
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

Session 3620

Video Graphics Using the SPI

on the MC68HC11 Microcontroller

Christopher R. Carroll

Electrical and Computer Engineering

University of Minnesota Duluth

Abstract

The Serial Peripheral Interface (SPI) input/output capability of the MC68HC11 microcontroller

is a feature of the MC68HC11 architecture that is often overlooked by casual experimenters. It

is designed to interface to input/output devices that include special hardware specifically meant

to connect to the SPI. However, the SPI provides a handy way to output a generic high-speed

stream of bits from the MC68HC11 without requiring additional external hardware. That

capability has been employed to generate the video signal for an alphanumeric text display on a

standard video monitor, as described in an earlier ASEE paper
1
.

This paper details a technique for producing a simple graphics display on a standard video

monitor, using the SPI unit to generate the high-speed bit stream necessary for the video signal

driving the monitor. The display produced is adequate for simple line graphs or other

comparable displays. The heart of the technique described in this paper is controlling the timing

of data emerging from the SPI very carefully, at the clock cycle level, and thus establishing the

position of various graphical elements along the scanlines of the standard video display. The

technique relies heavily on creative programming techniques to achieve this clock-cycle-level

control of the signal timing, clearly demonstrating the operation of the SPI unit while at the same

time serving as a useful graphics output utility that can be used by other software.

The software routines that control the MC68HC11’s SPI unit to produce the graphics output are

revealed in this paper, as are the few discrete components necessary to produce a composite

video signal to drive a standard video monitor. Equipping an MC68HC11 microcontroller with

this feature adds a handy output function that can be used in any MC68HC11 system.

P
age 9.1401.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

+5 volts

composite video

Frame-sync – Port A bit 3

Scanline-sync – Port D bit 5

Video data – Port D bit 3

Figure 1. Typical graph display

Hardware Design

The video graphics system described in this paper is an innovative application of the Serial

Peripheral Interface (SPI) on the MC68HC11 microcontroller
2
, implemented with creative

software that controls the SPI using detailed timing in the program. The video graphics

produced by this design are adequate for simple line graphs or similar images. Figure 1 shows

the display produced by the author’s implementation. A warning – if you as the reader of this

paper are not interested in low-level assembly language code and counting clock cycles of

execution time on an instruction-by-instruction basis, you will have no interest in this paper.

However, if designs that squeeze out the last measure of performance from a minimal amount of

hardware interest you, as they do the author, then read on.

The composite video signal
3
 produced by this system drives a

standard video monitor. The monitor is turned on its side so

that scanlines run vertically from bottom to top. This is done

so that the limited resolution along a scanline (about 50 pixels

at the 1 Mbit/second video rate possible from the SPI) does not

limit the application. The hardware involved in producing the

composite video signal is shown in Figure 2. The circuit

shown there combines a frame-sync signal from the

MC68HC11’s Port A bit 3, a scanline-sync signal from Port D

bit 5, and a video signal from Port D bit 3 to generate the

composite video signal. The frame-sync signal is produced by

interrupts generated by the Output Compare 5 unit in the

MC68HC11. The scanline-sync signal is generated by

software in the service routine for that interrupt. The video

signal is the “Master-Out-Slave-In” data output of the SPI.

The inverters shown in Figure 2 come from a 74LS05 chip,

and have open-collector outputs. They could easily be replaced with discrete transistors, but the

74LS05 was available in the system and provided a quick way to combine the three signals. The

values of the resistors are chosen to produce acceptable sync levels and brightness on the

particular video monitor driven by the composite video signal in the user’s system.

This simple circuit is the only additional hardware required to implement the video display

described here. All the interesting activity occurs in the interrupt service routine for the

MC68HC11’s Output Compare 5 unit.

Figure 2. Hardware required for composite video signal generation.

Note: Adjust resistor values to obtain desired brightness/contrast.

360 Ω

360 Ω 360 Ω

Figure 2. Composite video generation – resistor values chosen to adjust brightness and contrast.

