
Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

Video Surveillance Analysis as a Context for Embedded Systems and
Artificial Intelligence Education

M. Ryan Bales1 and Steve E. Watkins2
1Georgia Tech Research Institute and 2Missouri University of Science and Technology

Abstract

Video surveillance analysis is an exciting, active research area and an important industry
application. It is a multidisciplinary field that draws on signal processing, embedded systems,
and artificial intelligence topics, and is well suited to motivate student engagement in all of these
areas. This paper describes the benefits of the convergence of these topics, presents a versatile
video surveillance analysis process that can be used as the basis for many investigations, and
presents two template exercises in tracking detected targets and in evaluating runtime efficiency.
 The processing chain consists of detecting changes in a scene and locating and characterizing
the resulting targets. The analysis is illustrated for targets in outdoor scenes using a variety of
classification features. Also, sample code for processing is included.

Introduction

The proliferation of low-cost cameras and high-performance embedded platforms has enabled
the application of computer vision systems to a wide range of surveillance problems, making
embedded video surveillance analysis an exciting and rapidly growing area. We propose that
surveillance video processing is well suited as a context for discussing concepts within many
fields including signal processing, embedded systems, and artificial intelligence. Surveillance
video analysis entails several interesting, multidisciplinary, real-world problems that can be
tackled in depth from the perspectives of these topics. Several educational benefits can result
from discussing these topics within the context of the accessible problems of video analysis.

• Students can study algorithms and concepts with a specific type of data rather than
having to imagine abstract data without a specific goal in mind.

• Everyday familiarity with vision and video eases debugging, as students can self-check
results with what makes sense visually and intuitively.

• Artificial intelligence and machine learning techniques generally require large amounts of
data. The accessibility of existing video datasets and the ease with which new data can be
collected using inexpensive webcameras are much greater than for other data types, such
as radar or financial data.

• The large amount of data that must be processed in video encourages efficient
programming techniques.

As humans, we are adept at seeing our environment, recognizing and tracking objects, and
extracting information. The challenge to students then becomes determining how to design
machine vision systems that can imitate these intuitive tasks. Object classification is an important
component of many video surveillance systems; by classifying targets, a system can

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

2
discriminately choose which targets should be observed closely, and tracking and other analyses
can be improved. Traffic management, perimeter security, infrastructure monitoring, public
safety, driver assistance, and wildlife observation are examples of scenarios in which such
abilities are useful. Such systems have the greatest potential if sensors are distributed throughout
an environment—a constraint that prohibits the use of large computers, and encourages the
deployment of small, dedicated, embedded processors at each sensing node.

A key challenge within classification and tracking is how to determine a set of object features
that best distinguishes the object types of interest. This application can introduce many machine
learning techniques. A video processing pipeline that utilizes background subtraction, blob
silhouette formation, and feature extraction is suitable for student experimentation. The
approach has the flexibility to address a wide range of topics and it can be adjusted for many
levels of difficulty. We focus on the problem of extracting and selecting features for object
classification and tracking which an active area of research and development. This paper
describes a multidisciplinary implementation of sample exercises, presents the video surveillance
analysis process that can be used as the basis for such investigations, and presents two template
exercises in classifying objects observed in surveillance video and in evaluating runtime
performance on hardware. The analysis is illustrated for targets in outdoor scenes using a variety
of classification features. Finally, a real-time demonstration system is made available to engage
student interest across these related topics.

Educational Overview

A. Multidisciplinary Topics

Environments for video surveillance can vary from well-defined backgrounds such as a hallway
to complex changing backgrounds such as a highway. Targets for detection may be vehicles,
pedestrians, etc. Applications can relate to security, safety, monitoring, management, or simple
observation. Knowledge of the capabilities and techniques for such systems can be useful to
both specialists in computer vision and users in other technical fields. Consequently, educational
exposure to video hardware and analysis can have a place in many fields of study.

Exercises involving video systems and analysis are especially suited as resources for courses in
image processing, embedded systems, and artificial intelligence. The objectives of the exercises
can involve algorithmic techniques, hardware customization, or intelligent interpretation,
respectively. Video sequences are readily available or can be obtained with inexpensive
cameras. Processing can be accomplished with available computers or dedicated boards. The
surveillance analysis processes described here can be tailored to different complexities and
difficulties, and the basic components can be used in a variety of contexts.

