
2018 ASEE Midwest Section Annual Conference

Proceedings of the 2018 ASEE Midwest Section Annual Conference
Copyright © 2018, American Society for Engineering Education

Virtual Machine using Object-Oriented Computing

Jared Rainwater1, Steve E. Watkins2, and Benjamin Cooper3

1Computer Science Department and
2Electrical and Computer Engineering Department, Missouri University of

Science and Technology, Rolla, Missouri USA and
3Simplex Technologies, Rolla, Missouri USA

jqrvz6@mst.edu steve.e.watkins@ieee.org, ben.cooper.seed@gmail.com

Abstract

A design for computing systems that is based on object-oriented computing is investigated. The
approach, which is called Seed since it is patterned after biological systems, consists of Seed
virtual machine (VM), Seed composer, and Seed user interface (UI). The VM facilitates all the
computations happening in the system. The composer breaks up the code to be ran into smaller
segments for future optimization and more fine-grained control over what is running. The UI is
the interface a user will interact to use the system. This project examined the feasibility of an
object-oriented VM based on C++ programming. The VM was implemented with an object-
oriented memory system to store all the data being computed on, an interpreter which executes
the bytecodes associated with computation and updates the data in the Object Memory as need,
and finally, a controller which creates test objects in the object memory system. The Seed VM
allows for enhanced user control and optimization and has the potential for run-time reduction.
By contrast, the traditional approach implements the operating system and application functions
as distinct, monolithic code. In addition to implementing a working Seed VM, run-time
benchmarks were identified for future performance testing. Other future work includes
implementing the composer and the UI and testing the integrated Seed system. This preliminary
project shows a basic, object-oriented VM implementation and highlights advantages of
optimized coding segments and fine-grained user control. Compatibility between Seed systems
and traditional systems in a hybrid environment is a concern.

Keywords

Object-Oriented Computing, Programming, Software.

Creating a Conference Poster
Authors or Reserachers

Department or Organization

VM AccomplishmentsComparison of Approaches

Next Steps

Author Affiliations

Project Overview

Virtual Machine Using
Object-Oriented Computing

Jared Rainwater, Steve E. Watkins, and Benjamin Cooper

J. Rainwater - CpSc Department
S. E. Watkins - ECE Department

Missouri S&T, Rolla, MO
B. Cooper - Simplex Technologies

Rolla, MO
Project:
Implement a computing system using
object-oriented computing design
“Seed” Project:
Name emphasizes the bio-inspiration
for the object-oriented approach

● Object Memory: Fully functional
● Interpreter: Executes arithmetic

and control flow bytecodes
● Controller: Puts test objects into

memory and performs arithmetic
operations on them

Implementing the full Seed system
is ongoing work.

Overall demonstration project for
an entire computing system with

the following elements
● Seed VM: Virtual Machine for

all computations
● Seed Composer: Segments

computing objects
● Seed UI: User Interface

VM is the subject of this work.

Challenges to integrate the Object-
Oriented VM with other systems
● Hardware compatibility
● OS compatibility
● General compatibility in hybrid

environment.

VM Functions
● Object memory to store data
● Interpreter to execute bytecodes
● Controller interface between the

interpreter and the rest of the VM

VM implemented in C++

Lessons Learned
● Fundamental differences exist

among design approaches
● Programming platform is

important, e.g. SmallTalk may be
a better choice for this approach

● Run-time may be a useful metric
for comparing approaches

● Compatibility with traditional
systems is a concern in hybrid
applications

Contact: ben.cooper.seed@gmail.com

Object-Oriented Approach
● Able to split code up into

segments with goals to improve
efficiency, flexibility, and
security

● Operation can be lively like
SmallTalk across the entire
system. (Updates are instantly
broadcasted across all devices)

● Users have more visibility of the
code running on their system

Traditional Procedural Approach
● Code is monolithic with one

executable or several large
executables

● Updating code requires compiling
or re-running the entire code base

● Users require advanced knowledge
on reverse engineering to know
what is running on their system

● It is a proven method in
implementation

Plan for Expanded Computing Environment

	ASEEMidwest18Rainwater.pdf
	ASEE Midwest 2018 Seed Poster.pdf

