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ABSTRACT

Memorizing equations, recalling them, and then plugging numbers into those equations to obtain 
answers for test questions.  This characterizes in part how novices approach problem solving in a 
content area such as physics.  However, a novice’s preoccupation with the mathematics of physics 
leaves little attention or consideration directed toward the underlying laws and principles.  In this 
paper, we present both an instructional and problem-solving approach in the realm of physics that 
employs constraint graphs – i.e., a representational convention in which a multitude of variables 
are combined into a network of mathematical relationships.  Specifically, constraint graphs serve 
to organize and structure the mathematics of physics in such a way that more easily renders tasks 
of problem-solving and learning.  Our hope is that high school students’ use of constraint graphs 
eases the burden associated with mathematics and provides an opportunity to understand better 
the laws and principles of both physics and engineering.
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1. OUR FRAME OF REFERENCE

Solving physics problems is a difficult, intellectual endeavor for novice students at the high school 
level.  For many of them, solving such problems is merely a process of memorizing equations, 
evoking the equations, and then plugging numbers into those equations to obtain “the answer.”  
Moreover, their problem-solving strategy is based on the principle of trial-and-error, epitomized 
by confusion as to where to begin, countless false starts, cursory manipulations of mathematical 
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expressions, and becoming “lost.”  However, this strategy proves to be highly inefficient and 
ineffective for numerous reasons.  The number of unique equations and redundant variations that 
students memorize from a textbook is voluminous; the way in which students recall equations 
germane to the problem at hand is largely ad hoc and serendipitous; the methods by which 
students manipulate and solve a system of equations is haphazard; and the compartmentalized 
nature of how students think about problems obfuscates important linkages between relevant 
subject matter.  Overall, the novice’s preoccupation with the mathematics of physics leaves little 
attention or consideration directed toward the underlying laws and principles.

The literature from the burgeoning area of physics education research is replete with examples of 
similar observations.  Physicists and cognitive scientists alike strive to understand how students 
learn physical principles and what can be done to improve the efficacy of physics instruction22, 24.

Several researchers recount their experiences with alternative approaches to physics instruction.  
Reif and coauthors25 describe an investigation in which students were taught how to learn 
relations in physics, in addition to general problem-solving skills; van Weeren, et al.,35 explain 
their method of instruction, which involves the use of a compiled list of key relations and a 
systematic approach to problem-solving; Leonard, et al.,15 instruct students on a qualitative 
approach to solving physics problems, implemented through written strategies and concept 
analysis; and an analysis of survey data by Hake7 strongly suggests the effectiveness of 
instructional methods that interactively engage students in physics.  Other researchers relate their 
use of computers to augment physics instruction and experimentation3, 26, 32.

Through various surveys and interviews, researchers attempt to understand what students think 
about physics in general and how they go about learning it.  It is suggested that the students’ 
epistemological beliefs and expectations about physics affect their behavior, understanding, and 
subsequent class performance9, 21, 23.  Consequently, Hammer10, 11 recommends that teachers 
consider students’ beliefs during instruction, challenge their misconceptions, and instill the 
appropriate conceptual knowledge.  Other researchers endeavor to explain the origins of students’ 
preconceived beliefs about the physical world.  DiSessa4 theorizes that naïve students have a 
weakly organized framework of intuitive knowledge about physics composed of 
phenomenological primitives (p-prims) abstracted from everyday experiences.  Sherin29 proposes a 
similar framework of primitives that comprise an intuitive understanding of the mathematical 
expressions representing physical principles.

