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Abstract 

 

The Serial Peripheral Interface (SPI) input/output capability of the MC68HC11 microcontroller 

is a feature of the MC68HC11 architecture that is often overlooked by casual experimenters.  It 

is designed to interface to input/output devices that include special hardware specifically meant 

to connect to the SPI.  However, the SPI provides a handy way to output a generic high-speed 

stream of bits from the MC68HC11 without requiring additional external hardware.  That 

capability has been employed to generate the video signal for an alphanumeric text display on a 

standard video monitor, as described in an earlier ASEE paper
1
. 

 

This paper details a technique for producing a simple graphics display on a standard video 

monitor, using the SPI unit to generate the high-speed bit stream necessary for the video signal 

driving the monitor.  The display produced is adequate for simple line graphs or other 

comparable displays.  The heart of the technique described in this paper is controlling the timing 

of data emerging from the SPI very carefully, at the clock cycle level, and thus establishing the 

position of various graphical elements along the scanlines of the standard video display.  The 

technique relies heavily on creative programming techniques to achieve this clock-cycle-level 

control of the signal timing, clearly demonstrating the operation of the SPI unit while at the same 

time serving as a useful graphics output utility that can be used by other software. 

 

The software routines that control the MC68HC11’s SPI unit to produce the graphics output are 

revealed in this paper, as are the few discrete components necessary to produce a composite 

video signal to drive a standard video monitor.  Equipping an MC68HC11 microcontroller with 

this feature adds a handy output function that can be used in any MC68HC11 system. 
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+5 volts 

composite video 

Frame-sync – Port A bit 3

Scanline-sync – Port D bit 5

Video data – Port D bit 3

 

Figure 1.  Typical graph display 

Hardware Design 

 

The video graphics system described in this paper is an innovative application of the Serial 

Peripheral Interface (SPI) on the MC68HC11 microcontroller
2
, implemented with creative 

software that controls the SPI using detailed timing in the program.  The video graphics 

produced by this design are adequate for simple line graphs or similar images.  Figure 1 shows 

the display produced by the author’s implementation.  A warning – if you as the reader of this 

paper are not interested in low-level assembly language code and counting clock cycles of 

execution time on an instruction-by-instruction basis, you will have no interest in this paper.  

However, if designs that squeeze out the last measure of performance from a minimal amount of 

hardware interest you, as they do the author, then read on. 

 

The composite video signal
3
 produced by this system drives a 

standard video monitor.  The monitor is turned on its side so 

that scanlines run vertically from bottom to top.  This is done 

so that the limited resolution along a scanline (about 50 pixels 

at the 1 Mbit/second video rate possible from the SPI) does not 

limit the application.  The hardware involved in producing the 

composite video signal is shown in Figure 2.  The circuit 

shown there combines a frame-sync signal from the 

MC68HC11’s Port A bit 3, a scanline-sync signal from Port D 

bit 5, and a video signal from Port D bit 3 to generate the 

composite video signal.  The frame-sync signal is produced by 

interrupts generated by the Output Compare 5 unit in the 

MC68HC11.  The scanline-sync signal is generated by 

software in the service routine for that interrupt.  The video 

signal is the “Master-Out-Slave-In” data output of the SPI.  

The inverters shown in Figure 2 come from a 74LS05 chip, 

and have open-collector outputs.  They could easily be replaced with discrete transistors, but the 

74LS05 was available in the system and provided a quick way to combine the three signals.  The 

values of the resistors are chosen to produce acceptable sync levels and brightness on the 

particular video monitor driven by the composite video signal in the user’s system. 

 

This simple circuit is the only additional hardware required to implement the video display 

described here.  All the interesting activity occurs in the interrupt service routine for the 

MC68HC11’s Output Compare 5 unit. 

Figure 2.  Hardware required for composite video signal generation. 

Note:  Adjust resistor values to obtain desired brightness/contrast. 

360 Ω 

360 Ω 360 Ω 

Figure 2.  Composite video generation – resistor values chosen to adjust brightness and contrast. 
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Graph:   ; output compare 5 interrupt entry, 59.8810 Hz 
 ldaa #8        - 2 clocks 

 staa 1023 ; clear output compare 5 flag in TFLG1  - 4 clocks 

 ldd 101e ; output compare 5 event time   - 5 clocks 

 addd #8279 ; timer increment (3340110)to set frame rate - 4 clocks 

 std 101e ; establish next interrupt time   - 5 clocks 

 ldaa #13 ; # of dark scanlines to start frame  - 2 clocks 

 

GLdark:  ; exactly 12710 clock cycles per scanline 

 bsr GDark        - 6 clocks 

 deca         - 2 clocks 

 bne GLdark        - 3 clocks 

 