B. Related Work in Classification and Tracking

Objects of interest must be detected before they can be classified. While humans are adept at
quickly picking out salient regions of scenes at many scales, computer vision algorithms tend to
approach such problems from the bottom up by detecting changes at the pixel level, then

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

3
aggregating changing pixels into higher-level features. Adaptive background subtraction is
employed as a well-established method of detecting salient changes.1, 2, 3 The literature
demonstrates the usefulness and flexibility of this approach.

Two general approaches to object detection have been explored. Template-based matching
involves searching an image for expected patterns (often extracted offline from training data) and
relies on photometric features. Template detection requires relatively specific a priori knowledge
about the expected targets. Silhouette-based processing uses background subtraction to find
generic object blobs, and focuses on geometric features of the blobs. This framework is favored
for its versatility and efficiency4.

Prior work has explored several target classification architectures—including neural network
(NN) based classifiers5, 6, 7, support-vector machines (SVM) 8, 9, 10, 11, Bayesian networks and
decision trees9—in conjunction with a wide range of input features. Height, width, aspect ratio,
geometric moments, photometric moments, color histograms, and fitted ellipses are a few of the
features that have served as inputs to object classifiers and trackers. Feature selection is often
motivated by intuition or relevance to the underlying algorithm framework, and while some
investigations present the effectiveness of their approaches using various combinations of their
chosen features, few explicitly explore the suitability of those features for the associated
computer vision task. Here, we consider the consistency of some of the most common object
features used in object classification and tracking.

Ali et al.12 propose a grayscale running average BGM for object detection. Objects are divided
into hypothesized human body components, and human classification is performed by a NN
using area, perimeter, centroid, and principle axis of inertia of each component. Serratosa et al.7
use the average and standard deviation of color components, area, and Hu moments13 to classify
instances of user-chosen segmented regions. Gepperth et al.14 focus on car classification, and
relies on vertical and horizontal gradients, energy of gradients, local orientation and mean
energies of line segments as classifier inputs. Li et al.15 use aspect ratio, compactness, and
horizontal and vertical centroid offsets to classify pedestrians and bicycles. Kong and Wang8 find
that Hu moments are less effective for classification of non-rigid objects whose topologies can
change (such as people), but work well for rigid objects. They incorporate Euler Number to
improve classification of non-rigid objects. Gurwicz et al.9 propose a broad feature set including
luminance asymmetry, DCT coefficients, 2D moments, compactness, solidity, and aspect ratio.
Several classifier architectures are considered for the purpose of classifying humans, body
objects, groups of people, bags, and clutter. This work also introduces a procedure for evaluating
the relevance of each feature to each object class, which internally rates the usefulness of each
feature based on entropy contribution and preserves only the features that improve classification
accuracy. In the work by Watkins et al.16, a neural network is trained and tested to monitor
bridge traffic, and to determine if detected targets are pedestrians. Objects are detected by
subtracting a static background frame from new frames, and by subdividing the scene into
predefined, human-sized strips. Fourteen features are computed from each object’s silhouette and
appearance, and are used as inputs to the network.

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

4
Techniques for object tracking also often use geometric and photometric object features. A
general survey of object tracking techniques is provided by Yilmaz et al.17 The described
approaches are motivated by a variety of applications, and are suited for tracking many different
object types depending on the problem domain. Trackers have been presented that focus on
specific types of traffic, such as vehicles or pedestrians.

Several point detection mechanisms have been pro-posed for producing trackable feature sets,
such as SIFT points18, SURF points19, and multiresolution critical points20, 21. These points are
often fed into particle or other statistical filters. Trackers have been proposed that first identify
blobs by background modeling and change detection, and then distinguish each blob with a
small, simple set of figures such as object-strip color22, purely kinematic principles23, or spectral
distribution24. These approaches are attractive because their features are efficient to compute, and
they have inherently manageable search spaces.

C. Suggested Course Exercises

The intents of these exercises are to reinforce specific material in the host course and to provide
guided procedures for other aspects. (More comprehensive experience could be assigned for
course projects, honors research, capstone design work, etc.) Consider exercises for the three
suggested topics, i.e. image processing, embedded systems, and artificial intelligence, as shown
in Table 1. A basic processing pipeline is assumed here that uses background subtraction to find
object blobs and that calculates geometric features of the blobs for detection (this methodology is
described in detail in the next section). Note that variation in the dataset environments or targets
can add an element of realism, can adjust the level of difficulty, and can change the solution for
different students or different semesters.

