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Abstract 
 
Video surveillance analysis is an exciting, active research area and an important industry 
application. It is a multidisciplinary field that draws on signal processing, embedded systems, 
and artificial intelligence topics, and is well suited to motivate student engagement in all of these 
areas. This paper describes the benefits of the convergence of these topics, presents a versatile 
video surveillance analysis process that can be used as the basis for many investigations, and 
presents two template exercises in tracking detected targets and in evaluating runtime efficiency. 
 The processing chain consists of detecting changes in a scene and locating and characterizing 
the resulting targets.  The analysis is illustrated for targets in outdoor scenes using a variety of 
classification features.  Also, sample code for processing is included. 
 
Introduction 
 
The proliferation of low-cost cameras and high-performance embedded platforms has enabled 
the application of computer vision systems to a wide range of surveillance problems, making 
embedded video surveillance analysis an exciting and rapidly growing area. We propose that 
surveillance video processing is well suited as a context for discussing concepts within many 
fields including signal processing, embedded systems, and artificial intelligence. Surveillance 
video analysis entails several interesting, multidisciplinary, real-world problems that can be 
tackled in depth from the perspectives of these topics. Several educational benefits can result 
from discussing these topics within the context of the accessible problems of video analysis. 
 

• Students can study algorithms and concepts with a specific type of data rather than 
having to imagine abstract data without a specific goal in mind. 

• Everyday familiarity with vision and video eases debugging, as students can self-check 
results with what makes sense visually and intuitively. 

• Artificial intelligence and machine learning techniques generally require large amounts of 
data. The accessibility of existing video datasets and the ease with which new data can be 
collected using inexpensive webcameras are much greater than for other data types, such 
as radar or financial data. 

• The large amount of data that must be processed in video encourages efficient 
programming techniques. 

 
As humans, we are adept at seeing our environment, recognizing and tracking objects, and 
extracting information. The challenge to students then becomes determining how to design 
machine vision systems that can imitate these intuitive tasks. Object classification is an important 
component of many video surveillance systems; by classifying targets, a system can 
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discriminately choose which targets should be observed closely, and tracking and other analyses 
can be improved. Traffic management, perimeter security, infrastructure monitoring, public 
safety, driver assistance, and wildlife observation are examples of scenarios in which such 
abilities are useful. Such systems have the greatest potential if sensors are distributed throughout 
an environment—a constraint that prohibits the use of large computers, and encourages the 
deployment of small, dedicated, embedded processors at each sensing node. 
 
A key challenge within classification and tracking is how to determine a set of object features 
that best distinguishes the object types of interest. This application can introduce many machine 
learning techniques. A video processing pipeline that utilizes background subtraction, blob 
silhouette formation, and feature extraction is suitable for student experimentation.  The 
approach has the flexibility to address a wide range of topics and it can be adjusted for many 
levels of difficulty. We focus on the problem of extracting and selecting features for object 
classification and tracking which an active area of research and development. This paper 
describes a multidisciplinary implementation of sample exercises, presents the video surveillance 
analysis process that can be used as the basis for such investigations, and presents two template 
exercises in classifying objects observed in surveillance video and in evaluating runtime 
performance on hardware.  The analysis is illustrated for targets in outdoor scenes using a variety 
of classification features.  Finally, a real-time demonstration system is made available to engage 
student interest across these related topics. 
 
Educational Overview 
 
A. Multidisciplinary Topics 
 
Environments for video surveillance can vary from well-defined backgrounds such as a hallway 
to complex changing backgrounds such as a highway.  Targets for detection may be vehicles, 
pedestrians, etc.  Applications can relate to security, safety, monitoring, management, or simple 
observation.  Knowledge of the capabilities and techniques for such systems can be useful to 
both specialists in computer vision and users in other technical fields.  Consequently, educational 
exposure to video hardware and analysis can have a place in many fields of study. 
 
Exercises involving video systems and analysis are especially suited as resources for courses in 
image processing, embedded systems, and artificial intelligence.  The objectives of the exercises 
can involve algorithmic techniques, hardware customization, or intelligent interpretation, 
respectively.  Video sequences are readily available or can be obtained with inexpensive 
cameras.  Processing can be accomplished with available computers or dedicated boards.  The 
surveillance analysis processes described here can be tailored to different complexities and 
difficulties, and the basic components can be used in a variety of contexts. 
 