GLleft:  ; left side of graph – 12710 clock cycles 

 bsr GLight        - 6 clocks 

 brn GLleft ; wasted time      - 3 clocks 

 ldaa #c8 ; 20010 scanlines of data    - 2 clocks 

 

GLdata:  ; data scanlines – 12710 clock cycles each 

 bsr GData        - 6 clocks 

 deca         - 2 clocks 

 bne GLdata        - 3 clocks 

    

GLrght:  ; right side of graph – 12710 clock cycles 

 bsr GLight        - 6 clocks 

 brn GLrght ; wasted time      - 3 clocks 

 ldaa #13 ; # of dark scanlines at right side   - 2 clocks 

 

GLend:   ; finish the frame – 12710 clock cycles each 

 bsr GDark        - 6 clocks 

 deca         - 2 clocks

 bne GLend        - 3 clocks 

 

 inc 1020 ; output compare 5 now sets frame sync  - 6 clocks 

 ldaa #8        - 2 clocks 

 staa 100b ; force the frame sync pulse   - 4 clocks 

 dec 1020 ; frame sync returns to 0 on next interrupt - 6 clocks 

 rti  ; return from the interrupt   - 12 clocks 

 

Software Design 

 

Software that runs the video graphics system is based on a periodic interrupt generated by the 

Output Compare 5 hardware in the MC68HC11.  The service routine for the interrupt generates 

240 scanlines of image, each consuming exactly 63.5 microseconds, or 127 clock cycles of the 

MC68HC11 system running with an “E clock” of 2 MHz.  The interrupt repeat period, in order 

to be an integer multiple of the scanline period, is 16.7005 milliseconds, or 33401 clock cycles.  

This period gives an interrupt rate of 59.88 Hz, close enough to the nominal 60 Hz frame refresh 

rate for standard video monitors.  Port A bit 3, controlled by the Output Compare 5 interrupts, 

thus is used for the frame-sync signal.  That port bit is driven low on each interrupt to begin a 

frame.  The core of the interrupt service routine is shown below in Figure 3. 

As can be seen from a perusal of the code in Figure 3, the service routine starts with 

housekeeping to clear the interrupt flag and establish the next interrupt time.  Then it generates 

19 (=1316) scanlines with nothing on them as a left “border” of the frame, one scanline with a lit 

“bar” marking the left side of the graph, 200 (=c816) scanlines showing the 200 points of graphed 

Figure 3.  Interrupt Service Routine for Output Compare 5 (numbers in base 16) 
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GDark:   ; dark scanline – 11610 clock cycles 

 com 1008 ; scanline sync on - 6 clock cycles 

 ldab #2 ; time delay  - 2 clock cycles 

GWdark: 

 decb      - 2 clock cycles 

 bne GWdark    - 3 clock cycles 

 nop     - 2 clock cycles 

 nop     - 2 clock cycles 

 clr 1008 ; scanline sync off - 6 clock cycles 

 ldab #0f ; time delay  - 2 clock cycles 

GWdrk2: 

 decb     - 2 clock cycles 

 bne GWdrk2    - 3 clock cycles 

 nop     - 2 clock cycles 

 nop     - 2 clock cycles 

 nop     - 2 clock cycles 

 rts     - 5 clock cycles 

GLight:  ; light scanline – 11610 clock cycles 

 com 1008 ; scanline sync on - 6 clock cycles 

 ldab #2 ; time delay   - 2 clock cycles 

GWlght: 

 decb     - 2 clock cycles  

 bne GWlght    - 3 clock cycles 

 nop     - 2 clock cycles 

 nop     - 2 clock cycles 

 clr 1008 ; scanline sync off - 6 clock cycles 

 ldab #2 ; time delay  - 2 clock cycles 

GWlgt: 

 decb     - 2 clock cycles 

 bne GWlgt    - 3 clock cycles 

 nop     - 2 clock cycles 

 ldab #10    - 2 clock cycles 

 stab 1028 ; turn on video - 4 clock cycles 

 ldab #0b ; time delay  - 2 clock cycles 

GWlgh: 

 decb     - 2 clock cycles 

 bne GWlgh    - 3 clock cycles 

 ldab #50    - 2 clock cycles 

 stab 1028 ; turn off video - 4 clock cycles 

 rts     - 5 clock cycles 

data, one scanline with a lit “bar” marking the right side of the graph, and then 19 (=1316) dark 

scanlines for the right “border” of the frame.  Each of the three kinds of scanlines is generated by 

a separate subroutine, GDark, GLight, and GData, respectively, each of which executes in 

exactly 116 clock cycles, since scanlines must occur every 127 clock cycles during the frame, 

and there are 11 clock cycles worth of instruction execution between each scanline subroutine 

execution, as shown in Figure 3.  Following the 240 scanlines, bit 3 of port A is forced high to 

produce the frame-sync pulse and prepare for the next interrupt. 