Using protocol analysis, researchers characterize the differences in how experts solve physics 
problems as compared to novices.  It is reported that other than the level of physical intuition and 
amount of practice acquired solving such problems, experts and novices pursue entirely different 
solution strategies.  Experts “work forward” from the known quantities to the unknown value, 
while novices “work backward” from the unknown solution to the given values by means of 
intermediate sub-goals30, 14.  These different solution strategies have been validated in part by 
means of computer simulation13.  Chi and coauthors2 attribute differences between novice and 
expert students to how they categorize physics problems into various “types,” with which 
contextual knowledge and representations are associated. P
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But what is missing from the literature is some indication of how we can assist high school 
students lacking a strong background in mathematics cope with the systems of equations 
encountered when they solve physics problems.  In terms of a metaphor, our students are too 
overwhelmed by individual trees (i.e., equations) such that they are unable to see the forest (i.e., 
physical principles).  This behooves us to ask the following question, how might the mathematics 
of physics be organized and structured in such a way that more easily renders students’ tasks of 
problem-solving and learning?

In this paper, we answer the preceding question in the context of our experiences interacting with 
students in high school physics classes as part of the NSF GK-12-supported Student and Teacher 
Enhancement Partnership (STEP) program at the Georgia Institute of Technology.  Specifically, 
we introduced students to the representational formalism known as a constraint graph, described 
in Section 2.  Constraint graphs are a type of pictorial information model, particularly amenable to 
application in a mathematically intensive domain like physics as demonstrated in Section 3.  In 
Section 4, we relate how students utilized constraint graphs to model physics problems and 
structure their problem-solving efforts.  Summary remarks and avenues for future research are 
given in Section 5.

2. OUR FOUNDATION: CONSTRAINT GRAPHS

2.1 Historical Overview
Following the advent of computer technology, mathematicians turned their attention toward 
structuring the solution of very large systems of equations.  Due to the limitations of early 
computing, it was only possible to calculate automatically the values for system variables by 
means of solution procedures that were not merely effective, but also highly efficient.  
Researchers like Parter19, Harary12, and Steward33 developed partitioning techniques and 
alternative representations, which rendered such mathematics tractable.  To determine if a very 
large system of equations was well posed, Friedman and Leondes5 developed a formal 
mathematical basis for what they coined constraint theory.  Work in this area enabled computers 
to calculate solutions to problems involving n equations in n unknowns, making possible the 
computer-based simulation and analysis of complex systems from, e.g., biology, economics, and 
electronics.

The computer science and artificial intelligence communities recognized the ramifications of 
constraint theory and soon adopted research thrusts for applications in areas as diverse as 
planning, decision-making, and vision.  Among the first computer programs to employ rigorously 
the notion of constraints was SketchPad34, an interactive computer graphics system in which 
geometric entities were modeled with constraints.  ThingLab1, a computer-based simulation 
environment, utilized constraints to model the interactions of assorted objects.  Steele and 
Sussman31 devised a computer language for modeling and computing networks of constraints that 
represented physical systems such as electrical circuits.  But perhaps the most relevant 
applications arise from the field of engineering design, in which constraints are used to model the 
various attributes of technical systems6, 28, 27, 16.

Today a comprehensive theory of constraints includes software systems for building constraint 
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networks, techniques for managing constraints, algorithms for solving constraints, and methods 
for ensuring the consistency of constraints.  Details about such topics are rooted in computer 
science and can be found in, e.g., 17, 18, 36.  In this paper we limit our focus to a single aspect of 
constraint theory; specifically, we consider in the next section the pictorial representation of 
mathematical relations in the form of constraint graphs.

2.2 Anatomy of a Constraint and its Graph
Constraints have been called functions, requirements, relations, and rules in the literature.  Despite 
the abundance of terms, a constraint is simply an explicit relationship among variables typically 
stated in the form of a mathematical expression.  For example, the constraint represented by the 
equation a = b × c relates the variables {a, b, c} utilizing the operators {= , ×}, thereby specifying 
how allowable values are obtained.  Of course, this anatomical view of constraints is not limited 
to the standard set of arithmetic operators, but may also include operators of types relational, 
Boolean, integro-differential, exponential, etc.  This allows for a diversity of mathematical 
expression, including constraints that are of nonlinear, discontinuous, partial differential, logical, 
and inequality forms.