B. Related Work in Classification and Tracking 
 
Objects of interest must be detected before they can be classified.  While humans are adept at 
quickly picking out salient regions of scenes at many scales, computer vision algorithms tend to 
approach such problems from the bottom up by detecting changes at the pixel level, then  
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aggregating changing pixels into higher-level features. Adaptive background subtraction is 
employed as a well-established method of detecting salient changes.1, 2, 3 The literature 
demonstrates the usefulness and flexibility of this approach. 
 
Two general approaches to object detection have been explored. Template-based matching 
involves searching an image for expected patterns (often extracted offline from training data) and 
relies on photometric features. Template detection requires relatively specific a priori knowledge 
about the expected targets. Silhouette-based processing uses background subtraction to find 
generic object blobs, and focuses on geometric features of the blobs. This framework is favored 
for its versatility and efficiency4. 
 
Prior work has explored several target classification architectures—including neural network 
(NN) based classifiers5, 6, 7, support-vector machines (SVM) 8, 9, 10, 11, Bayesian networks and 
decision trees9—in conjunction with a wide range of input features. Height, width, aspect ratio, 
geometric moments, photometric moments, color histograms, and fitted ellipses are a few of the 
features that have served as inputs to object classifiers and trackers. Feature selection is often 
motivated by intuition or relevance to the underlying algorithm framework, and while some 
investigations present the effectiveness of their approaches using various combinations of their 
chosen features, few explicitly explore the suitability of those features for the associated 
computer vision task. Here, we consider the consistency of some of the most common object 
features used in object classification and tracking.  
 
Ali et al.12 propose a grayscale running average BGM for object detection. Objects are divided 
into hypothesized human body components, and human classification is performed by a NN 
using area, perimeter, centroid, and principle axis of inertia of each component. Serratosa et al.7 
use the average and standard deviation of color components, area, and Hu moments13 to classify 
instances of user-chosen segmented regions. Gepperth et al.14 focus on car classification, and 
relies on vertical and horizontal gradients, energy of gradients, local orientation and mean 
energies of line segments as classifier inputs. Li et al.15 use aspect ratio, compactness, and 
horizontal and vertical centroid offsets to classify pedestrians and bicycles. Kong and Wang8 find 
that Hu moments are less effective for classification of non-rigid objects whose topologies can 
change (such as people), but work well for rigid objects. They incorporate Euler Number to 
improve classification of non-rigid objects. Gurwicz et al.9 propose a broad feature set including 
luminance asymmetry, DCT coefficients, 2D moments, compactness, solidity, and aspect ratio. 
Several classifier architectures are considered for the purpose of classifying humans, body 
objects, groups of people, bags, and clutter. This work also introduces a procedure for evaluating 
the relevance of each feature to each object class, which internally rates the usefulness of each 
feature based on entropy contribution and preserves only the features that improve classification 
accuracy. In the work by Watkins et al.16, a neural network is trained and tested to monitor 
bridge traffic, and to determine if detected targets are pedestrians. Objects are detected by 
subtracting a static background frame from new frames, and by subdividing the scene into 
predefined, human-sized strips. Fourteen features are computed from each object’s silhouette and 
appearance, and are used as inputs to the network. 
 



 

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education 

4 
Techniques for object tracking also often use geometric and photometric object features. A 
general survey of object tracking techniques is provided by Yilmaz et al.17 The described 
approaches are motivated by a variety of applications, and are suited for tracking many different 
object types depending on the problem domain. Trackers have been presented that focus on 
specific types of traffic, such as vehicles or pedestrians. 
 
Several point detection mechanisms have been pro-posed for producing trackable feature sets, 
such as SIFT points18, SURF points19, and multiresolution critical points20, 21.  These points are 
often fed into particle or other statistical filters. Trackers have been proposed that first identify 
blobs by background modeling and change detection, and then distinguish each blob with a 
small, simple set of figures such as object-strip color22, purely kinematic principles23, or spectral 
distribution24. These approaches are attractive because their features are efficient to compute, and 
they have inherently manageable search spaces. 
 