The GDark subroutine, shown in Figure 4, has just one job to do, namely generate the scanline-

sync signal on Port D bit 5.  Otherwise the subroutine just wastes time to consume its 116 clock 

cycles.  It begins by complementing Port D, which turns on bit 5 and starts the scanline-sync 

pulse.  Than, after 16 clock cycles of instruction execution, it clears Port D to complete the pulse. 

Everything else in the GDark subroutine is just wasting time.  Nothing is put out on the video. 

Figure 4.  Subroutine to generate dark scanlines (numbers in base 16) 

Figure 5.  Subroutine to generate light scanlines (numbers in base 16) 
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The GLight subroutine, shown in Figure 5 on the previous page, has the additional job of turning 

on the video for a portion of the scanline to form the left or right edge of the displayed graph.  

This subroutine still must generate the pulse on scanline-sync just like GDark does, with exactly 

the same timing. The code in Figure 5 shows how these two jobs are accomplished.  The 

scanline-sync pulse is started by complementing Port D, and then completed by clearing Port D 

after wasting some time, just as in GDark.  Then a little more time is wasted, and the SPI system 

is disabled.  This has the effect of making the “Master-Out-Slave-In” signal low, which is used 

for the video signal, and that action lights the scanline on the screen.  The scanline remains lit 

until the SPI is re-enabled after another time delay in the subroutine that determines how long the 

lit portion of the scanline lasts. 

 

The third, and most complicated, subroutine that generates scanlines is GData, which produces 

scanlines that show one point of the displayed line graph.  The code for GData is shown in 

Figure 6 on the next page.  This code must generate the scanline-sync signal with the same 

timing as GDark and GLight do.  It also generates a “baseline” to form the bottom of the 

displayed graph.  Thirdly, it must light a pixel at a position along the scanline determined by the 

value of the data to be displayed at that position on the graph.  The data to be displayed are 

contained in a table in memory of 200 bytes, pointed at by the Y index register in the 

MC68HC11.  This GData subroutine must fetch the next data point out of the table and delay by 

a variable amount of time that depends on the data, before putting out the pixel representing the 

graphed point.  Of course, the subroutine must execute in exactly 116 clock cycles regardless of 

the data value, just like GDark and GLight.  This is a VERY tricky operation, and forms the meat 

of the results presented in this paper. 

 

The SPI in the MC68HC11 used by the author emits bits at a maximum rate of 1 microsecond 

per bit, or one bit every two clock cycles of instruction execution.  Thus, in order to adjust the 

position of a pixel along a scanline with a 1-pixel resolution, the time at which that pixel is 

emitted by the SPI must be adjusted with a resolution of 2 clock cycles.  Achieving such a tight 

resolution on a software time delay is not easy.  One cannot use a software loop that goes around 

a variable number of times, because the minimum loop time is more than 2 clock cycles and thus 

that technique cannot achieve the required timing resolution for delaying pixel generation.  The 

technique used in GData is to use a string of “nop” instructions, each of which executes in two 

clock cycles, and to jump into that string of instructions at a position determined by the value of 

the data to be displayed on the graph at that point.  By changing the number of  “nop” 

instructions skipped in the software, the time at which the pixel is generated on the scanline is 

adjusted.  Each “nop” that is skipped changes the position along the scanline at which the SPI 

emits the data pixel by two clock cycles, or one pixel position.  Fewer “nop” instructions 

executed means that the pixel is emitted earlier (lower) on the scanline.  Of course, since the total 

execution time for the GData subroutine must be fixed at 116 clock cycles, there must be a 

second set of “nop” instructions in which a compensating number are skipped to make the total 

number executed constant.  This leads to a physically cumbersome subroutine, but an elegant one 

timing-wise that allows pixels in the line graph to be positioned along the scanline (vertically) 

with a resolution of two clock cycles, or one pixel. 

 

Because the scanline time is limited, and the execution time of the GData subroutine is fixed, 

there is a limited range of data that can be plotted on the displayed graph using this technique.  

The implementaion shown in Figure 6 allows graphed data values between 0 and 18 (=1216). 