Table 1: Potential Exercises
Main Topic Instructor Provides Student Controls Exercise Results
Image
Processing

Software (Image I/O
and Feature Ranking)
and Hardware

Filtering Algorithm, etc.
(Intermediate Software
Stages)

Object Detection and
Classification
Accuracies

Embedded
Systems

Software (Image I/O
and Feature Ranking)
and Hardware

Images/Camera,
Algorithm Complexity
and Hardware Parameters

Classification Accuracy
and Runtime Tradeoffs

Artificial
Intelligence

Software (Image I/O
and Object Detection)
and Hardware

Feature Extraction and
Post Processing of
Feature Data

Feature Impact and
Tracking and
Classification Accuracy

The specific parameters that the students control will depend on the material an instructor desires
to reinforce. Possibilities include the following:

• Image Processing. A) Students may add specific types of noise and observe the effects
on object detection and classification. B) Students may incorporate various types of
image preprocessing, noise filtering, and background modeling and observe the effects.
C) Students may vary parameters associated with blob formation and observe the effects
on detection accuracy.

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

5
• Embedded Systems. A) Students may collect images related to a specific surveillance

application or environment, and compare the effects to those of standard image sets. B)
Students may optimize algorithms for specific platforms and evaluate runtime and
memory usage.

• Artificial Intelligence. A) Students may investigate different combinations of object
features and observe the effects. B) Students may test the effectiveness of various
feature-ranking algorithms. C) Students may implement different types of neural network
architectures and observe the effectiveness of the post processing.

Hardware and Images

The resources needed to support such exercises are processing hardware, such as a PC or single
board computer, and a dataset from an archived video or created from a camera. The dataset
must be chosen carefully to provide an appropriate number of distinct images and to provide
appropriately constrained targets. A single uncompressed, 3 color channel, 640 x 480 image
represents 900 kB of data. The volume of data contained in video encourages attention to video
algorithm complexity and efficient programming techniques. Video data is sufficiently complex
and readily available that it need not be contrived, as occasionally must be done to make projects
seem realistic. The ability to visualize algorithm output as a video stream imposes a natural real-
time processing constraint. The resources for the results in this work are described as follows.

A. Hardware

The algorithms for object detection and feature extraction are tested on two platforms for
comparison: (1) a PC running Ubuntu 10.04 and equipped with a 3.4 GHz Pentium D processor
and 1 GB of RAM, and (2) a Beagleboard–xm, a single-board computer featuring a 1 GHz Texas
Instruments Cortex A8 ARM processor and 512 MB of RAM. The Beagleboard is small (3.25”
per side), low-power (4.5 Watts peak), and uses the Angstrom OS, a lightweight Linux
distribution for embedded platforms.

B. Images

A combination of new25 and previously published datasets26 is used for feature evaluation.
Samples of these sequences are shown in Figure 1, and include several background types, camera
angles, urban and suburban environments, and distances to targets. The test set contains nearly
11,000 images and represents a total elapsed time of over two hours. Four target classes are
depicted: pedestrians, cars, SUVs, and trucks. Over 3000 objects are extracted and analyzed by
the pipeline.

Processing Software

We analyze a set of 24 geometric and photometric features for consistency within object classes
(pedestrian and vehicular), and for discrimination among object classes. Foreground pixels are
detected using adaptive background models and background subtraction, and objects are
localized using a two-dimensional foreground density scan. The feature set is computed for each

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

6
object, and each feature is evaluated for its utility in object tracking. As we are interested in
embedded performance, we consider the execution costs of the processing pipeline and each
feature on two platforms.

All video processing algorithms here are implemented in C. The OpenCV 2.2 library is used for
file I/O and for computing the convex hull, ellipse features, and Hu moments. The remaining
features are extracted using custom code. To improve time measurement accuracy, the average
feature runtimes were found by computing each feature 100 times.

A. Processing Pipeline

Our processing pipeline consists of a multimodal background model, background subtraction and
foreground detection, morphological filtering, and blob detection. The morphological filtering
stage produces the silhouette image from which blobs are detected and most object features are
extracted. This process is depicted in Figure 2.

A background model is a statistical representation of the uninteresting regions of a scene.
Background models are used to detect changes in the scene that correspond to objects or events

Figure 1. Sample images from the Dataset.

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

7
of interest. A large number of background models have been proposed1, 2, 3; the extensive
literature available and the wide range of variations possible make this an excellent topic for
students to explore and experiment. Tradeoffs among model complexity, change detection
accuracy, rate of adaptation to scene changes, sensitivity to parameter selection, processing time,
and memory usage can be considered.