Constraint theory incorporates a unique scheme for representing such expressions.  A constraint 
graph denoting the equation a = b × c is illustrated in Figure 1.  In graph theoretic terms, the 
variables {a, b, c} are each represented by a vertex (known as a “knot”) while the relationship 
itself is represented by another type of vertex (known as a “node”).  Knots are connected to a 
node by lines (known as “edges” or “arcs”) if and only if the corresponding variables are involved 
in the respective constraint.  Note that in the graphical representation of a constraint, the number 
and names of the variables are visually highlighted while the mathematical expression is de-
emphasized.  In this manner, the valuation of the variables achieves predominance and the 
constraint is merely a rule for attaining a missing value.

a = b × ca
b

c
a = b × ca

b

c
Figure 1.  Example of a constraint graph

Now consider the following system of equations:  {a = b × c , d = a + c}.  Following the 
representational convention outlined previously, constraint graphs are generated as shown in 
Figure 2.  Since the variables {a, c} are members of both constraints, lines are drawn connecting 
the corresponding knots to each node.  In this scheme explicit linkages are established among the 
graphs, thereby allowing one a better feel for topological properties – i.e., how a system of 
constraints is connected and what pathways the values of variables might traverse in its solution.  
Such a representation of any number of linked constraint graphs is termed a constraint network.
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a = b × ca

c
d = a + cd

ba = b × ca

c
d = a + cd

b

Figure 2.  Example of a constraint network

Adopting the technique employed by Peak and coauthors20, a number of constraints can be 
bundled together into what is termed a “subsystem view.”  This is illustrated in Figure 3, featuring 
the previous system of equations and instantiated values for the variables.  Here, the semantic of 
the representation is akin to a “black box”; the constraints are masked and all that is visible are the 
variables and their valuations.  Although this view is particularly useful when the network of 
constraints is well known and variable valuations are of prime importance, we find little use for it 
in the context of this paper.  Instead, we focus on applying the representational formalisms for 
constraint graphs and networks to high school physics problems in the next section.

a b

c d

6 3

2 8

a b

c d

6 3

2 8

Figure 3.  Instantiated subsystem view of the previous constraint network

3. APPLYING CONSTRAINT GRAPHS TO CONCEPTS IN HIGH SCHOOL 
PHYSICS

It is our belief that constraint graphs are ideally suited for application within a high school physics 
class.  In this section, we demonstrate how constraint networks representing introductory physics 
concepts can be built.  What follows is an example of how constraints and their graphs might be 
introduced and assembled into a constraint network modeling an inclined plane concept.  In this 
discussion, we presuppose a working knowledge of the concepts involved (cf. 8).  In Section 3.2, 
brief mention is made regarding the topic of making constraint graphs computable.

3.1 Inclined Plane Problems
Physics problems involving a mass sliding down an inclined plane are a common fixture of 
classical mechanics encountered early in the course.  Solving such problems requires the 
application of elementary principles from geometry, trigonometry, and algebra, not to mention 
Newtonian mechanics.

Consider a block of mass m resting on a horizontal plane.  The weight W of the block is defined 
by the following constraint:  W = m × g, where g is the local acceleration of gravity.  A free body 
diagram of this situation is depicted in Figure 4, along with the associated constraint graph. P
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W

m

W = m × gW
m

g

W

m

W

m

W = m × gW
m

g

Figure 4.  Free body diagram and constraint graph representing weight

Now imagine that the plane upon which the block rests is inclined by angle θ.  Choosing an 
appropriate coordinate system, the resultant vector W representing the weight of the block can be 
resolved into two constituent vectors, namely, (1) a vector parallel to the inclined plane 
(representing the force F directed down the ramp), and (2) a vector perpendicular to the inclined 
plane (representing the normal force N exerted on the block by the plane).  These vectors are 
illustrated in the free body diagram of Figure 5.  Employing concepts from geometry and 
trigonometry, the relevant constraints are as follows:  {F = W × sin θ , N = W × cos θ}.  The 
corresponding graphs are also depicted in Figure 5, connected into a constraint network.