P
age 9.1401.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

Graph: ; output compare 5 interrupt entry, 59.8810 Hz
 ldaa #8 - 2 clocks

 staa 1023 ; clear output compare 5 flag in TFLG1 - 4 clocks

 ldd 101e ; output compare 5 event time - 5 clocks

 addd #8279 ; timer increment (3340110)to set frame rate - 4 clocks

 std 101e ; establish next interrupt time - 5 clocks

 ldaa #13 ; # of dark scanlines to start frame - 2 clocks

GLdark: ; exactly 12710 clock cycles per scanline

 bsr GDark - 6 clocks

 deca - 2 clocks

 bne GLdark - 3 clocks

GLleft: ; left side of graph – 12710 clock cycles

 bsr GLight - 6 clocks

 brn GLleft ; wasted time - 3 clocks

 ldaa #c8 ; 20010 scanlines of data - 2 clocks

GLdata: ; data scanlines – 12710 clock cycles each

 bsr GData - 6 clocks

 deca - 2 clocks

 bne GLdata - 3 clocks

GLrght: ; right side of graph – 12710 clock cycles

 bsr GLight - 6 clocks

 brn GLrght ; wasted time - 3 clocks

 ldaa #13 ; # of dark scanlines at right side - 2 clocks

GLend: ; finish the frame – 12710 clock cycles each

 bsr GDark - 6 clocks

 deca - 2 clocks

 bne GLend - 3 clocks

 inc 1020 ; output compare 5 now sets frame sync - 6 clocks

 ldaa #8 - 2 clocks

 staa 100b ; force the frame sync pulse - 4 clocks

 dec 1020 ; frame sync returns to 0 on next interrupt - 6 clocks

 rti ; return from the interrupt - 12 clocks

Software Design

Software that runs the video graphics system is based on a periodic interrupt generated by the

Output Compare 5 hardware in the MC68HC11. The service routine for the interrupt generates

240 scanlines of image, each consuming exactly 63.5 microseconds, or 127 clock cycles of the

MC68HC11 system running with an “E clock” of 2 MHz. The interrupt repeat period, in order

to be an integer multiple of the scanline period, is 16.7005 milliseconds, or 33401 clock cycles.

This period gives an interrupt rate of 59.88 Hz, close enough to the nominal 60 Hz frame refresh

rate for standard video monitors. Port A bit 3, controlled by the Output Compare 5 interrupts,

thus is used for the frame-sync signal. That port bit is driven low on each interrupt to begin a

frame. The core of the interrupt service routine is shown below in Figure 3.

As can be seen from a perusal of the code in Figure 3, the service routine starts with

housekeeping to clear the interrupt flag and establish the next interrupt time. Then it generates

19 (=1316) scanlines with nothing on them as a left “border” of the frame, one scanline with a lit

“bar” marking the left side of the graph, 200 (=c816) scanlines showing the 200 points of graphed

Figure 3. Interrupt Service Routine for Output Compare 5 (numbers in base 16)

P
age 9.1401.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

GDark: ; dark scanline – 11610 clock cycles

 com 1008 ; scanline sync on - 6 clock cycles

 ldab #2 ; time delay - 2 clock cycles

GWdark:

 decb - 2 clock cycles

 bne GWdark - 3 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 clr 1008 ; scanline sync off - 6 clock cycles

 ldab #0f ; time delay - 2 clock cycles

GWdrk2:

 decb - 2 clock cycles

 bne GWdrk2 - 3 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 rts - 5 clock cycles

GLight: ; light scanline – 11610 clock cycles

 com 1008 ; scanline sync on - 6 clock cycles

 ldab #2 ; time delay - 2 clock cycles

GWlght:

 decb - 2 clock cycles

 bne GWlght - 3 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 clr 1008 ; scanline sync off - 6 clock cycles

 ldab #2 ; time delay - 2 clock cycles

GWlgt:

 decb - 2 clock cycles

 bne GWlgt - 3 clock cycles

 nop - 2 clock cycles

 ldab #10 - 2 clock cycles

 stab 1028 ; turn on video - 4 clock cycles

 ldab #0b ; time delay - 2 clock cycles

GWlgh:

 decb - 2 clock cycles

 bne GWlgh - 3 clock cycles

 ldab #50 - 2 clock cycles

 stab 1028 ; turn off video - 4 clock cycles

 rts - 5 clock cycles

data, one scanline with a lit “bar” marking the right side of the graph, and then 19 (=1316) dark

scanlines for the right “border” of the frame. Each of the three kinds of scanlines is generated by

a separate subroutine, GDark, GLight, and GData, respectively, each of which executes in

exactly 116 clock cycles, since scanlines must occur every 127 clock cycles during the frame,

and there are 11 clock cycles worth of instruction execution between each scanline subroutine

execution, as shown in Figure 3. Following the 240 scanlines, bit 3 of port A is forced high to

produce the frame-sync pulse and prepare for the next interrupt.

The GDark subroutine, shown in Figure 4, has just one job to do, namely generate the scanline-

sync signal on Port D bit 5. Otherwise the subroutine just wastes time to consume its 116 clock

cycles. It begins by complementing Port D, which turns on bit 5 and starts the scanline-sync

pulse. Than, after 16 clock cycles of instruction execution, it clears Port D to complete the pulse.

