
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgeport, CT, USA. 

Visualization Tool for GPGPU Programming 
 

Peter J. Zeno 
Department of Computer Science and Engineering 

University of Bridgeport 
Bridgeport, CT 

pzeno@my.bridgeport.edu 
 
 

Abstract—	
   The running times of some sequential 
programs could be greatly reduced by converting and running its 
parallelizable, time dominant code on a massively, parallel 
processor architecture. Example program application areas 
include: bioinformatics, molecular dynamics, video and image 
processing, signal and audio processing, medical imaging, and 
cryptography. A low cost, low power, parallel computing 
platform for running these types of algorithms/applications is the 
graphics processor unit (GPU). Speedups of a factor in the tens 
can be realized for some of these applications. However, writing 
or converting over a program into a parallel language, such as 
NVIDIA’s CUDA or Kronos Group’s OpenCL, can be a very 
daunting, complex, and error prone task. The optimum solution 
would be to create a tool that can automatically convert 
candidate sequential programs into optimized, parallel code. 
However, creating a purely autonomous parallelizing compiler to 
perform this conversion has not been met with much success to 
date, due primarily to the complexity of the task. There are 
partly autonomous-partly programmer assisted tools, in the form 
of parallel compiler directive based languages to give the 
compiler “hints” about where to find the parallelism. This 
method has recently gaining advancement and acceptance to 
some degree. But, until there are major advancements in both 
semi and fully automated sequential to parallel code converters, 
the only way to get the most optimized solution is by 
programmers performing this conversion themselves. Thus, this 
paper addresses the need for a parallel code visualization tool 
that would greatly aid programmers with this task. 

 

Keywords—GPGPU, UML, ER Diagram, CUDA, OpenCL, 
OpenACC 

I. INTRODUCTION 
Currently, programmers are left to their own creativity as 

how to visualize the translation of a segment of parallelizable 
sequential code into hundreds, or even thousands, of parallel 
threads. The lack of visualization tools is not the case for other 
areas of complex architecting, such as the use of computer 
aided design (CAD) software in the architecture, mechanical, 
and engineering fields. Additionally, electronic design (digital 
and analog) and software system design also rely heavily on 
the use of graphical and automated based tools to aid in 
visualizing the connectivity and relations of its components 

from a top-down perspective. For example, hardware digital 
design, such as VLSI and FPGA design, is accomplished 
through visual/automated design tools from Cadence, 
Synopsys, Xilinx, and Altera, to name just a few [1, 2]. For 
complex software system design, programmers performing 
object oriented design (OOD) use visual tools based on the 
unified modeling language (UML), and database designers use 
entity-relationship (ER) diagram based tools. Thus, similarly, 
there is a need for a visualizing tool that will specifically 
address the migration of serial to parallel programs which are 
targeted to run on a graphics processor unit (GPU) and is 
written with the NVIDIA general purpose GPU (GPGPU) 
programming language, CUDATM [3-5]. 

II. BACKGROUND 

A. The State of Graphics in GPGPU Programming 
The culmination of computer graphics advancements, 

particularly over the past two decades, can be seen all around 
us and is very much a part of our everyday lives. We are 
wowed by realistic computer animations in commercials, 
movies, video games, and virtual reality technology. Medical 
imaging has taken visualization of the human body to a whole 
new (3D) level. Almost every field of science has been 
enhanced by computer graphic models and representations. 
However, despite these technological advances in computer 
graphics, we still lack basic visualization tools to help 
programmers with writing parallel processing code, 
specifically, programs written to be run on massively parallel 
processing platforms, such as the GPU. Such a tool would not 
only help programmers in industry, but would also help 
students who are learning parallel processing in their college 
courses [6, 7]. This paper presents the framework for a 
visualizing tool that would aid in bridging the gap between 
theory and application for GPGPU programming. Next, we 
will cover some background information on GPGPU 
programming, CUDA, and the general architecture of the 
NVIDIA GPU. 