C. Suggested Course Exercises 
 
The intents of these exercises are to reinforce specific material in the host course and to provide 
guided procedures for other aspects.  (More comprehensive experience could be assigned for 
course projects, honors research, capstone design work, etc.)  Consider exercises for the three 
suggested topics, i.e. image processing, embedded systems, and artificial intelligence, as shown 
in Table 1.  A basic processing pipeline is assumed here that uses background subtraction to find 
object blobs and that calculates geometric features of the blobs for detection (this methodology is 
described in detail in the next section). Note that variation in the dataset environments or targets 
can add an element of realism, can adjust the level of difficulty, and can change the solution for 
different students or different semesters. 
 

Table 1: Potential Exercises 
Main Topic Instructor Provides Student Controls Exercise Results 
Image 
Processing 

Software (Image I/O 
and Feature Ranking) 
and Hardware 

Filtering Algorithm, etc. 
(Intermediate Software 
Stages) 

Object Detection and 
Classification 
Accuracies 

Embedded 
Systems 

Software (Image I/O 
and Feature Ranking) 
and Hardware 

Images/Camera, 
Algorithm Complexity 
and Hardware Parameters 

Classification Accuracy 
and Runtime Tradeoffs 

Artificial 
Intelligence 

Software (Image I/O 
and Object Detection) 
and Hardware 

Feature Extraction and 
Post Processing of 
Feature Data 

Feature Impact and 
Tracking and 
Classification Accuracy 

 
The specific parameters that the students control will depend on the material an instructor desires 
to reinforce.  Possibilities include the following: 
 

• Image Processing.  A) Students may add specific types of noise and observe the effects 
on object detection and classification.  B) Students may incorporate various types of 
image preprocessing, noise filtering, and background modeling and observe the effects.  
C) Students may vary parameters associated with blob formation and observe the effects 
on detection accuracy. 
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• Embedded Systems.  A) Students may collect images related to a specific surveillance 

application or environment, and compare the effects to those of standard image sets.  B) 
Students may optimize algorithms for specific platforms and evaluate runtime and 
memory usage. 

• Artificial Intelligence.  A) Students may investigate different combinations of object 
features and observe the effects.  B) Students may test the effectiveness of various 
feature-ranking algorithms. C) Students may implement different types of neural network 
architectures and observe the effectiveness of the post processing. 

 
Hardware and Images 
 
The resources needed to support such exercises are processing hardware, such as a PC or single 
board computer, and a dataset from an archived video or created from a camera.  The dataset 
must be chosen carefully to provide an appropriate number of distinct images and to provide 
appropriately constrained targets.  A single uncompressed, 3 color channel, 640 x 480 image 
represents 900 kB of data. The volume of data contained in video encourages attention to video 
algorithm complexity and efficient programming techniques. Video data is sufficiently complex 
and readily available that it need not be contrived, as occasionally must be done to make projects 
seem realistic. The ability to visualize algorithm output as a video stream imposes a natural real-
time processing constraint. The resources for the results in this work are described as follows. 
 
A. Hardware 
 
The algorithms for object detection and feature extraction are tested on two platforms for 
comparison: (1) a PC running Ubuntu 10.04 and equipped with a 3.4 GHz Pentium D processor 
and 1 GB of RAM, and (2) a Beagleboard–xm, a single-board computer featuring a 1 GHz Texas 
Instruments Cortex A8 ARM processor and 512 MB of RAM. The Beagleboard is small (3.25” 
per side), low-power (4.5 Watts peak), and uses the Angstrom OS, a lightweight Linux 
distribution for embedded platforms. 
 
B. Images 
 
A combination of new25 and previously published datasets26 is used for feature evaluation. 
Samples of these sequences are shown in Figure 1, and include several background types, camera 
angles, urban and suburban environments, and distances to targets. The test set contains nearly 
11,000 images and represents a total elapsed time of over two hours. Four target classes are 
depicted: pedestrians, cars, SUVs, and trucks. Over 3000 objects are extracted and analyzed by 
the pipeline. 
 
Processing Software 
 
We analyze a set of 24 geometric and photometric features for consistency within object classes 
(pedestrian and vehicular), and for discrimination among object classes.  Foreground pixels are 
detected using adaptive background models and background subtraction, and objects are 
localized using a two-dimensional foreground density scan. The feature set is computed for each 
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object, and each feature is evaluated for its utility in object tracking. As we are interested in 
embedded performance, we consider the execution costs of the processing pipeline and each 
feature on two platforms.   

