Virtual Teams in Engineering – Global Practices

Ana Marcela Hernández de Menéndez, Tecnológico de Monterrey

Marcela Hernández de Menéndez received a B.Sc. in food engineering from Universidad Dr. José Matías Delgado, El Salvador, in 2004. She also got a M.Sc. in Marketing and a M.Sc. in Business Innovation and Technology, both from Tecnológico de Monterrey, México, in 2009 and 2011 respectively. Currently, she is Research Assistant at the Directorate of Research and Graduate Program of the School of Engineering and Sciences at Tecnológico de Monterrey. Her research interests include: competitive intelligence in technology and international and emerging markets.

Dr. Ruben Morales-Menéndez, Tecnologico de Monterrey (ITESM)

Ruben Morales-Menéndez received the B.Sc. degree in chemical engineering and systems, the M.Sc. degrees in process systems and automation, and the Ph.D. degree in artificial intelligence from the Tecnológico de Monterrey, Mexico, in 1984, 1986, 1992, and 2003, respectively. He was a Visiting Scholar with the Laboratory of Computational Intelligence, University of British Columbia, Vancouver, BC, Canada, from 2000 to 2003. He is currently a Consultant specializing in the analysis and design of automatic control systems for continuous processes for more than 29 years. He is the Dean of Research and Graduate Program with the School of Engineering and Sciences at Tecnológico de Monterrey. His research areas are: fault diagnosis, monitoring systems, automotive control system and educational systems in engineering. Dr. Morales-Menéndez is a member of the National Researchers System of Mexico Level II, the Mexican Academic of Sciences and the Engineering Academic of México.

Pedro Orta, Tecnologico de Monterrey (ITESM)

Professor at Mechanical Engineering Department at ITESM Campus Monterrey
Virtual Teams in Engineering – Global Practices

1. Introduction

Competency Based Education (CBE), which focus on flexibility, mastery of abilities and the role of the professor as a coach, is fast expanding worldwide. This is the result of an approach that responds to current global needs. Universities are aware of the changes and challenges ahead, and are committed to developing “global citizens” ¹. One dimension they are working on, is the internationalization of their students.

The promotion of scientific and technological careers is on the agenda of international agencies and countries. It is expected that the demand of Science, Technology, Engineering and Mathematics (STEM) professionals will increase rapidly in the next 10 years. Also, the competencies they must have are going to change ².

Labor market will have important changes. Collaboration between organizations to develop innovations will increase. Also, working activities will be interconnected and labor environment will be multicultural ³. Under this context, future engineers will need to have knowledge on global technical requirements and standards; but, also to be productive working with partners who have different backgrounds and cultures ⁴. In this sense, one of the abilities students must possess is collaborate with persons located in different geographical places, which is one of the main characteristics of working in Virtual Teams ⁵.

This paper explores Virtual Teams in the engineering field. A literature review was performed with the aim of present an overview on the topic, as well as state of the art regarding collaboration tools and the Virtual Team general practices of organizations promoting the development of related competencies. This paper is a source of valuable knowledge and bibliographical references regarding an issue of international interest, which is working in a more sustainable and innovative way. The outline of this paper is as follows: Section 2 presents a general outlook of Virtual Teams. In Section 3, collaboration tools are analyzed. Section 4 describes 8 case studies of organizations devoting efforts in promoting the development of Virtual Team competencies. Section 5 presents the Virtual Teams general practices of the aforementioned initiatives. The paper ends with conclusions in Section 6.

2. Virtual Teams overview

Teamwork has been essential for teaching students; it is appealing and stimulates the development of professional abilities. With the advancement of technology and globalization, the use of Virtual Teams is growing, leading to important changes and innovations in education.