Everything else in the GDark subroutine is just wasting time. Nothing is put out on the video.

Figure 4. Subroutine to generate dark scanlines (numbers in base 16)

Figure 5. Subroutine to generate light scanlines (numbers in base 16)

P
age 9.1401.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

The GLight subroutine, shown in Figure 5 on the previous page, has the additional job of turning

on the video for a portion of the scanline to form the left or right edge of the displayed graph.

This subroutine still must generate the pulse on scanline-sync just like GDark does, with exactly

the same timing. The code in Figure 5 shows how these two jobs are accomplished. The

scanline-sync pulse is started by complementing Port D, and then completed by clearing Port D

after wasting some time, just as in GDark. Then a little more time is wasted, and the SPI system

is disabled. This has the effect of making the “Master-Out-Slave-In” signal low, which is used

for the video signal, and that action lights the scanline on the screen. The scanline remains lit

until the SPI is re-enabled after another time delay in the subroutine that determines how long the

lit portion of the scanline lasts.

The third, and most complicated, subroutine that generates scanlines is GData, which produces

scanlines that show one point of the displayed line graph. The code for GData is shown in

Figure 6 on the next page. This code must generate the scanline-sync signal with the same

timing as GDark and GLight do. It also generates a “baseline” to form the bottom of the

displayed graph. Thirdly, it must light a pixel at a position along the scanline determined by the

value of the data to be displayed at that position on the graph. The data to be displayed are

contained in a table in memory of 200 bytes, pointed at by the Y index register in the

MC68HC11. This GData subroutine must fetch the next data point out of the table and delay by

a variable amount of time that depends on the data, before putting out the pixel representing the

graphed point. Of course, the subroutine must execute in exactly 116 clock cycles regardless of

the data value, just like GDark and GLight. This is a VERY tricky operation, and forms the meat

of the results presented in this paper.

The SPI in the MC68HC11 used by the author emits bits at a maximum rate of 1 microsecond

per bit, or one bit every two clock cycles of instruction execution. Thus, in order to adjust the

position of a pixel along a scanline with a 1-pixel resolution, the time at which that pixel is

emitted by the SPI must be adjusted with a resolution of 2 clock cycles. Achieving such a tight

resolution on a software time delay is not easy. One cannot use a software loop that goes around

a variable number of times, because the minimum loop time is more than 2 clock cycles and thus

that technique cannot achieve the required timing resolution for delaying pixel generation. The

technique used in GData is to use a string of “nop” instructions, each of which executes in two

clock cycles, and to jump into that string of instructions at a position determined by the value of

the data to be displayed on the graph at that point. By changing the number of “nop”

instructions skipped in the software, the time at which the pixel is generated on the scanline is

adjusted. Each “nop” that is skipped changes the position along the scanline at which the SPI

emits the data pixel by two clock cycles, or one pixel position. Fewer “nop” instructions

executed means that the pixel is emitted earlier (lower) on the scanline. Of course, since the total

execution time for the GData subroutine must be fixed at 116 clock cycles, there must be a

second set of “nop” instructions in which a compensating number are skipped to make the total

number executed constant. This leads to a physically cumbersome subroutine, but an elegant one

timing-wise that allows pixels in the line graph to be positioned along the scanline (vertically)

with a resolution of two clock cycles, or one pixel.

Because the scanline time is limited, and the execution time of the GData subroutine is fixed,

there is a limited range of data that can be plotted on the displayed graph using this technique.

The implementaion shown in Figure 6 allows graphed data values between 0 and 18 (=1216).

P
age 9.1401.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

Gdata: ; data scanline – 11610 clock cycles, or 58 micro seconds

 com 1008 ; scanline sync on - 6 clock cycles

 psha ; save value in accumulator A - 3 clock cycles

 ldab 0,y ; retrieve next data coordinate (0-1810) - 5 clock cycles

 negb - 2 clock cycles

 ldaa #fe ; 0 in low bit is what turns on video - 2 clock cycles

 bita 1029 ; just touch the SPI status register - 4 clock cycles

 clr 1008 ; scanline sync off - 6 clock cycles

 staa 102a ; SPI data – base line of graph - 4 clock cycles

 ldx #GPre ; pointer into code below - 3 clock cycles

 addb #12 ; calculate jump offset used below - 2 clock cycles

 abx - 3 clock cycles

 iny ; move to next data point - 4 clock cycles

 jmp 0,x ; jump into first block of nop’s - 3 clock cycles

GPre:

 nop ; 1810 nop’s into which jump is indexed - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 ldaa #fe ; pixel to turn on data point - 2 clock cycles