θ

W

m

F

N

N = W × cos θN

W = m × gW
m

g

F = W × sin θF
θ

θ

W

m

F

N
θ

W

m

F

N

N = W × cos θN

W = m × gW
m

g

F = W × sin θF
θ

Figure 5.  Free body diagram and constraint network for an inclined plane

Previously, it was assumed that the inclined plane was frictionless; but, consider the situation in 
which the surface of the plane is characterized by a coefficient of static friction µ.  Consequently, 
a frictional force f is defined by the constraint f = µ × N.  This new frictional force is shown in 
both the free body diagram and constraint network of Figure 6.
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N = W × cos θN

W = m × gW
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µ
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W = m × gW
m

g

F = W × sin θF
θ

θ

W

m

F

N

f

µ

θ

W

m

F

N

f
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f = µ × Nf
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Figure 6.  Free body diagram and constraint network with addition of friction

A final task in this analysis of forces acting upon the block-at-rest on an inclined plane involves 
computing the net force directed down the ramp, Fnet.  This net force is the vector difference 
between the force F and the frictional force f, the magnitude of which is defined by the constraint 
Fnet = F − f.  The previous free body diagram and constraint network is augmented with the net 
force as shown in Figure 7.

N = W × cos θN

W = m × gW
m

g

F = W × sin θF
θ

θ

W

m

F

N

f

µ

f = µ × Nf
µ

Fnet = F - fFnet

Fnet

N = W × cos θN

W = m × gW
m

g

F = W × sin θF
θ

θ

W

m

F

N

f

µ

f = µ × Nf
µ

Fnet = F - fFnet

Fnet

Figure 7.  Free body diagram and constraint network with addition of net force

3.2 A Note on Making Constraint Graphs Computable
As discussed in Section 2.1, a theory of constraints emerged for the purpose of enabling 
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computers to solve a very large system of equations.  Although the graphical representation of 
constraint networks serves as an extremely useful information model, its sole consideration in 
isolation from its computational counterpart is like riding in a carriage without an attached horse.  
For that reason, brief mention is made on implementing automatically computable constraint 
graphs; however, it should be realized that anything more than a passing glance falls outside the 
scope of this paper.

Historically, a significant challenge of programming a computer to solve constraints involves the 
multidirectional aspect of a mathematical relation given the imperative, procedural nature of 
traditional computing languages.  As such, unless programmers are utilizing a declarative 
language (e.g., Prolog) then they must provide explicit instructions regarding the solution of a 
constraint for any permutation of its variable valuations.  Here, we demonstrate an approach to 
implementing an automatically computable constraint graph by embedding JavaScript 1.5 code in 
a HyperText Markup Language (HTML) encoded webpage.  We limit our discussion to aspects 
of the JavaScript code alone.

Consider the scalar form of the constraint representing Newton’s second law of motion, in 
particular, F = m × a, where F is the force resulting from mass m undergoing an acceleration a.  
Given valuations for any two of the variables, then the value for the third variable may be 
computed by means of algebraically manipulating the governing equation.  For instance, given 
values for m and a, then F is computed by F = m × a; but when given values for a and F, then m 
is computed by m = F / a; similarly, when given values for m and F, then a is computed by a = F / 
m.

Allowing users to input any permutation of numerical values (of floating-point type) for two of 
these variables in text fields (named “force,” “mass,” and “accel”) associated with a HTML-
encoded form (named “cgcalc”), a series of conditional tests can be utilized to determine which 
variable is not valued.  This is accomplished with the three successive if-statements shown in 
Figure 8, in which each variable is tested for a value that is not a number (“isNaN”).  In the event 
that the test returns a true value, then the appropriate form of the constraint is solved and the 
resulting valuation of the variable is output to its respective text field on the HTML form.  Note 
that additional code should be added in order to perform error-trapping and consistency checking.  
A more complete version of this function and its associated HTML-encoded form is available 
(URL: http://srl.marc.gatech.edu/~scottc/step/physics/secondlaw.html).