All video processing algorithms here are implemented in C. The OpenCV 2.2 library is used for 
file I/O and for computing the convex hull, ellipse features, and Hu moments. The remaining 
features are extracted using custom code. To improve time measurement accuracy, the average 
feature runtimes were found by computing each feature 100 times.  
 
A. Processing Pipeline 
 
Our processing pipeline consists of a multimodal background model, background subtraction and 
foreground detection, morphological filtering, and blob detection. The morphological filtering 
stage produces the silhouette image from which blobs are detected and most object features are 
extracted.  This process is depicted in Figure 2. 
 
A background model is a statistical representation of the uninteresting regions of a scene. 
Background models are used to detect changes in the scene that correspond to objects or events 

Figure 1. Sample images from the Dataset. 



 

Proceedings of the 2012 Midwest Section Conference of the American Society for Engineering Education 

7 
of interest. A large number of background models have been proposed1, 2, 3; the extensive 
literature available and the wide range of variations possible make this an excellent topic for 
students to explore and experiment. Tradeoffs among model complexity, change detection 
accuracy, rate of adaptation to scene changes, sensitivity to parameter selection, processing time, 
and memory usage can be considered. 

Here, an adaptive, color, multimodal background model called Multimodal Mean27 is used for 
change detection. This model represents each pixel as a set of N possible modes (we choose 
N=4). Each mode consists of a running sum for each color channel and a counter that indicates 
how many pixels have contributed to the sum, making the mean simple to calculate at any time. 
Mode data is periodically divided by two to prevent integer overflow and to decay outdated 
modes. A pixel in the current image is identified as foreground if it differs from all of its 
background modes by more than a maximum component difference threshold. Vertical and 
horizontal histograms of foreground pixels are computed to locate blobs. 
 
B. Object Features 
 
Keeping in mind runtime constraints for plausible real-time surveillance systems, we consider 
popular geometric and photometric features with low computational cost. These features and 
their symbols are listed in Table 2. Height, width, and aspect ratio pertain to an object’s 
bounding box. Solidity is the ratio of an object’s area to its convex hull area. Compactness is the 
ratio of an object’s area to its squared perimeter. Centroid offsets measure the distance from the 
bounding box center to the centroid. Skewness, kurtosis, and the central moments measure 
aspects of the grayscale intensity distribution of an object. To compress their dynamic range, the 
Hu moment features are computed as the log10 of the Hu moments. Perimeter and Euler number 
are computed locally as discussed by Horn28. The major and minor axis lengths, eccentricity and 
orientation features are computed from an ellipse fitted to an object’s silhouette. Figure 3 shows 
an example of how the bounding box, ellipse, and convex hull are fitted to an object silhouette. 
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Figure 2. Block diagram of video processing pipeline. 
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Example Video Analysis Exercises 
 
Consider the suggested exercises for an embedded systems context in which the influence of a 
specific target type and the influence of hardware are investigated.  In particular, the first 
example gives an analysis of feature consistency for vehicles and pedestrians.  The results show 
which features are preferable for vehicle verses pedestrian tracking.  The second example gives 
an analysis of processing runtime for the two different hardware systems described earlier.  
 
A. Feature Consistency for Tracking 
 
Geometric and photometric features are frequently used to establish object correspondence 
between frames, often in conjunction with kinematic constraints such as maximum changes in 
position or velocity. For features to be useful for tracking, they must (1) be stable during the 
object’s traversal of the scene, and (2) vary sufficiently between objects to be distinctive. 
Fisher’s criterion—the ratio of inter-instance variance to intra-instance variance—is useful for 
quantifying these traits.  
 

Figure 3. Examples of some geometric features: height and 
width, ellipse axes and orientation, and convex hull area. 