Here, an adaptive, color, multimodal background model called Multimodal Mean27 is used for
change detection. This model represents each pixel as a set of N possible modes (we choose
N=4). Each mode consists of a running sum for each color channel and a counter that indicates
how many pixels have contributed to the sum, making the mean simple to calculate at any time.
Mode data is periodically divided by two to prevent integer overflow and to decay outdated
modes. A pixel in the current image is identified as foreground if it differs from all of its
background modes by more than a maximum component difference threshold. Vertical and
horizontal histograms of foreground pixels are computed to locate blobs.

B. Object Features

Keeping in mind runtime constraints for plausible real-time surveillance systems, we consider
popular geometric and photometric features with low computational cost. These features and
their symbols are listed in Table 2. Height, width, and aspect ratio pertain to an object’s
bounding box. Solidity is the ratio of an object’s area to its convex hull area. Compactness is the
ratio of an object’s area to its squared perimeter. Centroid offsets measure the distance from the
bounding box center to the centroid. Skewness, kurtosis, and the central moments measure
aspects of the grayscale intensity distribution of an object. To compress their dynamic range, the
Hu moment features are computed as the log10 of the Hu moments. Perimeter and Euler number
are computed locally as discussed by Horn28. The major and minor axis lengths, eccentricity and
orientation features are computed from an ellipse fitted to an object’s silhouette. Figure 3 shows
an example of how the bounding box, ellipse, and convex hull are fitted to an object silhouette.

Current	

Image	

Change	

Detection	

Morphological	

Filtering	

Blob	
 Forming	
 Feature	

Extraction	

Background	

Model	

Figure 2. Block diagram of video processing pipeline.

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

8

Example Video Analysis Exercises

Consider the suggested exercises for an embedded systems context in which the influence of a
specific target type and the influence of hardware are investigated. In particular, the first
example gives an analysis of feature consistency for vehicles and pedestrians. The results show
which features are preferable for vehicle verses pedestrian tracking. The second example gives
an analysis of processing runtime for the two different hardware systems described earlier.

A. Feature Consistency for Tracking

Geometric and photometric features are frequently used to establish object correspondence
between frames, often in conjunction with kinematic constraints such as maximum changes in
position or velocity. For features to be useful for tracking, they must (1) be stable during the
object’s traversal of the scene, and (2) vary sufficiently between objects to be distinctive.
Fisher’s criterion—the ratio of inter-instance variance to intra-instance variance—is useful for
quantifying these traits.

Figure 3. Examples of some geometric features: height and
width, ellipse axes and orientation, and convex hull area.

TABLE 2: TESTED FEATURES AND ABBREVIATIONS
Symbol Feature Symbol Feature

	
 H Box	
 Height KUR Kurtosis
	
 W Box	
 Width 	
 M2 2nd	
 Order	
 Moment
	
 AR Aspect	
 Ratio	
 (H/W) 	
 M3 3rd	
 Order	
 Moment
	
 A Object	
 Area 	
 M4 4th	
 Order	
 Moment
PER Object	
 Perimeter 	
 MJL Ellipse	
 Major	
 Axis	
 Length
	
 CA Convex	
 Hull	
 Area 	
 MNL Ellipse	
 Minor	
 Axis	
 Length
	
 SLD Solidity	
 (A/CA) 	
 ECC Ellipse	
 Eccentricity
	
 CMP Compactness	
 (A/P*P) OR Ellipse	
 Orientation
	
 COX Horiz	
 Centroid	
 Offset 	
 HU1 1st	
 Hu	
 Moment
	
 COY Vert.	
 Centroid	
 Offset 	
 HU2 2nd	
 Hu	
 Moment
	
 EN Euler	
 Number 	
 HU3 3rd	
 Hu	
 Moment
SKW Skewness 	
 HU4 4th	
 Hu	
 Moment

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

9
To evaluate the tracking utility of the feature set, we measure the relative standard deviations
(RSD, standard deviation divided by mean) of the features for each object as it traverses the
scene (intra-object variation), and compare this with the RSD of the average feature values for
each object observed in a sequence (inter-object variation). The ratios of inter-object variation to
intra-object variation are shown in Table 3 for vehicular and pedestrian traffic. Ratios greater
than 1 indicate that feature values vary more among different objects of the same class, than
among multiple instances of the same object (i.e., the feature value of an object traversing the
scene is relatively stable, and distinguishes the object from other objects of the same class). The
four highest ratios (corresponding to the best tracking utility) are highlighted. The rigid nature of
vehicular traffic makes many of these features potentially useful for tracking. Features describing
vertical height and area are most distinguishing among vehicles. The deformable nature of
pedestrians renders geometrical features unreliable. Area-related features are again most
distinguishing, including compactness (ratio of area to perimeter), as these are least affected by
changes in shape and appearance due to walking. Features are 2x to 6x more discriminatory for
vehicles than for people. In the absence of additional constraints such as kinematics, the
discussed features are generally unsuitable for tracking pedestrians.