<script type="text/javascript">

function calculate()
{

var force = parseFloat(document.forms.cgcalc.force.value);
var mass = parseFloat(document.forms.cgcalc.mass.value);
var accel = parseFloat(document.forms.cgcalc.accel.value);

if (isNaN(force))
force = mass * accel;
document.forms.cgcalc.force.value = force;

if (isNaN(mass))
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mass = force / accel;
document.forms.cgcalc.mass.value = mass;

if (isNaN(accel))
accel = force / mass;
document.forms.cgcalc.accel.value = accel;

}

</script>
Figure 8.  Solving a constraint graph utilizing JavaScript 1.5, embedded in HTML

4. OUR EXPERIENCES UTILIZING CONSTRAINT GRAPHS IN HIGH SCHOOL 
PHYSICS

To determine whether or not the use of constraint graphs organizes and structures the 
mathematics of physics in such a way that more easily renders tasks of problem-solving and 
learning, we interacted with students in physics classes at Westlake High School as part of 
Georgia Tech’s NSF GK-12-supported Student and Teacher Enhancement Partnership (STEP) 
program.  It was evident that students in these high school physics classes experienced difficulty 
mastering the underlying mathematics of physical principles – particularly when solving a 
collection of equations representing a physical system.  Generally, such problems are solved by 
means of a strategic, logical progression in which the value of a variable obtained through one 
mathematical relation is substituted into another expression, thereby enabling the valuation of a 
different variable.  However, we observed that students frequently struggled to make sense of 
these problems, instead becoming mired in identifying the given information, distinguishing 
missing information, and then utilizing appropriate mathematical expressions to relate one with 
the other.  Their deficiencies in planning and implementing mathematical solution procedures 
make these physics students ideal subjects for our study.

Initially, our investigation was piloted with two students during one-on-one physics tutorials in an 
after-school setting.  Here, the representational formalism of constraint graphs was explained and 
demonstrated utilizing web-based forms of the type discussed in Section 3.2.  The students were 
asked to complete their homework independently (e.g., physics problems featuring pendulums) 
and then to check their answers with a computable constraint graph template (e.g., URL:  
http://srl.marc.gatech.edu/~scottc/step/physics/pendulum.html).  In doing so, the 
students became comfortable with the constraint graph representation in which the mathematics 
governing pendulums was made explicit in a highly structured manner.  Increased proficiency with 
correctly solving problems was observed as the two students demonstrated an improved 
understanding of the topics addressed with constraint graphs during these tutorials.  
Consequently, our qualitative pilot study suggested that high school physics students are able to 
comprehend constraint graph models and perhaps benefit educationally from instruction utilizing 
the representational formalism.  This served as impetus to initiate a more quantitative study on the 
matter involving a greater number of participants.

Towards that end, approximately 25 students in each of three different physics-based classes at 
Westlake High School – i.e., Physics, Honors Physics, and Physical Science – were introduced to 
the notion of constraint graphs over the course of a one-hour period.  Since these classes 
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represent a broad range of academic ability at the high school level, the presentation of details 
regarding constraint graphs and their usage was tailored accordingly.  For instance, the 
introduction of constraint graphs to students in Physical Science did not include the concept of 
multi-graph networking, as this complication was inappropriate to their current academic level; on 
the other hand, students in Honors Physics received concentrated instruction associated with 
networking five or more constraint graphs, in keeping with the sorts of problems that they are 
expected to solve.  Further, the students were exposed to various examples of constraint graphs 
(both hand-drawn and computer-generated) representing a variety of physical principles.

Following this introduction, another period of each class was spent incorporating constraint 
graphs into the topic at hand.  In the case of the Honors Physics class, this involved the 
application of constraint graphs to problems concerning energy, work, and momentum.  The 
equations I = F × t , p = m × v , W = F × s , and KE = 0.5 × m × v ^ 2  were formed into a 
constraint network with which problems were solved.  Afterwards, the students were asked to 
augment the problem by linking another equation, s = v × t , to solve for distance.  Throughout 
the process, we noticed that students seemed to enjoy the graphical representation as it was 
extremely novel and somewhat challenging compared to the traditional problem-solving format.  
When practicing computations with the constraint graphs, students used simple integer values 
initially, filling in the missing value without hesitation.  The visual nature of the format seemed to 
make checking answers easier and more automatic as opposed to what is deemed the tedious 
routine involving the substitution of computed answers back into equations.  Several students 
reported that the inclusion of units in the graph made the process even clearer to them.  
Moreover, there were several “ah-ha” moments when students audibly reacted to a new 
understanding of the concepts encountered.