TABLE 2: TESTED FEATURES AND ABBREVIATIONS   
Symbol Feature Symbol Feature

	
  H Box	
  Height KUR Kurtosis
	
  W Box	
  Width 	
  M2 2nd	
  Order	
  Moment
	
  AR Aspect	
  Ratio	
  (H/W) 	
  M3 3rd	
  Order	
  Moment
	
  A Object	
  Area 	
  M4 4th	
  Order	
  Moment
PER Object	
  Perimeter 	
  MJL Ellipse	
  Major	
  Axis	
  Length
	
  CA Convex	
  Hull	
  Area 	
  MNL Ellipse	
  Minor	
  Axis	
  Length
	
  SLD Solidity	
  (A/CA) 	
  ECC Ellipse	
  Eccentricity
	
  CMP Compactness	
  (A/P*P) OR Ellipse	
  Orientation
	
  COX Horiz	
  Centroid	
  Offset 	
  HU1 1st	
  Hu	
  Moment
	
  COY Vert.	
  Centroid	
  Offset 	
  HU2 2nd	
  Hu	
  Moment
	
  EN Euler	
  Number 	
  HU3 3rd	
  Hu	
  Moment
SKW Skewness 	
  HU4 4th	
  Hu	
  Moment
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To evaluate the tracking utility of the feature set, we measure the relative standard deviations 
(RSD, standard deviation divided by mean) of the features for each object as it traverses the 
scene (intra-object variation), and compare this with the RSD of the average feature values for 
each object observed in a sequence (inter-object variation). The ratios of inter-object variation to 
intra-object variation are shown in Table 3 for vehicular and pedestrian traffic. Ratios greater 
than 1 indicate that feature values vary more among different objects of the same class, than 
among multiple instances of the same object (i.e., the feature value of an object traversing the 
scene is relatively stable, and distinguishes the object from other objects of the same class).  The 
four highest ratios (corresponding to the best tracking utility) are highlighted. The rigid nature of 
vehicular traffic makes many of these features potentially useful for tracking. Features describing 
vertical height and area are most distinguishing among vehicles. The deformable nature of 
pedestrians renders geometrical features unreliable. Area-related features are again most 
distinguishing, including compactness (ratio of area to perimeter), as these are least affected by 
changes in shape and appearance due to walking. Features are 2x to 6x more discriminatory for 
vehicles than for people. In the absence of additional constraints such as kinematics, the 
discussed features are generally unsuitable for tracking pedestrians. 
 
Additional examples of surveillance-based artificial intelligence exercises include using feature-
ranking algorithms to determine the most effective classification features, and implementing 
object classifiers or trackers based on those features. The exercise can be adjusted by varying the 
environments under surveillance, the feature set, and the object classes being considered (e.g. 
humans, vehicles, bicycles, animals, etc). 

 
B. Runtime Comparison for Different Hardware Platforms 
 
The runtimes for major surveillance processes and feature computations are shown in Table 4. 
Height, width, and aspect ratio are found as part of the blob finding process. Silhouette area and 
convex area are computed simultaneously. Photometric moments require a grayscale conversion, 
which is included in these measurements. Due to the expense of computing the intensity image, 
the photometric moments are the most expensive features to compute. The PC achieves 
approximately 15 frames per second, while the Beagleboard reaches 5 frames per second. 

TABLE 3: UTILITY OF FEATURES FOR TRACKING 

Feature
Vehicle	
  	
  	
  	
  

Variance	
  Ratio
Pedestrian	
  

Variance	
  Ratio
Feature

Vehicle	
  	
  	
  	
  
Variance	
  Ratio

Pedestrian	
  
Variance	
  Ratio

	
  H 7.23 1.16 KUR 3.29 1.16
	
  W 5.02 0.96 	
  M2 4.06 0.94
	
  AR 2.91 0.71 	
  M3 4.43 0.06
	
  A 7.06 1.27 	
  M4 3.00 0.93
PER 2.82 0.93 	
  MJL 5.38 1.14
	
  CA 6.86 1.19 	
  MNL 8.14 0.95
	
  SLD 2.19 0.65 	
  ECC 3.40 0.70
	
  CMP 1.84 1.85 OR 4.18 0.83
	
  COX 0.94 0.41 	
  HU1 2.05 1.10
	
  COY 0.93 0.48 	
  HU2 1.92 1.06
	
  EN 1.11 0.70 	
  HU3 1.91 0.77
SKW 3.16 1.56 	
  HU4 1.98 0.78
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The large amount of video data processed by background modeling and change and blob 
detection encourages the optimization of these algorithms. Exercises can be constructed that 
explore the most efficient coding styles for each process on a given platform. In addition, the 
runtime cost of each feature can be weighted by its accuracy or effectiveness in a given task, 
resulting in an ‘effort’ metric. 
 