B. GPGPU Programming 
The use of GPUs for non-graphical computations has 

exploded in recent years [8, 9]. This is due mainly to the 
advent of GPGPU programming languages, such as NVIDIA’s 
CUDA and Kronos Group’s OpenCL, and the need to gain 
back performance increases that have been lost by the leveling 
out of processor clock speeds. Despite the simplification of 
programming GPUs by use of GPGPU programming 
languages, it is still a very complex task to coordinate 
thousands of threads’ data accesses [10, 11]. It can be even 
harder to debug when things don’t go as planned. 

The CUDA GPGPU programming language is designed to 
work with only NVIDIA’s GPUs, whereas OpenCL can be 
used with a variety of manufacturers’ multi-core CPU and 
GPU devices, including NVIDIA’s GPUs. Despite CUDA’s 
hardware restriction, OpenCL and CUDA share many similar 
syntax and other characteristics. Thus, CUDA will be used as 
the example GPGPU programming framework for this paper, 
primarily due to how well it maps to the underlying hardware.  

C. CUDA 
A CUDA program can be divided into three general 

sections: code to be run on the host (CPU), code to be run on 
the device (GPU), and the code related to the transfer of data 
between the host and the device. The code to be run on the 
GPU is called a kernel, which is a special type of function. 
However, when a kernel is called from the main program, the 
dimensionality of the grid (number of blocks in the X and Y 
dimensions) and the block (number of threads in the X, Y, and 
Z dimensions per block) are sent with it. To understand the 
importance of these parameters it is best to take a look at the 
GPU’s architecture, which is briefly covered next. 

D. NVIDIA GPU Architecture 
Figure 1 illustrates the differences between the general 

architecture of a CPU and a GPU, particularly, as to how they 
compare in transistor area dedicated to data processing. Since 
the GPU is designed for very low control divergence between 
threads, and a high number of parallel threads executing at any 
given time, the number of transistors needed for control and 
cache are minimal, as compared to that of the CPU.  

A more descriptive representation of a GPU’s architecture 
is illustrated in Figure 2. For the NVIDIA GPU, the block 
represents a stream multiprocessor (SM) and a thread 
represents a stream processor (SP). A newer NVIDIA GPU 
has 32 cores (SPs) per SM, and will have several SMs. The 
number of SMs depend on the amount of money you are 
willing to spend on the GPU. Figure 2 illustrates how a block 
maps to an SM and a thread to an SP. However, a kernel can 
have more blocks than physical SMs, and each block can have 
many more threads than SPs. Actually, the more threads the 
better when it comes to GPUs, within reason of course. This is 
how the GPU works best and most efficiently. However, 
finding the optimum number of blocks and threads per block 
used can be illusive. Typically, the only way of finding the 
best combination is by trial and error [11, 12]. It is highly 

recommended that realistic data be used and the results are 
verified. Many times errors are introduced by inadvertently 
using out of range values for the algorithm or more threads 
than planned are performing operations on the data. 

Each block’s shared memory is only accessible to the 
threads in that block. Additionally, registers/local memory is 
only accessible to a particular thread. Shared memory (48 KB 
max) and local memory are minimal, but fast. Accessing the 
more abundant global memory takes much more time (in the 
order of 100x) over registers and shared memory.  

 

 
Fig. 1: CPU vs. a GPU (www.nvidia.com). 

 

Fig. 2: Representation of a GPU’s basic architecture. 

Figure 2 also illustrates the concepts of coordinates for the 
blocks and threads. This is how a kernel differentiates (if 
programmed correctly) between which thread of which block 
is going to access what part of memory. This is where the need 
for visualization arises. The kernel acts as a template function 
that will perform the same instruction on different data 
(SIMD). And the data that is used is based on the blocks’ 
and/or threads’ coordinates, depending on the algorithm. 