Additional examples of surveillance-based artificial intelligence exercises include using feature-
ranking algorithms to determine the most effective classification features, and implementing
object classifiers or trackers based on those features. The exercise can be adjusted by varying the
environments under surveillance, the feature set, and the object classes being considered (e.g.
humans, vehicles, bicycles, animals, etc).

B. Runtime Comparison for Different Hardware Platforms

The runtimes for major surveillance processes and feature computations are shown in Table 4.
Height, width, and aspect ratio are found as part of the blob finding process. Silhouette area and
convex area are computed simultaneously. Photometric moments require a grayscale conversion,
which is included in these measurements. Due to the expense of computing the intensity image,
the photometric moments are the most expensive features to compute. The PC achieves
approximately 15 frames per second, while the Beagleboard reaches 5 frames per second.

TABLE 3: UTILITY OF FEATURES FOR TRACKING

Feature
Vehicle	
 	
 	
 	

Variance	
 Ratio
Pedestrian	

Variance	
 Ratio
Feature

Vehicle	
 	
 	
 	

Variance	
 Ratio

Pedestrian	

Variance	
 Ratio

	
 H 7.23 1.16 KUR 3.29 1.16
	
 W 5.02 0.96 	
 M2 4.06 0.94
	
 AR 2.91 0.71 	
 M3 4.43 0.06
	
 A 7.06 1.27 	
 M4 3.00 0.93
PER 2.82 0.93 	
 MJL 5.38 1.14
	
 CA 6.86 1.19 	
 MNL 8.14 0.95
	
 SLD 2.19 0.65 	
 ECC 3.40 0.70
	
 CMP 1.84 1.85 OR 4.18 0.83
	
 COX 0.94 0.41 	
 HU1 2.05 1.10
	
 COY 0.93 0.48 	
 HU2 1.92 1.06
	
 EN 1.11 0.70 	
 HU3 1.91 0.77
SKW 3.16 1.56 	
 HU4 1.98 0.78

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

10

The large amount of video data processed by background modeling and change and blob
detection encourages the optimization of these algorithms. Exercises can be constructed that
explore the most efficient coding styles for each process on a given platform. In addition, the
runtime cost of each feature can be weighted by its accuracy or effectiveness in a given task,
resulting in an ‘effort’ metric.

Discussion and Conclusions

The video processing chain described here can lead to student experiments in several different
directions. Background modeling and object detection techniques can be explored in more detail,
and sophisticated methods for feature ranking, classification and tracking can all be explored
within this framework. The suggested exercises illustrate the educational value of this approach
for multidisciplinary courses involving topics such as image processing, embedded systems, and
artificial intelligence. Engaging class discussions can arise by allowing students to review
literature on their own, implement their techniques of choice, and compare their results.

Prerecorded datasets are necessary in video processing experiments to properly evaluate
technique variations against a common baseline. However, a live demonstration platform that
captures imagery, processes it in real time, and displays the results offers many benefits. First,
students’ interests are piqued by seeing their algorithms in action in a complete system—a more
satisfying result than studying a few algorithms that fit into a hypothetical larger picture. Second,
such a system allows fluid, dynamic interaction with the test environment for exploring
unpredicted scenarios. Third, the demonstration motivates students’ cognizance of the real-time
processing requirement and its consequences. The cost of extra processing becomes more real
when one observes frame delays or slow response times. Likewise, the cost of simpler algorithms
to improve runtime becomes more apparent when one observes obvious errors in scene analysis.
Finally, by visualizing algorithm behavior first-hand, students are prompted to investigate new
problems by considering desired behaviors and new applications for these systems.

TABLE 4: PROCESS AND FEATURE RUNTIMES

Process PC	
 (ms) BBxm	
 (ms)
Background	
 Model 31.19 80.87
Change	
 Detection 25.37 61.63
Blob	
 Detection 1.74 5.35

Areas 0.88 3.73
Perimeter 0.10 0.86
Solidity 0.88 3.73

Compactness 0.98 4.60
Euler	
 Number 0.14 1.32

Centroid	
 Offsets 0.05 0.36
Ellipse	
 Features 0.46 10.28
Central	
 Moments 2.78 14.69
Hu	
 Moments 2.67 12.31