 bita 1029 ; just touch the SPI status register - 4 clock cycles

 staa 102a ; store to SPI data - 4 clock cycles

 negb ; calculate compensating index - 2 clock cycles

 addb #12 - 2 clock cycles

 lslb - 2 clock cycles

 abx ; adjust x for compensating jump - 3 clock cycles

 jmp 0f,x ; jump into next string of nop’s - 3 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycles

 nop - 2 clock cycle

 pula ; restore saved value of accumulator A - 4 clock cycles

 nop ; timing - 2 clock cycles

 rts - 5 clock cycles

Figure 6. Subroutine to produce data pixels (numbers in base 16)

P
age 9.1401.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

If any data value in the table of 200 data points is outside of the range 0-18, this software will

crash. However, other code in the user’s software can check and guarantee that values to be

graphed are in the proper range.

Examining the code for GData, we see that the scanline-sync pulse is started in the same way as

in GDark and GLight, by complementing Port D. Rather than waste time during the pulse,

however, a few things are done during the 16 clock cycles before clearing Port D to end the

scanline-sync pulse. These things include retrieving the next byte of data to be graphed from the

table pointed at by index register Y, and preparing the pixel for output through the SPI to form

the base line of the graph. Any 0’s in the byte stored to the SPI for transmission result in lit

pixels on the scanline, so the value of fe16 lights just one pixel when it is stored to the SPI data in

the instruction following the clear of Port D to end the scanline-sync pulse. Note that the

operation of the SPI requires reading the SPI status register at address 102916 before storing data

to be shifted out at address 102a16. Nothing needs to be done with the status byte, but it must be

touched. That is the purpose of the “bita” instruction. Following the store to the SPI shift

register, the value in index register X is calculated to point into the first string of “nop”

instructions at the appropriate place, and then an indexed jump is performed, implementing a

variable delay with a resolution of 2 clock cycles or 1 pixel time, the executing time for a “nop”

instruction. Following that delay, whose value depends on the data to be graphed, a pixel is

turned on by storing fe16 to the SPI shift register (after first touching the SPI status register, as

before) to show the data point on the graph. Then the value in index register X is adjusted to

implement a compensating delay by jumping into a second string of “nop” instructions so that

the total execution time of the GData subroutine is constant at 116 clock cycles regardless of the

value of the data point graphed on that scanline. Accumulator A is saved and restored in this

subroutine because it’s value is used to count data scanlines in the core part of the interrupt

service routine, discussed earlier.

Summary

The combination of hardware and software presented here produces a usable graphics display on

a standard composite video monitor suitable for displaying line graphs or similar simple graphic

images. In order to use this package, the main program software must do several things, such as:

 * establish the interrupt vector for Output Compare 5 to point to “Graph”

 * turn on bits of DDRD to make appropriate port bits outputs

 * set TCTL1 to clear Port A bit 5 on Output Compare 5 interrupts

 * enable Output Compare 5 interrupts in TMSK1

 * enable the SPI as a master in SPCR.

 * enable interrupts with the “cli” instruction

These initialization steps can be included easily along with other initializations in the main

program of whatever application uses the graphic capability described here. Data to be graphed

must be in a table of 200 bytes in memory, and the main program must point index register Y to

the beginning of that table. The data to be plotted must be in the range 0-18 (0-1216). Although

much fancier graphing capabilities are, of course, available, the system described here

accomplishes a lot with very little, always the goal of any engineering endeavor. It should be

easy to incorporate the graphing capability described here into almost any system using an

MC68HC11 microcontroller.

P
age 9.1401.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

 Copyright ©2004, American Society for Engineering Education

References

1. Carroll, C. R., R. Alba-Flores, F. Rios-Gutierrez, “New Life for the MC68HC11 Evaluation Board,” 2002

ASEE Annual Conference Proceedings, Montreal, Canada (2002).

2. Spasov, Peter, Microcontroller Technology: The 68HC11, Fourth Edition, Prentice Hall, 2002.

3. Internet web page defining composite video signal, www.rickard.gunee.com/projects/video/pic/howto.php.

Biography

CHRISTOPHER R. CARROLL

Christopher R. Carroll received a Bachelor of Engineering Science from Georgia Tech, and M.S. and Ph.D. degrees

from Caltech. After teaching in Electrical Engineering at Duke University, he is now Associate Professor and

Assistant Head of Electrical and Computer Engineering at the University of Minnesota Duluth. His interests include

special-purpose digital systems, VLSI, and microprocessor applications, especially in educational environments.

P
age 9.1401.8