III. SYMPLIFYING GPGPU PROGRAMMING 
The outer circle of Figure 3 could really apply to almost 

any software development process, besides a CUDA code 
development cycle. The original cycle, proposed by NVIDIA, 
is: Assess, Parallelize, Optimize, and Deploy (APOD) [13]. 
However, it is obvious that testing and debugging are missing 



from this model. Since optimizing may affect the kernel’s 
output validity, test and debug are coupled with the Optimize 
phase. The emphasis of the APOD cycle is to get code with an 
acceptable, initial speedup (and produces correct output data) 
out for use as soon as possible, to reap the benefits ASAP. 
While the current generation of code is in the field being used, 
another iteration of the APOD cycle can take place, if desired. 

 

Fig. 3. Simplifying GPGPU Programming Model 

 

Fig. 4. Top-level block diagram of Visualization tool. 

The APOD design cycle can be further sub-divided into 
smaller incremental steps. For example the Assess phase can 
be broken down into the following subtasks: (1) profile, (2) 
analyze hot spot(s) for parallelism, and (3) estimate potential 
speedup. From the results of these micro-steps, a go or no-go 
decision can be made as to whether or not to parallelize the 
serial code being analyzed. Additionally, the data gathered 
from the profiler tells the programmer where to focus his or 
her energy on. 

A. Automation and Parallel Compiler Directives 
The outer square of Figure 3 illustrates the type of ideal 

tools that would greatly simplify GPGPU programming on a 
heterogeneous (CPU-GPU) system. Certainly, a fully 
automated tool would dominate if one wanted to convert serial 
code to GPU based parallel code, and if it always gave a near 
optimal conversion solution without introducing incorrect 

results. For this would greatly reduce the cost and time of 
parallelizing the serial code. There has been some documented 
research and solution proposals in this area [14-16]. However, 
such a tool is not currently commercially available. The main 
reason for this complexity is that the compiler would be forced 
to make assumptions about the underlying application. This is 
may be possible for some applications, but certainly not for 
all. For now, the move is toward using semi-automated 
conversion tools. These tools fall into the following two 
categories: (1) the tool interactively prompts the programmer 
with questions or ambiguities that it has with converting the 
code, and (2) the programmer uses a compiler directive 
language, such as OpenACC or hiCUDA [17], to give the 
complier “hints” as to where to find parallelism in the standard 
C, C++ or Fortran code. This is similar to OpenMP, which 
only works with code to be run on CPUs. NVIDIA’s latest 
CUDA version 5.0 release now supports the use of OpenACC. 
However, the problem experienced with implicit parallelism 
directive languages is that optimum speedup is rarely 
achieved, as compared to the speedup obtained by a 
programmer skillfully crafting a CUDA kernel [18]. 

B. Debugging Tools 
Since a fully automated solution is currently not available, 

the next best thing is the use of automated tools in areas where 
they already exist and are proven. Example tools include: 
profiling tools in the Assess phase, such as NVIDIA’s nvprof 
visual based profiler or the GNU command line based gprof, 
and debug tools in the Optimize phase, such as NVIDIA’s 
Nsight Eclipse Edition visual based debugger or its command 
line version CUDA-GDB. Although these debuggers are very 
helpful at a low level, they lack in conveying the larger picture 
of the block/thread/memory interaction patterns. 

C. Visualization Tool: Overview 
The last element of the outer box in Figure 3 is the 

visualization tool. As the figures covered thus far were helpful 
(hopefully) in illustrating some key concepts visually, 
similarly, a visualization tool would be very beneficial to 
GPGPU programmers. Such a tool would be optimum if it 
could be used in the kernel pre- and post-coding phases. In the 
kernel pre-coding phase, it would graphically assist the 
programmer with deriving the coordinate based interactions of 
blocks and threads with shared and global memory, as 
discussed previously. Also, if the visualization tool could read 
in kernel code and output its representation (kernel post-
coding phase), this would help the programmer verify their 
kernel function and dimensionality. Thus, such a tool would 
aid in kernel development, high level debugging, as well as 
optimization. From this basic framework just outlined, we can 
now derive the basic architecture of the visualization tool.  