Virtual Teams are “groups whose participants use information technology in functioning throughout locational, sequential, and interpersonal restrictions to undertake a codependent assignment” ⁶. The use of Information and Communication Technologies (ICTs) for collaboration is mandatory in Virtual Teams. Developed projects are short-term, with a focus in innovation. Groups are small, with members located in different places. In this regard, Virtual Team members require certain competencies including: intercultural sensitivity, digital competency and managing complexity and uncertainty. All of them can be acquired with proper training, being universities a suitable place to promote its acquisition ⁷.
In research and development projects, such as the ones performed in engineering, two types of teams are used: Traditional and Virtual Teams. Each of them has its own features, Table 1.

<table>
<thead>
<tr>
<th>Features</th>
<th>Traditional Teams</th>
<th>Virtual Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Characteristic</td>
<td>Individuals working in physical proximity</td>
<td>Individuals are physically separated</td>
</tr>
<tr>
<td>Communication</td>
<td>Members communicate face to face</td>
<td>Members are fully dependent on ICTs to communicate</td>
</tr>
<tr>
<td>Tasks performance</td>
<td>Members usually coordinate tasks together</td>
<td>Tasks are structured, with little space for coordination</td>
</tr>
<tr>
<td>Type of interaction</td>
<td>Members have social and informal interactions inside work</td>
<td>Members focus on work objectives and have little space for socializing</td>
</tr>
<tr>
<td>Innovation</td>
<td>Innovation takes place inside the organization and in working hours</td>
<td>Disruptive innovations can be generated. Individuals have more freedom</td>
</tr>
<tr>
<td>Leadership style</td>
<td>Leaders have more control on the activities and can track them daily</td>
<td>Leaders delegate more and assume the role of a coach</td>
</tr>
</tbody>
</table>
| Main advantages | - Decision making can be done faster
- Face to face interactions benefits the development of trust
- Participants have similar cultures and backgrounds, decreasing conflicts | - Detects global changes faster and responds on time to demands
- Time/money savings are possible
- Collaboration projects are more productive |
| Main disadvantage | - Members have limited interaction with people outside the organization
- The access to experts in a given field can be expensive or difficult | - An effective technological infrastructure is still expensive
- Development of trust among team members is challenging |

Virtual and Traditional teams do not replace each other. Their use depend on the type of project performed and the circumstances around it. Virtual Teams could be considered an extension of traditional teams. In engineering education, researchers indicate that there are no significant differences between the performance of students working in face to face or Virtual Teams.

Some studies of Virtual Teams have focused on its environmental advantages, others in aspects of the individual. This research presents the state of the art of practical knowledge for Virtual Teams to function. Useful tools and general practices of organizations promoting virtual work are analyzed.

3. Virtual Teams collaboration tools

Effective remote working and communication are the key aspects for a correct operation of Virtual Teams. Even though, until now, technological communication tools have proven to be unsuccessful in mimicking physical proximity, e-mails, chats, discussion forums and videoconferences are among the effective tools used to organize Virtual Team tasks. Virtual reality also offers great advantages in distance work. It is expected that the advancements in this type of technology will have a major impact in engineering education. Some of the collaboration tools used to assist Virtual Team working mechanisms are described and analyzed in Table 2.
4. **Virtual Teams** education partnerships between universities/industries.

4.1 Partners for the Advancement of Collaborative Engineering Education (*PACE*). The *PACE* program was founded in 1999 by *UGS* (Siemens), *EDS* (Hewlett Packard), Sun Microsystems (Oracle) and General Motors. Today, it is a global educational consortium comprising 65 institutions from 12 countries. Its objective is to train future designers and engineers in a global collaboration context. A *PACE* project was developed in 2014 by a partnership between *Tecnológico de Monterrey* (México), *Virginia Tech* (USA), *Technical University Darmstadt* (Germany) and *Shanghai Jiao Tong University* (China). They developed a fully electrical vehicle concept in *Virtual Teams*. Technological tools were used including Facebook and Google Drive. It was determined that social networks improve communication and empathy among team members.