Discussion and Conclusions 
 
The video processing chain described here can lead to student experiments in several different 
directions. Background modeling and object detection techniques can be explored in more detail, 
and sophisticated methods for feature ranking, classification and tracking can all be explored 
within this framework. The suggested exercises illustrate the educational value of this approach 
for multidisciplinary courses involving topics such as image processing, embedded systems, and 
artificial intelligence. Engaging class discussions can arise by allowing students to review 
literature on their own, implement their techniques of choice, and compare their results. 
 
Prerecorded datasets are necessary in video processing experiments to properly evaluate 
technique variations against a common baseline. However, a live demonstration platform that 
captures imagery, processes it in real time, and displays the results offers many benefits. First, 
students’ interests are piqued by seeing their algorithms in action in a complete system—a more 
satisfying result than studying a few algorithms that fit into a hypothetical larger picture. Second, 
such a system allows fluid, dynamic interaction with the test environment for exploring 
unpredicted scenarios. Third, the demonstration motivates students’ cognizance of the real-time 
processing requirement and its consequences. The cost of extra processing becomes more real 
when one observes frame delays or slow response times. Likewise, the cost of simpler algorithms 
to improve runtime becomes more apparent when one observes obvious errors in scene analysis. 
Finally, by visualizing algorithm behavior first-hand, students are prompted to investigate new 
problems by considering desired behaviors and new applications for these systems. 

TABLE 4: PROCESS AND FEATURE RUNTIMES 

Process PC	
  (ms) BBxm	
  (ms)
Background	
  Model 31.19 80.87
Change	
  Detection 25.37 61.63
Blob	
  Detection 1.74 5.35

Areas 0.88 3.73
Perimeter 0.10 0.86
Solidity 0.88 3.73

Compactness 0.98 4.60
Euler	
  Number 0.14 1.32

Centroid	
  Offsets 0.05 0.36
Ellipse	
  Features 0.46 10.28
Central	
  Moments 2.78 14.69
Hu	
  Moments 2.67 12.31

Total	
  Time	
  (ms) 67.2 199.7
Frame	
  Rate	
  (Hz) 14.9 5.0
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To these ends, we make available a software package25 that implements a basic real-time video 
analysis system. This system exploits the OpenCV library29 and demonstrates functions for 
image capture from a USB webcam, manipulation of image color spaces, superposition of text 
and bounding boxes onto an image, real time input from a keyboard to control process 
parameters, and live display of images from various points of the analysis process. Manipulation 
of sensor settings on UVC-compliant cameras is also demonstrated. The analysis process 
consists of a simple but effective adaptive background model called approximated median30, 
change detection based on the maximum component difference criterion, and blob detection. The 
system can be experimented with as-is, alternative algorithms can be inserted easily, and higher 
level functions for object tracking or classification can be added. The software is written in C 
and C++. Instructions are given for configuring a computer with Ubuntu, OpenCV and other 
necessary packages. The software can also be run on a Windows platform with minimal 
modification. 
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Appendix: Top-level Processing Code 
 
This Appendix shows the top-level source code of the video analysis process, and demonstrates 
the flow of data from loading images, detecting changes between the current image and the 
background model, performing binary erosion to clean the binary image, detecting blobs (high 
spatial concentrations of foreground pixels) in the binary image, and computing the feature set 
for each blob. More detailed code for these operations can be found at the website25.  
 
 
// Main loop for processing interesting part of sequence for (N = Start + Preamble; N <= End; N++)  
{  
 sprintf(Path, "%s/%s/%05d.jpg", SEQ_DIR, Seq, N);  // Get the directory containing the stored images. 
 TFN = N-(Start+Preamble);      // Calculate the true frame number (in case Start is not 0). 
 load_success = Load_Image(Path, Frame); 
  
 /* Find foreground pixels by doing change detection between the current image and the background model.  */ 
 MMM_Change_Detection_1(mmm_model, Frame, sil_image_00, mmm_predom_image, Width, Height, 

MCDth, Cth); 
 
 bin_erosion(sil_image_00, sil_image_01, Width, Height, Stel, 0x5, 0x5, 1);  // Morphological erosion. 
 bin_frame->imageData = (char *) sil_image_01; 
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  /* Find blobs in the binary silhouette image. Detected blobs are stored in the Contacts0 linked list. */ 
 blob_count1 = BlobFind2D(sil_image_01, 0, Width-1, 0, Height-1, Width, RowSumTh, ColSumTh, MinSizeX, 