IV. VISUALIZATION TOOL: CONCEPTUAL DESIGN 
The proposed GPGPU programming visualization tool can 

be split into two general parts: the kernel design module 
(KDM), and the kernel verification module (KVM), as shown 



in Figure 4. The KDM covers the kernel pre-coding portion of 
the visualization tool, as previously discussed, and the KVM 
covers the kernel post-coding portion. Since my research in 
this area is new and ongoing, the KVM has been chosen as the 
starting module for development and will be the focus of the 
remainder of this paper. It is assumed that development of 
either module should produce some common code that can be 
used by both modules.  

Although the graphical format of the KVM-GUI/API 
system is still under consideration, the main idea is to have 
one window dedicated to displaying the kernel code, where 
each line of the code is highlighted as the graphical 
“simulator” steps through it. A separate graphics based 
window will display block and thread interactions with the 
various forms of memory available, particularly the slowest to 
access global memory. Developing a perfectly accurate GPU 
emulator, as described in [19], is not the end goal, but instead 
to allow for the viewer/programmer to easily and quickly 
verify the basic interactions of the blocks, threads, and 
memory based on block-thread coordinates. 

The proposed project plan for the development of the 
KVM is as follows: (1) develop a pseudo compiler that 
transforms the CUDA kernel code into a data format that can 
be used by the GUI/API, (2) create a basic display of this 
information that is either graphical or non-graphical in nature, 
and (3) create/refine the GUI to allow the user to select 
viewing options, and have those views update with each step 
through the CUDA kernel. 

V. IMPORTANCE OF MODEL 
The Simplifying GPGPU Programming Model (Figure 3) 

illustrates the need for more complex tools to assist with the 
GPGPU programming process. The model also lists what these 
tool categories are, which brings forward the areas that need 
the most work. The latest version of CUDA supports 
OpenACC [18], a parallel compiler directive language. 
NVIDIA also has a fairly good graphical debug tool called 
NSIGHT. There are pluses and minuses to both of these tools, 
but they are currently available. What is missing is the fully 
automated serial to parallel conversion tool and the 
visualization tool. A truly optimal, fully automated tool may 
just not be realizable. Regardless, a visualization tool would 
complement the other tools currently available. Hence, a tool 
suit would be available to the programmer to choose what 
works best for them. For example, if the programmer used a 
compiler directive language to create CUDA code, a 
visualization tool could be used to help the programmer 
understand what this tool did, and if it looks optimum or even 
correct to them. This example points out the fact that a CUDA 
kernel visualization tool would help the programmer spot errors 
and optimization opportunities more easily than using the 
“pencil and paper” method. Additionally, it would help the 
programmer describe or convey information about their 
algorithm more clearly to other individuals. 

VI. CONCLUSION 
Much research has gone into this paper, particularly in the 

area of parallel algorithm visualization tools. It appears that 
the amount of current research being performed in this area is 
sparse at best, especially as it relates to massively parallel 
programming (e.g., GPGPU applications), yet the benefits of 
such a tool would be fruitful to many. Additionally, as 
previously described, graphics has come a long way and it 
shouldn’t be an impossible task to come up with some 
graphical visualization tool. The hardest part will most likely 
be in designing a GUI that isn’t too hard to understand from a 
user’s point of view, and doesn’t inundate the viewer with too 
much data. 

 

REFERENCES 
[1] S. H. Voldman, "ESD and latchup: Computer aided 

design (CAD) tools and methodologies for today and 
future VLSI designs," in ASIC, 2007. ASICON '07. 
7th International Conference on, 2007, pp. 375-378. 