Table 2. Collaboration tools in *Virtual Teams*

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Use in Virtual Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Wonderland</td>
<td>Software for creating collaborative 3D virtual worlds. People can talk, share documents and interact almost in a real environment.</td>
<td>140 students of an introductory course were organized in groups to perform a Virtual Team project. It was determined that open spaces created in Open Wonderland increased team creativity.</td>
</tr>
<tr>
<td>IBM Sametime</td>
<td>Software that allow team communication and collaboration, both person to person or as a group. Screen sharing and multi audio calls are some of its features.</td>
<td>81 graduate students from a US university and an Indian school participated in a Virtual Team experiment using IBM Sametime. The voting and ranking tools of the software significantly reduced conflicts among team members.</td>
</tr>
<tr>
<td>GoToMeeting</td>
<td>Software that allow to collaborate in real time through online conferencing. Participants can schedule and record meetings, share screens, among others.</td>
<td>89 students of a southeastern university participated in a study aim at determining the influence of the media in Virtual Teams. GoToMeeting was considered a rich media, used for organizing tasks high in uncertainty and high in equivocality.</td>
</tr>
<tr>
<td>Facebook, Google+ and MySpace</td>
<td>This are used to make project discussions by creating sites/pages in which members can interact and, at the same time, socialize.</td>
<td>An organization of 122 scientists uses Facebook to discuss and promote virtual collaboration. This social media is not useful to collaborate directly, but facilitates the creation of trust.</td>
</tr>
<tr>
<td>Google Drive</td>
<td>Its main advantage is that users can work at the same time in one document and create them in site. It can make a Virtual Team more productive.</td>
<td>At a Sultan Qaboos University (Omán) course, students used Google Drive to collaborate in Virtual Teams. This tool facilitated collaboration as students could work at the same time, without sharing different versions of the document.</td>
</tr>
<tr>
<td>Skype</td>
<td>Offers individual or group communication which can take place through written chat, video or only voice. Users can share presentations and view documents with the screen sharing option.</td>
<td>A study with postgraduate students of an online course determined that Skype was the most effective and flexible communication tool for working virtually. The use of video enables to assess the body language, which improves communication success.</td>
</tr>
</tbody>
</table>
4.2 HP Catalyst Initiative. HP Catalyst is a network of global educators, NGOs and policy makers who develop projects to improve STEM education. Under this initiative, students from Coventry University (UK) and Ryerson University (Canada) designed a building in Virtual Teams. The former assumed the role of civil engineers, while the latter acquired the role of architects. Tools such as Skype and Dropbox were used. It was determined that the virtual activity did not have an impact on students’ performance. Participants were satisfied and stated that this experience will bring to them great employability opportunities.

4.3 Collaboration between Virginia Tech (USA) and University of Southern California (USA). These universities co-designed a Construction Engineering and Management (CEM) course for undergraduate and graduate students. The aim was to train them in real world construction projects, working in Virtual Teams. In the first course, students developed a Building Information Modeling (BIM) with the support of professors and industry mentors. Various tools were used including Doodle and Skype. Participants argued that Virtual Teams works best when there are no leaders. However, few natural leaders emerged during the project. Students were unsatisfied about virtual collaboration effectiveness to achieve the project goals. It was determined that Virtual Teams are not effective when the goal is to promote technical support.

4.4 The Global Studio Project. is the result of the changes in manufacturing, characterized by virtual partnership and design processes apart from production. A project was performed by students of Loughborough University (UK) and British Telecom (BT) (UK). All teams had to design and prototype technological solutions. The proposals included a smart wiring for houses. Expert of BT supervised each team through virtual meetings. Phone calls and Skype were the most used tools for communication. Participants were satisfied with the results; they learned how to incorporate the knowledge of different persons to achieve a common goal.

4.5 DNV GL Software Project. DNV GL is an international software provider. In 2014, the firm organized a Virtual Team project between employees from Norway and Poland. The objective was to develop a web-based product. The Norwegians developed the core application and the Polish, the mobile version and plugins. Besides virtual communication, physical meetings were organized. It was determined that successful Virtual Teams are developed gradually and, most important, that each person must have team knowledge, i.e. understand the tasks, technical and personal characteristics of each member and the goals of the project, which gives certain autonomy.