Total	
 Time	
 (ms) 67.2 199.7
Frame	
 Rate	
 (Hz) 14.9 5.0

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

11
To these ends, we make available a software package25 that implements a basic real-time video
analysis system. This system exploits the OpenCV library29 and demonstrates functions for
image capture from a USB webcam, manipulation of image color spaces, superposition of text
and bounding boxes onto an image, real time input from a keyboard to control process
parameters, and live display of images from various points of the analysis process. Manipulation
of sensor settings on UVC-compliant cameras is also demonstrated. The analysis process
consists of a simple but effective adaptive background model called approximated median30,
change detection based on the maximum component difference criterion, and blob detection. The
system can be experimented with as-is, alternative algorithms can be inserted easily, and higher
level functions for object tracking or classification can be added. The software is written in C
and C++. Instructions are given for configuring a computer with Ubuntu, OpenCV and other
necessary packages. The software can also be run on a Windows platform with minimal
modification.

Bibliography

1. M. Piccardi. “Background subtraction techniques: A review,” Proc. IEEE Int’l Conf. on Systems, Man and

Cybernetics: Vol. 4, pp. 3099 – 3104, 2004.
2. R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. “Image change detection algorithms: A systematic survey,”

IEEE Transactions on Image Processing, Vol. 14, No. 3, pp. 294–307, 2005.
3. S. Cheung and C. Kamath. “Robust techniques for background subtraction in urban traffic video,” Proc. SPIE, Vol.

5308, 881 (12 pages), 2004. http://dx.doi.org/10.1117/12.526886
4. O. Masoud and N.P. Papanikolopoulos. “A novel method for tracking and counting pedestrians in real-time using a

single camera,” IEEE Transactions on Vehicular Technology, Vol. 50, No. 5, pp. 1267–1278, 2001.
5. A.M. Cretu, E.M. Petriu, P. Payeur, and F.F. Khalil. “Deformable object segmentation and contour tracking in

image sequences using unsupervised networks,” Proc. of the 7th Canadian Conf. on Computer and Robot
Vision (CRV 2010), pp. 277-84, 2010.

6. V. Syrris and V. Petridis. “Statistical descriptors for human actions classification,” 2009 17th Mediterranean Conf.
on Control and Automation (MED), pp. 412-15, 2009.

7. F. Serratosa, N.A. Gomez, and R. Alquezar. “Combining neural networks and clustering techniques for object
recognition in indoor video sequences,” Proc. 11th Iberoamerican Congress in Pattern Recognition, CIARP
2006. (Lecture Notes in Computer Science Vol. 4225), pp. 399–405, 2006.

8. Y. Kong and L. Wang. “Moving target classification in video sequences based on features combination and SVM,”
Proc. 2010 Int’l Conf. on Computational Intelligence and Software Engineering, CiSE 2010, 2010

9. Y. Gurwicz, R. Yehezkel, and B. Lachover. “Multiclass object classification for real-time video surveillance
systems,” Pattern Recognition Letters, Vol. 32, No. 6, pp. 805–815, April 2011.

10. H. Li and J. Cao. “Detection and segmentation of moving objects based on support vector machine,” Proc. 3rd Int’l
Symposium on Information Processing, ISIP 2010, pp. 193–197, 2010.

11. A. Sun, M. Bai, Y. Tan, and J. Tian. “SVM based classification of moving objects in video,” Proc. SPIE 7496,
749607, 2009. http://dx.doi.org/10.1117/12.832622

12. S.S. Ali, M.F. Zafar, and M. Tayyab. “Detection and recognition of human in videos using adaptive method and
neural net,” Proc. 2009 Int’l Conf. of Soft Computing and Pattern Recognition, pp. 604-609, 2009.

13. M.K. Hu. “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory, Vol. IT-8,
pp. 179–187. 1962.

14. A. Gepperth, J. Edelbrunner, and T. Bucher. “Real-time detection and classification of cars in video sequences,”
Proc. 2005 IEEE Intelligent Vehicles Symposium, pp. 625-31, 2005.

15. J. Li, C. Shao, W. Xu, and J. Li. “Real-time system for tracking and classification of pedestrians and bicycles,”
Transportation Research Record, No. 2198, pp. 83-92, December 1, 2010.

16. S.E. Watkins, R.J. Stanley, A. Gopal, and R.H. Moss. “Surveillance of pedestrian bridge traffic using neural
networks,” Proc. SPIE, Vol. 7292, 72922Q (12 pages), 2009. http://dx.doi.org/10.1117/12.815523

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

12
17. A. Yilmaz, O. Javed, and M. Shah. “Object tracking: A Survey,” ACM Computing Surveys, Vol. 38, No. 4, pp. 1–

45, 2006.
18. M.S. Rahman, A. Saha, and S. Khanum. “Multi-object tracking in video sequences based on background subtraction

and SIFT feature matching,” Proc. Fourth Ann. Int’l Conf. on Computer Sciences and Convergence Information
Technology, pp. 457–462, 2009.