Serving as a brief check to ensure that the inclusion of constraint graphs in the physics-based 
curricula was being well received, a short quiz was administered in which students were instructed 
to solve a few problems utilizing constraint graphs.  As with any new concept, the proper 
application of constraint graphs was on a continuum from careful attention to detail to complete 
lack of understanding.  Interestingly though, some students who had struggled previously showed 
additional understanding.  Samples of Honors Physics students’ attempts to generate constraint 
networks are shown in Figure 9.  Note how the constraint graphs in 9(d) remain isolated, 
compared to the networked versions of 9(a-c); regardless, each of the submissions features 
reasonably accurate valuations.  This suggests that there may be some value in students’ use of 
independent constraint graphs as opposed to constraint networks.

(a) (b)
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(c) (d)
Figure 9.  Samples of student-generated constraint networks

To complete the class unit before proceeding to the next topic, students were asked to write and 
submit comments regarding their individual feelings (e.g., positive, negative, or neutral) about 
constraint graphs.  Students responded with a range of statements about the perceived impact.  
Most positive statements revolved around improved organization and better understanding of 
relationships between equations; several of the responses focused on the linkages and logical 
progression through a problem.

“It’s very helpful because it shows how each equation connects to the others.”
“Using graphs is helpful for solving word problems.”
“I have a better understanding of how these formulas relate to one another.”
“This has helped me a little in keeping the numbers and units straight.”
“The constraint graphs help me place my numbers in the right place.”

Some comments were more general.

“Although I have been absent a few days, this made the lesson quick to learn.”
“Yes it helped, I got through the problem a lot quicker.”
“I really like doing these graphs, it helps me understand.”

One comment from a consistently excellent student was significant.

“I believe that this process will be helpful to others because I have been doing the same 
thing in my head to organize and understand the different equations and to help me solve 
the problems successfully.”

There were also negative comments.
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“No.  Did not help.  Too much involved.”
“This method confuses me, especially since I have to figure out how the constraint 
graphs are related.”

In all, students made roughly ten positive comments for every one negative comment.

In the units that followed, the instructor presented the mathematics underlying physical principles 
within the classes in both traditional and constraint graph formats.  Ten quizzes were administered 
during that time, in which students were permitted to solve the problems using any method 
desired.  Roughly 25% (at least six students) in each of the classes chose to utilize constraint 
graphs when solving those problems, which suggests that some of the students find the technique 
appealing or preferable to the traditional approach.

In order to quantify and interpret the impact of constraint graphs on student performance, the 
following three evaluative categories and associated rubrics were defined.

Proficiency – Is the constraint graph representation well formed in terms of boxes, vertices, •
lines, and labels?  The merit of the representational formalism is judged utilizing the following 
criteria.

Rating Descriptive Characteristics
5 Constraints are boxed; 100% of arcs are present; linkages among graphs are correctly 

established; labels are present; all valuations and units are indicated
4 Constraints are boxed; 100% of arcs are present; linkages among graphs are correctly 

established; labels are present; some valuations are indicated
3 Constraints are boxed; 75% of arcs are present; linkages might exist among graphs, 

although they are generally incorrect; labels are present; few valuations indicated
2 Constraints are boxed; 50% of arcs are present; no linkages exist among graphs; labels 

might be present; valuations are not indicated
1 Constraints are boxed; 25% of arcs are present; no linkages exist among graphs; no 

labels are present; valuations are not indicated
0 No apparent effort is made to utilize constraint graph representation

Correctness – Are the numerical answers computed with the constraint graph correct?  To •
make assessment of this category simple, the rating scheme is binary with each correct 
numerical answer receiving one point.  We utilized quizzes that feature two problems, each 
requiring the computation of a single answer; in this case, the rubric is as follows.