MinSizeY, GapSize, Contacts0, 1); 
 
  
 /*  Make grayscale Foreground image with Background zeroed out 
   This grayscale image is used to calculate OpenCV Moments and HuMoments 
 */ 
 for(yy=0; yy<Height; yy++) { 
  for(xx=0; xx<Width; xx++) { 
   SilIndex1 = yy*Width+xx; 
   if(sil_image_01[SilIndex1] == 255) { 
    I = 3*(SilIndex1); 
    gray_image[SilIndex1] = (Frame[I]+Frame[I+1]+Frame[I+2])/3; 
   } 
   else { gray_image[SilIndex1] = 0; } 
  } 
 } 
 gray_frame->imageData = (char *) gray_image; 
 
 /* At this point, we have preliminary foreground silhouettes and localized blobs. */ 
   
 cvSet(convex_frame, cvScalar(0)); 
 convex_image = (unsigned char *) convex_frame->imageData; 
 
 ContactNum = Contacts0->Get_Size(); 
 
 /* Iterate over contact list; calculate features for each contact. */ 
 /* Each node of the Contact0 linked list is a structure that contains all of the feature information for a target. */ 
 if(ContactNum > 0) 
 { 
  temp = Contacts0->Get_Head(); 
  while(temp != NULL) 
  {  
   box_height = (1+ temp->maxy - temp->miny); 
   box_width = (1+ temp->maxx - temp->minx); 
   box_aspect_ratio = (float)box_height/(float)box_width; 
 
   Get_EulerNumber(sil_image_01, temp, Width, Height, euler_number); 
   Get_Perimeter(sil_image_01, temp, Width, perimeter); 
   Get_CentroidOffset(sil_image_01, temp, Width, centroid_offset_x, centroid_offset_y); 
   Get_Convex_Hull(bin_frame, convex_frame, convex_image, temp, Width, sil_area, hull_area); 
 
   // Simple ratio parameters 
   solidity = (float)sil_area/(float)hull_area; 
   compactness = (float)12.56636*sil_area/(perimeter*perimeter);  
   
   Get_Ellipse(bin_frame, temp, Width, ell_center_x, ell_center_y, ell_mjr_axis, ell_mnr_axis, 

ell_orientation, ell_eccentricity); 
 
   Get_Moments(sil_image_01, Frame, temp, Width, obj_M2, obj_M3, obj_M4, obj_skew, obj_kurt); 
   Get_OCVMoments(gray_frame, temp, cv_moments, cv_hu); 
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   // Print the features of each target to file. 
   // "FN, x, y, H, W, AR, A, PER, CA, SLD, CMP, COX, COY, EN, S, K, M2, M3, M4, MJL, MNL, 

ECC, OR, HU1, HU2, HU3, HU4" 
   fprintf(Report, 

"\n%d,%d,%d,%d,%d,%f,%d,%f,%d,%f,%f,%f,%f,%d,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f, 
%f", N, temp->xpos, temp->ypos, box_height, box_width, box_aspect_ratio, sil_area, perimeter, 
hull_area, solidity, compactness, centroid_offset_x, centroid_offset_y, euler_number, obj_skew, 
obj_kurt, obj_M2, obj_M3, obj_M4, ell_mjr_axis, ell_mnr_axis, ell_eccentricity, ell_orientation, -
log10(cv_hu->hu1), -log10(cv_hu->hu2), -log10(cv_hu->hu3), -log10(cv_hu->hu4)); 

 
   temp = temp->next; 
  } 
 } 
 
 
 
 /* Draw bounding boxes around blobs  */ 
 DrawBlobBox(sil_image_01, Width, Height, Contacts0, 1); 
    
 bin_frame->imageData = (char *) sil_image_01; 
 Contacts0->ClearList(); 
 
 // Update background model with current frame at end of loop, after frame has been processed. 
 Process_Frame_BG(mmm_model, Frame, Width, Height, MCDth, CTH); 
 
 // Decimate Multimodal Mean model periodically to prevent overflow, and to decay outdated modes. 
 if((TFN % DECRATE) == 0) {  
  Decimate_BGM(mmm_model, CTH, Width*Height);  }  
} 
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