19. S. Zhang, H. Yao, and P. Gao. “Robust object tracking combining color and scale invariant features,” Proc. SPIE,
Vol. 7744, 77442R (8 pages), 2010. http://dx.doi.org/10.1117/12.863844

20. J. Durand and S. Hutchinson. “Real-time object tracking using multiresolution critical point filters,” Proc. IEEE
Int’l Conf. on Robotics and Automation (ICRA 2003), Vol. 2, pp. 1682–1687, 2003.

21. T. Dharamadhat, K. Thanasoontornlerk, and P. Kanongchaiyos. “Tracking object in video pictures based on
background subtraction and image matching,” Proc. IEEE Int’l Conf. on Robotics and Biomimetics (ROBIO
2009), pp. 1255–1260, 2009.

22. L. Zhang and R. Wu. “Tracking object using object-strips color feature,” Proc. WASE Int’l Conf. on Information
Engineering (ICIE 2010), pp. 212–215, 2010.

23. S. Apewokin, B. Valentine, R. Bales, L. Wills, and S. Wills. “Tracking multiple pedestrians in real-time using
kinematics,” Proc. IEEE Conf. on CVPR Workshops, pp. 1–6, 2008.

24. A. Tavakkoli, M. Nicolescu, and G. Bebis. “A spatio-spectral algorithm for robust and scalable object tracking in
videos,” Int’l Symposium on Visual Computing: 2010. G. Bebis et al. (Eds.): ISVC 2010, Part III, LNCS 6455,
pp. 161–170. Springer, Heidelberg (2010).

25. Missouri University of Science and Technology, “Smart Engineering: Educational Resources,” (2012). Available
WWW http://smarteng.mst.edu/educationalresources/.

26. PETs 2006 dataset. Available ftp://ftp.pets.rdg.ac.uk/pub/PETS2006/.
27. S. Apewokin, B. Valentine, D. Forsthoefel, D.S. Wills, L.M. Wills, and A. Gentile. “Embedded real-time

surveillance using multimodal mean background modeling,” in Embedded Computer Vision (B. Kisacanin, S.
Bhattacharyya, and S. Chai, eds., (Springer-Verlag, London, U.K., 2009), Chap. 8, pp. 163–175.

28. B.K.P. Horn. Robot Vision (McGraw-Hill, New York, NY, U.S., 1986), pp 71–77.
29. “OpenCV,” (2012). Available WWW http://opencv.willowgarage.com/wiki/.
30. N.J.B. McFarlane and C.P. Schofield. “Segmentation and tracking of piglets in images,” Machine Vision and

Applications, Vol. 8, No. 3, pp. 187–193, 1995.

Appendix: Top-level Processing Code

This Appendix shows the top-level source code of the video analysis process, and demonstrates
the flow of data from loading images, detecting changes between the current image and the
background model, performing binary erosion to clean the binary image, detecting blobs (high
spatial concentrations of foreground pixels) in the binary image, and computing the feature set
for each blob. More detailed code for these operations can be found at the website25.

// Main loop for processing interesting part of sequence for (N = Start + Preamble; N <= End; N++)
{
 sprintf(Path, "%s/%s/%05d.jpg", SEQ_DIR, Seq, N); // Get the directory containing the stored images.
 TFN = N-(Start+Preamble); // Calculate the true frame number (in case Start is not 0).
 load_success = Load_Image(Path, Frame);

 /* Find foreground pixels by doing change detection between the current image and the background model. */
 MMM_Change_Detection_1(mmm_model, Frame, sil_image_00, mmm_predom_image, Width, Height,

MCDth, Cth);

 bin_erosion(sil_image_00, sil_image_01, Width, Height, Stel, 0x5, 0x5, 1); // Morphological erosion.
 bin_frame->imageData = (char *) sil_image_01;

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

13
 /* Find blobs in the binary silhouette image. Detected blobs are stored in the Contacts0 linked list. */
 blob_count1 = BlobFind2D(sil_image_01, 0, Width-1, 0, Height-1, Width, RowSumTh, ColSumTh, MinSizeX,

MinSizeY, GapSize, Contacts0, 1);