Rating Descriptive Characteristics
2 Two numerical answers are correct
1 One numerical answer is correct
0 None of the numerical answers are correct

Likelihood of usage – Given opportunity for using constraint graphs, will students employ •
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the technique?  This category is assessed by a simple count of those students who utilized the 
technique to any extent versus those who did not.

Given these means for assessment, two quizzes were administered in each of the physics classes 
regarding the current topics of wave propagation.  On the day of the first quiz, it was requested 
that the students utilize constraint graphs to solve two problems regarding sound waves; on the 
day of the second quiz, the students were informed that they could select any method desired to 
solve two different problems on the subject of electromagnetic waves.  Results from the Honors 
Physics class were compiled and included here.  For those students who employed constraint 
graphs, their proficiency was evaluated utilizing the aforementioned rubric; the mean value of 
proficiency on Quiz 1 was 3.0, while that of the students who chose to use constraint graphs on 
Quiz 2 was 3.43.  In terms of correctness, the entire class achieved a mean value of 1.2 on Quiz 1; 
the average measure of correctness for students who utilized constraint graphs on Quiz 2 was 
1.14, while the mean value of correctness for students who chose not to use constraint graphs on 
the same quiz was 0.67.  Likelihood of usage, measured as the percentage of the class electing to 
make use of constraint graphs on Quiz 2, was determined to be 60.9% (i.e., 14 out of 23 
students); however, this figure is somewhat inflated compared to the previous observation that 
roughly 25% of the students consistently employ constraint graphs.  At the very least, these 
preliminary results suggest that it is possible for constraint graphs to play a role in the 
improvement of high school student physics performance.
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Figure 10.  Assessment of constraint graph usage in the Honors Physics class

5. CLOSING REMARKS

We assert that the representational formalism of constraint graphs provides a number of 
affordances for novice students solving physics problems at a high school level.  The elegant 
representation of constraint graphs makes explicit the linkages between mathematical 
relationships, which students might otherwise find disparate or irrelevant; it provides a means for 
tracking the flow of variables and their valuations from one constraint to another.  The building 
block nature of constraint graphs makes it easy to model complex problems involving numerous 
elements, simply by aggregating different constraint graphs; this adds a dimension of concreteness 
to an otherwise abstract mathematical system.  Moreover, the process of building constraint 
networks embodies a conceptual planning and strategy formulation phase, a task that novices tend 
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to avoid consciously.  Collectively, constraint graphs serve to organize and structure the 
mathematics of physics in such a way that more easily renders tasks of problem-solving and 
learning.

Further, the incorporation of this representational technique using logically networked graphs 
serves several additional purposes in a high school physics classroom.

It seems to provide an alternative tool for problem-solving involving the organization of •
given and required elements of the problem.  This approach most likely appeals to the 
learning styles of many students.
The format lends itself to providing a better understanding of relationships between •
equations and linkages among concepts, owing to the graphical representation that is more 
tractable than traditional mathematics.
The exposure to concepts of computer programming and information modeling (topics •
tangential to constraint graphs) is beneficial for today’s students.
And finally, we found that some students just seemed to enjoy the process more and thus •
performed better on assignments.  One might be inclined to dismiss this final purpose, 
however, the departure from the ordinary toward a more novel approach may be a 
significant factor in making physics enjoyable rather than feared.

As we continue with a more rigorous study of these issues, we envision a variety of possible 
expansions regarding the use of constraint graphs in physics.  A computer-based constraint graph 
utility might be developed enabling students to build their own templates online; students could 
include descriptions of linking rationale when constructing constraint graphs, or even investigate 
alternative representations of the graphs; students might even program their own constraint 
graphs in a manner similar to that discussed in Section 3.2.  Given the flexible and generic nature 
of this constraint graph information model, it should be possible to easily incorporate these new 
and exciting ideas into the physics curriculum.
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