4.6 Team-based European Automotive Manufacture (TEAM) project. Engineers from 4 countries collaborated in this initiative. They used technology tools to make concurrent engineering automotive projects, such as designing steering components for a new vehicle program. Organizations involved included, among others, Rover Group, University of Trento and Siemens AG. The main goal was to enhance collaboration between car manufacturers and suppliers to reduce costs, time to market and enhance quality. The participants used the TEAM Demonstrator software to collaborate. It was determined that, in the automotive industry, the use of Virtual Teams with efficient communication tools could offer time savings from 10% to 50%.

4.7 Multinational Design Project. This initiative was developed between students from universities in Chile, Colombia, Ecuador, Honduras, Italy and USA. The objective was that participants experienced working in Virtual Teams. They designed a machine to process and
pack fruit. An online meeting room was available; however, students also used tools such as Facebook and Google Docs/Drive. Half of the participants indicated that contribution to the project was equally among teams. The 77% of students indicated that there was a good disposition for working on time and actively. The 65% students argued that personal interaction was important to build trust.

4.8 The European Global Product Realization (E-GPR) project. This initiative is developed between the Swiss Federal Institute of Technology of Lausanne (Switzerland), the Technical University of Delft (Netherlands), the University of Ljubljana (Slovenia) and an industrial partner. The goal was to teach students how to work in Virtual Teams. In 2003, participants developed a personal protective system for the welding industry. They were guided by the industrial partner and instructors from each university serve as mediators. The main communication tool was NetMeeting. It was determined that the E-GPR project is an efficient activity to teach students how to develop engineering designs collaboratively. The different backgrounds and culture of participants contribute developing innovative solutions.

5. Virtual Teams global general practices

The partnerships presented in Section 4 were analyzed based on five criteria related to Virtual Teams topic, Table 3. From its analysis, general global practices were detected, which are presented below.

The general practices that the organizations analyzed perform to train individuals to work in Virtual Teams were determined from Table 3 and are presented in Figure 1. Six categories were built based on the main Virtual Teams characteristics identified in the literature. The types of projects performed had a strong orientation toward the design and development of products in diverse fields: automotive, construction, technological, among others. The number of Virtual Team members varied. Groups were relatively small, with a maximum of 12 persons per team. Background category refers to the personal and professional characteristics of participants. Different majors, study levels and nationalities were combined. It was determined that diversity is a key aspect in Virtual Teams. Competencies developed in participants during the execution of the projects were also identified. The most mentioned included among others: communication, networking, digital competency and trust. As participants were located in different geographical areas, several technological collaboration tools were required. A mix of this tools was essential for facilitating communication and execution of tasks. Communication was more often done through email and Skype. Google Docs/Drive and Dropbox were effective to share documents and work simultaneously. This avoided handling different manuscript versions. Facebook was an excellent tool for developing informal ties and improve communication. Also phone calls were used for coordinating tasks directly. Students learning was assessed through individual and peer evaluations, written reports, oral presentations, projects and surveys. As different cultures were combined, a common language was necessary (e.g. English). All initiatives main goal was to train participants to face the challenges pose by the current global labor environment.
Table 3. *Virtual Team* characteristics of partnerships