 /* Make grayscale Foreground image with Background zeroed out
 This grayscale image is used to calculate OpenCV Moments and HuMoments
 */
 for(yy=0; yy<Height; yy++) {
 for(xx=0; xx<Width; xx++) {
 SilIndex1 = yy*Width+xx;
 if(sil_image_01[SilIndex1] == 255) {
 I = 3*(SilIndex1);
 gray_image[SilIndex1] = (Frame[I]+Frame[I+1]+Frame[I+2])/3;
 }
 else { gray_image[SilIndex1] = 0; }
 }
 }
 gray_frame->imageData = (char *) gray_image;

 /* At this point, we have preliminary foreground silhouettes and localized blobs. */

 cvSet(convex_frame, cvScalar(0));
 convex_image = (unsigned char *) convex_frame->imageData;

 ContactNum = Contacts0->Get_Size();

 /* Iterate over contact list; calculate features for each contact. */
 /* Each node of the Contact0 linked list is a structure that contains all of the feature information for a target. */
 if(ContactNum > 0)
 {
 temp = Contacts0->Get_Head();
 while(temp != NULL)
 {
 box_height = (1+ temp->maxy - temp->miny);
 box_width = (1+ temp->maxx - temp->minx);
 box_aspect_ratio = (float)box_height/(float)box_width;

 Get_EulerNumber(sil_image_01, temp, Width, Height, euler_number);
 Get_Perimeter(sil_image_01, temp, Width, perimeter);
 Get_CentroidOffset(sil_image_01, temp, Width, centroid_offset_x, centroid_offset_y);
 Get_Convex_Hull(bin_frame, convex_frame, convex_image, temp, Width, sil_area, hull_area);

 // Simple ratio parameters
 solidity = (float)sil_area/(float)hull_area;
 compactness = (float)12.56636*sil_area/(perimeter*perimeter);

 Get_Ellipse(bin_frame, temp, Width, ell_center_x, ell_center_y, ell_mjr_axis, ell_mnr_axis,

ell_orientation, ell_eccentricity);

 Get_Moments(sil_image_01, Frame, temp, Width, obj_M2, obj_M3, obj_M4, obj_skew, obj_kurt);
 Get_OCVMoments(gray_frame, temp, cv_moments, cv_hu);

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education

14
 // Print the features of each target to file.
 // "FN, x, y, H, W, AR, A, PER, CA, SLD, CMP, COX, COY, EN, S, K, M2, M3, M4, MJL, MNL,

ECC, OR, HU1, HU2, HU3, HU4"
 fprintf(Report,

"\n%d,%d,%d,%d,%d,%f,%d,%f,%d,%f,%f,%f,%f,%d,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,
%f", N, temp->xpos, temp->ypos, box_height, box_width, box_aspect_ratio, sil_area, perimeter,
hull_area, solidity, compactness, centroid_offset_x, centroid_offset_y, euler_number, obj_skew,
obj_kurt, obj_M2, obj_M3, obj_M4, ell_mjr_axis, ell_mnr_axis, ell_eccentricity, ell_orientation, -
log10(cv_hu->hu1), -log10(cv_hu->hu2), -log10(cv_hu->hu3), -log10(cv_hu->hu4));

 temp = temp->next;
 }
 }

 /* Draw bounding boxes around blobs */
 DrawBlobBox(sil_image_01, Width, Height, Contacts0, 1);

 bin_frame->imageData = (char *) sil_image_01;
 Contacts0->ClearList();

 // Update background model with current frame at end of loop, after frame has been processed.
 Process_Frame_BG(mmm_model, Frame, Width, Height, MCDth, CTH);

 // Decimate Multimodal Mean model periodically to prevent overflow, and to decay outdated modes.
 if((TFN % DECRATE) == 0) {
 Decimate_BGM(mmm_model, CTH, Width*Height); }
}

Biographical Information

DR. M. RYAN BALES is a Research Engineer with the Sensors and Electromagnetic Applications Lab of Georgia
Tech Research Institute. His interests are in video and image processing, radar, and digital systems. He is a
member of IEEE and HKN. His Ph.D. is from the Georgia Institute of Technology (2011). Contact:
mrbales@ieee.org.

DR. STEVE E. WATKINS is Professor of Electrical and Computer Engineering at Missouri University of Science
and Technology, formerly the University of Missouri-Rolla. His interests include educational innovation. He is
active in IEEE, HKN, SPIE, and ASEE including service as the 2009 Midwest Section Chair. His Ph.D. is from the
University of Texas at Austin (1989). Contact: steve.e.watkins@ieee.org