[2] E. Brunvand, Digital vlsi chip design with cadence 
and synopsys cad tools: Addison-Wesley, 2010. 

[3] D. B. Kirk and W. H. Wen-mei, Programming 
massively parallel processors: a hands-on approach: 
Morgan Kaufmann, 2010. 

[4] W. H. Wen-mei, GPU Computing Gems Emerald 
Edition: Access Online via Elsevier, 2011. 

[5] J. Sanders and E. Kandrot, CUDA by example: an 
introduction to general-purpose GPU programming: 
Addison-Wesley Professional, 2010. 

[6] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, 
"VILLE: a language-independent program 
visualization tool," presented at the Proceedings of 
the Seventh Baltic Sea Conference on Computing 
Education Research - Volume 88, Koli National Park, 
Finland, 2007. 

[7] A. A. Baker, B. Milanovic, and W. Qi, "An approach 
for facilitating the development of visual simulations 
of parallel and distributed algorithms," in Signals, 
Circuits and Systems (SCS), 2009 3rd International 
Conference on, 2009, pp. 1-5. 

[8] J. Fang, A. L. Varbanescu, and H. Sips, "A 
Comprehensive Performance Comparison of CUDA 
and OpenCL," in Parallel Processing (ICPP), 2011 
International Conference on, 2011, pp. 216-225. 

[9] J. Nickolls and W. J. Dally, "The GPU Computing 
Era," Micro, IEEE, vol. 30, pp. 56-69, 2010. 

[10] G. Tournavitis, Z. Wang, B. Franke, and M. F. P. 
O'Boyle, "Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism 
detection and machine-learning based mapping," 
SIGPLAN Not., vol. 44, pp. 177-187, 2009. 

[11] S. Hong and H. Kim, "An analytical model for a GPU 
architecture with memory-level and thread-level 
parallelism awareness," presented at the Proceedings 
of the 36th annual international symposium on 
Computer architecture, Austin, TX, USA, 2009. 



[12] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. 
Gropp, and W.-m. W. Hwu, "An adaptive 
performance modeling tool for GPU architectures," 
SIGPLAN Not., vol. 45, pp. 105-114, 2010. 

[13] "CUDA C Best Practices Guide," NVIDIA 
Corporation, 2012. 

[14] A. Jindal, N. Jindal, and D. Sethia, "Automated Tool 
to Generate Parallel CUDA Code from a Serial C 
Code," International Journal of Computer 
Applications, vol. 50, pp. 15-21, 2012. 

[15] S. Lee, S.-J. Min, and R. Eigenmann, "OpenMP to 
GPGPU: a compiler framework for automatic 
translation and optimization," ACM Sigplan Notices, 
vol. 44, pp. 101-110, 2009. 

[16] D. Peng, Y. Ding, S. Yu, S. Yulei, and X. Jingling, 
"Automatic Parallelization of Tiled Loop Nests with 
Enhanced Fine-Grained Parallelism on GPUs," in 
Parallel Processing (ICPP), 2012 41st International 
Conference on, 2012, pp. 350-359. 

[17] T. D. Han and T. S. Abdelrahman, "hiCUDA: High-
Level GPGPU Programming," Parallel and 
Distributed Systems, IEEE Transactions on, vol. 22, 
pp. 78-90, 2011. 

[18] T. Hoshino, N. Maruyama, S. Matsuoka, and R. 
Takaki, "CUDA vs OpenACC: Performance Case 
Studies with Kernel Benchmarks and a Memory-
Bound CFD Application," in Cluster, Cloud and Grid 
Computing (CCGrid), 2013 13th IEEE/ACM 
International Symposium on, 2013, pp. 136-143. 

[19] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, 
and T. M. Aamodt, "Analyzing CUDA workloads 
using a detailed GPU simulator," in Performance 
Analysis of Systems and Software, 2009. ISPASS 
2009. IEEE International Symposium on, 2009, pp. 
163-174. 

 
 