P
age 9.1401.5



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

 Copyright ©2004, American Society for Engineering Education 

Gdata:   ; data scanline – 11610 clock cycles, or 58 micro seconds 

 com 1008 ; scanline sync on    - 6 clock cycles 

 psha  ; save value in accumulator A  - 3 clock cycles 

 ldab 0,y ; retrieve next data coordinate (0-1810) - 5 clock cycles 

 negb        - 2 clock cycles 

 ldaa #fe ; 0 in low bit is what turns on video - 2 clock cycles 

 bita 1029 ; just touch the SPI status register - 4 clock cycles 

 clr 1008 ; scanline sync off    - 6 clock cycles 

 staa 102a ; SPI data – base line of graph  - 4 clock cycles 

 ldx #GPre ; pointer into code below   - 3 clock cycles 

 addb #12 ; calculate jump offset used below - 2 clock cycles 

 abx        - 3 clock cycles 

 iny  ; move to next data point   - 4 clock cycles 

 jmp 0,x ; jump into first block of nop’s  - 3 clock cycles 

GPre: 

 nop  ; 1810 nop’s into which jump is indexed - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 ldaa #fe ; pixel to turn on data point  - 2 clock cycles 

 bita 1029 ; just touch the SPI status register - 4 clock cycles 

 staa 102a ; store to SPI data    - 4 clock cycles 

 negb  ; calculate compensating index  - 2 clock cycles 

 addb #12       - 2 clock cycles 

 lslb        - 2 clock cycles 

 abx  ; adjust x for compensating jump  - 3 clock cycles 

 jmp 0f,x ; jump into next string of nop’s  - 3 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycles 

 nop        - 2 clock cycle 

 pula  ; restore saved value of accumulator A - 4 clock cycles 

 nop  ; timing     - 2 clock cycles 

 rts        - 5 clock cycles 

 
Figure 6.  Subroutine to produce data pixels (numbers in base 16) 
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If any data value in the table of 200 data points is outside of the range 0-18, this software will 

crash.  However, other code in the user’s software can check and guarantee that values to be 

graphed are in the proper range. 

 

Examining the code for GData, we see that the scanline-sync pulse is started in the same way as 

in GDark and GLight, by complementing Port D.  Rather than waste time during the pulse, 

however, a few things are done during the 16 clock cycles before clearing Port D to end the 

scanline-sync pulse.  These things include retrieving the next byte of data to be graphed from the 

table pointed at by index register Y, and preparing the pixel for output through the SPI to form 

the base line of the graph.  Any 0’s in the byte stored to the SPI for transmission result in lit 

pixels on the scanline, so the value of fe16 lights just one pixel when it is stored to the SPI data in 

the instruction following the clear of Port D to end the scanline-sync pulse.  Note that the 

operation of the SPI requires reading the SPI status register at address 102916 before storing data 

to be shifted out at address 102a16.  Nothing needs to be done with the status byte, but it must be 

touched.  That is the purpose of the “bita” instruction.  Following the store to the SPI shift 

register, the value in index register X is calculated to point into the first string of “nop” 

instructions at the appropriate place, and then an indexed jump is performed, implementing a 

variable delay with a resolution of 2 clock cycles or 1 pixel time, the executing time for a “nop” 

instruction.  Following that delay, whose value depends on the data to be graphed, a pixel is 

turned on by storing fe16 to the SPI shift register (after first touching the SPI status register, as 

before) to show the data point on the graph.  Then the value in index register X is adjusted to 

implement a compensating delay by jumping into a second string of “nop” instructions so that 

the total execution time of the GData subroutine is constant at 116 clock cycles regardless of the 

value of the data point graphed on that scanline.  Accumulator A is saved and restored in this 

subroutine because it’s value is used to count data scanlines in the core part of the interrupt 

service routine, discussed earlier. 

 

Summary 

 

The combination of hardware and software presented here produces a usable graphics display on 

a standard composite video monitor suitable for displaying line graphs or similar simple graphic 

images.  In order to use this package, the main program software must do several things, such as: 

 * establish the interrupt vector for Output Compare 5 to point to “Graph” 

 * turn on bits of DDRD to make appropriate port bits outputs 

 * set TCTL1 to clear Port A bit 5 on Output Compare 5 interrupts 

 * enable Output Compare 5 interrupts in TMSK1 

 * enable the SPI as a master in SPCR. 

 *  enable interrupts with the “cli” instruction 

These initialization steps can be included easily along with other initializations in the main 

program of whatever application uses the graphic capability described here.  Data to be graphed 

must be in a table of 200 bytes in memory, and the main program must point index register Y to 

the beginning of that table.  The data to be plotted must be in the range 0-18 (0-1216).  Although 

much fancier graphing capabilities are, of course, available, the system described here 

accomplishes a lot with very little, always the goal of any engineering endeavor.  It should be 

easy to incorporate the graphing capability described here into almost any system using an 

MC68HC11 microcontroller. 
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