Accurately running and analyzing the results of cluster analysis can be a difficult if you are not 
familiar with without a thorough understanding of the foundational assumptions made when 
applying an algorithm to your data set. We suggest you take the following a series of steps when 
deciding which cluster analysis method to perform your ownapply, and when performing a 
cluster analysis as described below and depicted in Figure 8.  



 
Figure 8: Flow chart for performing a cluster analysis. This chart was modified based on earlier 
work (Mooi & Sarstedt, 2011) to fit the context of this paper. 
  

1. Determine the variables that you will be using for your cluster analysis.  
a. These should be related to your research questions and/or grounded in the 

theoretical lenses you are using in your study. 
b. If your variables are constructs or factors from survey items, check for internal 

consistency using a standard measure like Cronbach’s alpha.  
2. Determine the clustering procedure(s) to use for your cluster analysis 

a. Review the data set and the theoretical grounding for the research 
i. If the data set is small or you do not have theoretical grounding for 

knowing the number of clusters, rely mostly on hierarchical clustering 
procedures 

ii. If the data set is large or you have theoretical grounding for knowing the 
number of clusters a priori, rely on partitioning algorithms 

3. Determine the similarity/dissimilarity measure (for hierarchical algorithms only) 
4. Determine the algorithm(s) to use based on data behavior (for hierarchical algorithms 

only) 
a. If data clumps in an oblong way, select Single Link. 
b. If data clumps in a circular way, select other hierarchical clustering algorithms 

5. Determine the number of clusters 
a. Evaluate dendogramsdendrograms (hierarchal algorithms only) and other plot 

(wss, bss, CH index, etc.) behavior to help determine the number of clusters 
6. Validate and interpret the solution(s) provided.  

a. If using multiple solutions, use MANOVA and ANOVA testing to determine 
solution convergence.  
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Appendix A: Final item wording on Phase I survey 
 
An (RC) indicates items that were reverse-coded and items with a strikethrough were excluded from cluster analysis.  
 
Item Testing Factor Source 
Classroom engineering problems have only one right numerical 
answer. 

Engineering Epistemic 
Beliefs 

Certainty of 
Knowledge 

Yu & Strobel 2012 

Engineering knowledge cannot be subject to change with new 
observations by engineering students. 

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

Theories in engineering cannot be argued or changed. Engineering Epistemic 
Beliefs Yu & Strobel 2012 

Engineering problems outside the classroom have only one right 
numerical answer. 

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

There is one universal engineering method.  Engineering Epistemic 
Beliefs Yu & Strobel 2012 

Engineering knowledge cannot be subject to change with new 
observations by individuals.  

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

Engineering knowledge is all factual, and there are no opinions. Engineering Epistemic 
Beliefs Greene et al. 2010 

Engineering knowledge should be accepted as an unquestionable 
truth. 

Engineering Epistemic 
Beliefs Yu & Strobel 2012 

Engineering students learn when a teacher transmits his or her 
knowledge to them.  

Engineering Epistemic 
Beliefs 

Sources of 
Knowledge 
 

Yu & Strobel 2012 

In an engineering class, if your personal experience conflicts with 
the "big ideas" in a textbook, the textbook is probably right.  

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

You can trust the information you find in engineering textbooks. Engineering Epistemic 
Beliefs Yu & Strobel 2012 

Engineering knowledge is created only by an expert.  Engineering Epistemic 
Beliefs Yu & Strobel 2012  

Reading engineering textbooks written by experts is the best way 
to learn engineering. 

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

Traditional engineering ideas should be considered over new 
ideas.  

Engineering Epistemic 
Beliefs Yu & Strobel 2012 



First-hand experience is the best way of knowing something in 
engineering. (RC) 

Engineering Epistemic 
Beliefs 

Sources of 
Knowledge 

Yu & Strobel 2012 

Engineering knowledge is created only from logical thinking.  Engineering Epistemic 
Beliefs Yu & Strobel 2012 

The best way to develop engineering knowledge is from an 
expert's teachings.  

Engineering Epistemic 
Beliefs Yu & Strobel 2012  

New engineering knowledge is produced as a result of 
experimentation. 

Engineering Epistemic 
Beliefs Yu & Strobel 2012 

Engineers can solve engineering problems by just following a 
step-by-step procedure. 

Engineering Epistemic 
Beliefs 

Simplicity of 
Knowledge 

Yu & Strobel 2012 

To know engineering well, you need to memorize what you are 
taught.  

Engineering Epistemic 
Beliefs Greene et al. 2010 

Engineering knowledge is an accumulation of facts. Engineering Epistemic 
Beliefs Yu & Strobel 2012 

In engineering, what's a fact depends upon a person's point of 
view. (RC) 

Engineering Epistemic 
Beliefs 

Justification of 
Knowledge 

Greene et al. 2010 

To be able to trust knowledge claims in engineering, I have to 
check various sources. (RC) 

Engineering Epistemic 
Beliefs 

Ferguson & Braten 
2013 

In engineering classes, everyone's knowledge can be different 
because there is no one absolutely right answer. (RC) 

Engineering Epistemic 
Beliefs Greene et al. 2010 

If an engineer says something is a fact, I believe it.  Engineering Epistemic 
Beliefs Greene et al. 2010 

Just one source is never enough to decide what is right in 
engineering. (RC) 

Engineering Epistemic 
Beliefs Greene et al. 2010 

I believe everything I learn in my engineering classes.  Engineering Epistemic 
Beliefs Greene et al. 2010 

To detect incorrect claims in texts about engineering, it is 
important to check several information sources. (RC)  

Engineering Epistemic 
Beliefs 

Ferguson & Braten 
2013 

If an engineering teacher says something is a fact, I believe it.  Engineering Epistemic 
Beliefs Greene et al. 2010 

In the field of engineering, everyone's knowledge can be different 
because there is no one absolutely right answer. (RC) 

Engineering Epistemic 
Beliefs Greene et al. 2010 



Even after I've made up my mind about something, I am always 
eager to consider a different opinion. (RC) 

Need for Cognitive 
Closure 

Closed-
Mindedness 

Webster & 
Kruglanski, 1994 

I prefer interacting with people whose opinions are very different 
from my own. (RC) 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I dislike questions which could be answered in many different 
ways. 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I do not usually consult many different opinions before forming 
my own view.  

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I always see many possible solutions to problems I face. (RC) Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

When considering most conflict situations, I can usually see how 
both sides could be right. (RC) 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

When thinking about a problem, I consider as many different 
opinions on the issue as possible. (RC) 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

It's annoying to listen to someone who cannot seem to make up 
his or her mind.  

Need for Cognitive 
Closure 

Discomfort with 
Ambiguity 

Webster & 
Kruglanski, 1994 

I don't like situations that are uncertain. Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I feel uncomfortable when someone's meaning or intention is 
unclear to me. 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

When I am confused about an important issue, I feel very upset.  Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I'd rather know bad news than stay in a state of uncertainty.  Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I feel uncomfortable when I don't understand the reason why an 
event occurred in my life. 

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

In most social conflicts, I can easily see which side is right and 
which is wrong.  

Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 

I like to know what people are thinking all the time.  Need for Cognitive 
Closure 

Webster & 
Kruglanski, 1994 
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