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Abstract
In many engineering curricula the formal techniques of the solution of partial differential equations are

not studied, however, all such curricula examine problems described by such equations. An alternative to
studying the formal solutions is to examine the solutions of such problems by numerical methods. The authors
have found MATLAB particularly attractive for the solution of such problems because of the ease with which
linear algebra problems are solved and displayed in that computing environment.

Introduction
Physical systems governed by partial differential equations have become a part of most undergraduate

engineering curricula although many of these curricula do not require formal mathematical training in such topics.
Typical subject matter with such content includes vibrations, acoustics, transport phenomena and
electromagnetic theory. Students without formal mathematical training in partial differential equations are almost
helpless to understand the solution to such a problems in their engineering courses. An alternative to teaching
analytical techniques of mathematical physics is to explore the solution to such problems in an approximate
manner. Two ways to approach these approximate solutions are via numerical analysis or by the weighted
residual approaches of Galerkin and Ritz. The former method employing MATLAB is the topic of this paper
while the latter will be explored in a subsequent paper.

For three decades the numerical solution to partial differential has been explored by practicing scientists,
engineers and graduate students in engineering, and a decade ago it was still a formidable task often employing a
library of general purpose subroutines to implement a particular numerical solution technique.

The recent availability of MATLAB for desktop computing has provided a computing environment with
robust built-in routines for matrix manipulation and seamless two and three dimensional graphics for presentation
of the solutions thus obtained. In short, using MATLAB turns efforts the duration of which was formerly
measured in days to durations of a few hours.

In the past, implicit methods were often avoided because of the need to solve a set of algebraic equations
at each step in time. In the case of linear problems this is refl
ected by a need to invert a matrix at each step in time. In the case of linear and time and spatially invariant
systems, this solution method requires the inversion of a matrix only once at the beginning of the problem. The
difficulties cited above are no longer an impediment to problems of moderate size.

In the past, explicit methods were attractive because they did not require solution of a system of algebraic
equations. The disadvantage of explicit methods is that they tend to be numerically unstable, particularly when
the system being investigated is lightly damped.

Although MATLAB has become the computational tool of choice for systems and signal processing, the
predecessors (LINPACK and EISPACK) were developed with the solution of systems of partial differential
equations associated with nuclear engineering in mind. It is also interesting to note that The Math Works has
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very recently announced availability of the Partial Differential Equation Toolbox [2]. It seems prescient then to
forge on with this strength,

A recently published paper [1] explores the use of MATLAB as a tool for the solution of hyperbolic
partial differential equations, and this spirit will be continued herein with the following example.

An Example
Consider the example of a taut vibrating string which for small motions is governed by the wave equation

azy=azy——
atz W

(1)

where x is the scaled spatial variable such that the spatial interval is of unit length, and t is the scaled temporal
variable which is chosen to make the wave velocity unity. The boundary conditions are

y(o, t) = J(I, t) = o (2)

and initial conditions
y(x,o) = j-(x) (3)

and
ay(~,o) = ~

at
(4)

Since the system is of second order in time, it is attractive to decompose it into two coupled first order stems
or define v(x,~ to be the velocity of the string so

ay
Z=v

and

(5)

av_a2y (6)
z-s

If we approximate the temporal derivatives with a backward difference and the second spatial derivative with a
central difference, we get at some location xi

Yi(o-Yi  (t-@ = v,(t)

At
1 (7)

vi (t) – vi (t – At) = Yi+l (t) – 2Yi (t) + y~-1 (t)

At AX2
(8)

for i = 1,...,N. The subscripts denote the location at which the velocity and displacement are evaluated, The two
boundary conditions of(2) dictate that yo(~  = y~+~(~  = O for all t. Expressions (7) and (8) can be rewritten as
backward difference equations or

and

for i = 1,...,N.

Yi (t - At)= Yi (t) - A@i (t) (9)

:2 (Yi+l (t)- 2Yi(t)+Yi-~  (2))vi(t– At)= vi(t)– — (10)

Further these equations can be rewritten in matrix form as

--- ,L.. g<,,,,
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where the A; are each respectively defined as

and

(11)

(12)

(13)
(14)

(15)

The solution to the problem posed now involves the specification of an initial condition vector and the
solution of the set of linear equations of ( 11 ) each step in time. This is most efficiently accomplished by inverting
the associated matrix once at the start of the problem. For this example, N =21 and At= 0.1 and the initial
plucked position of the string is

(16)

The method of solution outlined has been used to solve the problem for the first half cycle of string motion and
the results are presented in the discussion that follows. The MATLAB code for this solution is included in
Appendix A.

The string position for various values of time are shown in Figure 1. These results maybe corroborated
by the knowledge of the D’Almbert solution to the wave equation for this problem [3]. The “granularity” of the
solution near the extreme points corresponds to the Ax selected for this computation.

Figure 2 illustrates the motion of four points along the string, which in the case of the exact solution are
each a trapezoidal wave shape, This illustrates why the tones of stringed instruments are so rich in harmonic
overtones.

Figure 3 illustrates one of the very positive aspects of MATLAB because it allows the easy presentation
of three dimensional plots to graphically illustrate the solution. In this case, the string motion as a function of
both location and time are displayed. With a bit of patience and some careful data storage, the time history of the
vibration can be graphically animated to help “tie the knot” of student comprehension.

The authors have used this simple technique to evaluate the solution to conduction heat transfer
problems, contaminant transport problems, beam vibration problems with a variety of boundary conditions, and
transmission line problems.

---
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Figure 1. String Position at Various Times for a Half-Cycle of Motion.

Figure 2. String Displacement as a Function of Time for Four Points on the String.

Conclusion
The authors have solved a number of partial differential equation problems over finite and semi-infinite

spatial domains, similar to the flavor of the preceding example. It has been discovered that a MATLAB algorithm
from one problem is quickly modified to solve an unrelated problem from an unrelated field of engineering.

The engineering education community has here-to-fore been somewhat reluctant to pursue the solution of
partial differential equations at the undergraduate level. The authors argue that the major computational hurdles
for numerical solutions no longer exist thanks to contemporary took such as MATLAB. In the interest of our
students’ understanding, perhaps we should now press forward with exploiting the capabilities at our desktops.
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Figure 3. A Three Dimensional Plot of String Displacement as a Function of Location and Time.
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Appendix A
This m-file solves the wave equation
0/0 for a 0/0 half cycle of motion of a
0/0 plucked string.
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