<table>
<thead>
<tr>
<th>Initiative</th>
<th>General characteristics</th>
<th>Type of project performed</th>
<th>Technology used</th>
<th>Developed competencies</th>
<th>Assessment method*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>8 global teams were conformed. Each one had around 50 undergraduate and graduate students distributed in subgroups (4-5 members)</td>
<td>Design and development of an electrical vehicle</td>
<td>Teamcenter, Skype, Tandberg, WhatsApp, Facebook, WebEx, Google Drive and email</td>
<td>Networking, digital competency, communication, cultural awareness</td>
<td>Evaluation of reports and oral presentations</td>
</tr>
<tr>
<td>4.2</td>
<td>Groups of 8 undergraduate students were integrated. Students from different backgrounds participated</td>
<td>Design of a building</td>
<td>HP Virtual Room, Skype, Dropbox and email</td>
<td>Intercultural awareness, multicultural communication, management skills, trust, planning</td>
<td>Individual and peer assessment</td>
</tr>
<tr>
<td>4.3</td>
<td>11 students were from VTech and 12 from USC. Four multidisciplinary Virtual Teams were built with 6 or 5 members each. Undergraduate and graduate students took the course</td>
<td>BIM project</td>
<td>Synchro, Microsoft Project, Primavera, Digital Project, Doodle, e-mail, Google Chat/Docs, Skype, TokBox, Yugma, GoToMeeting and telephone</td>
<td>Digital competency, resource and time management, networking, leadership, trust, self-learning</td>
<td>Peer assessment, evaluation of reports and oral presentations</td>
</tr>
<tr>
<td>4.4</td>
<td>3 teams of 7 members each were built. Participants were master’s level students</td>
<td>Designing and prototyping technological house solutions</td>
<td>Phone, Skype, web blog and email</td>
<td>Communicating, supporting, leading, proactivity, analyzing</td>
<td>Oral presentations and evaluation of reports</td>
</tr>
<tr>
<td>4.5</td>
<td>12 Norwegians comprised one team and 10 Polish the other. They were software developers and testers</td>
<td>Development of a web-based software product</td>
<td>Discussion forums, video conferences, Slack collaboration tool</td>
<td>Communicating, networking, autonomy, responsibility, continuous learning</td>
<td>Students were not involved in this project</td>
</tr>
<tr>
<td>4.6</td>
<td>40 engineers collaborated in 10 project teams. Four countries were involved</td>
<td>Concurrent engineering projects in the automotive industry</td>
<td>TEAM Demonstrator which includes tools as multimedia conferencing</td>
<td>Digital competence, planning and organizing, communication, efficiency and effectiveness</td>
<td>Students were not involved in this project</td>
</tr>
<tr>
<td>4.7</td>
<td>100 students from 6 countries participated. Local teams (subgroups) of at least 3 members and clusters of at least 4 subgroups were organized</td>
<td>Design of an industrial machine</td>
<td>Online meeting room, audio-video conference, Google docs/drive, e-mail, Dropbox and Facebook</td>
<td>Digital competence, effective communication, teamwork, auto-motivation</td>
<td>Student’s survey</td>
</tr>
<tr>
<td>4.8</td>
<td>Teams of 3 students were organized. Master of science students of different backgrounds participated</td>
<td>Engineering product development</td>
<td>Video-conferencing, NetMeeting, AOL messenger, Yahoo-chat, E-mail, blackboard</td>
<td>Planning, organization, networking, trust, responsibility</td>
<td>Project based</td>
</tr>
</tbody>
</table>

As there are projects in which students were not involved, a proper comparison of the students’ assessment methods of all initiatives is difficult. However, this information is available from 6 out of 8 projects analyzed and hence is presented in the corresponding column.
6. Conclusions

Virtual Teams main characteristic is the location of members in different geographical areas. Therefore, it is mandatory that individuals involved in a virtual project use a mix of technology tools to work effectively. The different knowledge, backgrounds, cultures and experiences of Virtual Team members foster disruptive innovations. This is especially useful in projects involving research and development activities. Besides above advantage, individuals facing virtual work develop useful competencies for performing effectively in a competitive labor environment. These include networking and digital competency. Communication problems were identified during the execution of some projects researched. This is mainly the result of the cultural and language differences. It was stated that working in Virtual Teams is kind of difficult, mainly to achieve the project goals. Interesting results were detected in this research. First, social networks can improve communication as they foster informal relationships. Second, an effective Virtual Team is built gradually; time is needed to determine what works best for the team. Also, regular in person interactions are required to develop trust among team members. Third, Virtual Team learning experiences does not necessary improve individuals’ performance. Finally, Virtual Teams are not useful when the aim is to promote technical support among team members.

References