Visualizing Child-Adult engagement in preschool classrooms using Chord Diagrams

Mr. Sathvik Datla, UT Dallas

Sathvik Datla is pursuing BS degree in Software Engineering at the Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas (UTD), Richardson. He is an active member of the Cyber Security Club. Currently he is recipient of National Science Foundation’s Research Experience in Undergraduate Education award on the Cyberlearning project, under the supervision of Dr. John H. L. Hansen. As an undergraduate researcher in Center for Robust Speech Systems, his research interests focus on Computer Science and Software Development for STEM Education.

Mr. Prasanna Vasant Kothalkar, UT Dallas

Prasanna Kothalkar received the B.S. degree in Computer Engineering from Mumbai University, Mumbai, India in 2010, M.S. degree in Computer Science from University of Texas at Dallas, Dallas, United States, in 2014. He has interned at technology companies for research positions in the areas of Speech Processing and Machine Learning. Currently he is pursuing his Ph.D. degree as a Research Assistant in the Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas (UTD), Richardson, United States under supervision of Dr. John H. L. Hansen. His research interests focus on Child Speech Pronunciation Modeling, Speech Recognition and Diarization, Machine Learning and Deep Learning.

Dr. John H. L. Hansen, University of Texas at Dallas

John H.L. Hansen, received Ph.D. & M.S. degrees from Georgia Institute of Technology, and B.S.E.E. degree from Rutgers Univ. He joined Univ. of Texas at Dallas (UTDallas) in 2005, where he is Associate Dean for Research, Prof. of Electrical & Computer Engineering, and holds a joint appointment in School of Behavioral & Brain Sciences (Speech & Hearing). At UTDallas, he established Center for Robust Speech Systems (CRSS). He is an ISCA Fellow, IEEE Fellow, past TC-Chair of IEEE Signal Proc. Society, Speech & Language Proc. Tech. Comm.(SLTC), and Technical Advisor to U.S. Delegate for NATO (IST/TG-01). He currently serves as President of ISCA (Inter. Speech Comm. Assoc.). He has supervised 92 PhD/MS thesis candidates, was recipient of 2020 UT-Dallas Provost’s Award for Grad. Research Mentoring, 2005 Univ. Colorado Teacher Recognition Award, and author/co-author of +750 journal/conference papers in the field of speech/language/hearing processing & technology.

Dr. Dwight Irvin

Dr. Jay Buzhardt, University of Kansas

As an Associate Research Professor at the University of Kansas, Dr. Buzhardt’s research interests focus on developing and testing technology solutions to support data-driven intervention decision making in early childhood education. At Juniper Gardens Children’s Project (JGCP), he leads the Technology Innovation Development & Research (TIDR) Lab, which is a hybrid of onsite fulltime application developers and externally contracted developers, where online and mobile applications are designed, developed, tested, and maintained for nearly all JGCP interventions that utilize technology. Through grants funded through OSEP and IES and led by Dr. Buzhardt, the TIDR Lab developed and currently maintains the MOD and IGDI platform where it is hosted. Additionally, Dr. Buzhardt has led or co-led 10 federal grants from the Department of Education (5 from Office of Special Education Programs, 5 from Institute of Education Sciences) and four from the National Institute on Disability, Independent Living, and Rehabilitation Research. He currently directs a project funded by the Institute of Education Sciences to develop a web application that guides educators’ data-driven intervention decision making. He also leads a $2.5M project funded by the Office of Special Education Programs to develop and test strategies and applications grounded in Implementation Science to scale-up sustained use of data-driven decision-making practices by infant-toddler service providers. He recently completed a 2nd successful RCT of the MOD across four states to test web-based decision-making support vs. self-guided decision making in Early Head Start home visiting settings. Other relevant projects include investigations of the construct and predictive
validity of infant-toddler IGDI assessments, development of web-based professional development for elementary educators, and a current NSF-funded project to develop technology to automatically measure child and adult language in preschool and informal learning contexts.
Visualizing Child-Adult Speech Engagement using Chord Diagrams for Audio Recorded in Preschool Classroom

Sathvik S. Datla, Prasanna V. Kothalkar, John H.L. Hansen

Center for Robust Speech Systems (CRSS), Eric Jonsson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
{satvik.datla, prasanna.kothalkar, john.hansen}@utdallas.edu

Dwight Irvin, Jay Buzhardt
Juniper Gardens Children’s Project (JGCP), University of Kansas, 444 Minnesota Ave #300, Kansas City, KS 66101, USA
{dwirvin, jaybuz}@ku.edu

Abstract

The ability to assess conversational interactions creates a challenge in assessing speaker turns over time, including frequency of occurrence, duration of each turn, and connecting speakers in a multispeaker context. This is of particular interest in the analysis of teacher-student or adult-child interactions in learning spaces. The creation of a visualization mechanism capable of providing a high-level representation of the overall conversational interactions without overburdening educators in reviewing student/child learning engagement would be of great significance. Chord diagrams can visualize such complex and disparate information in compact form. In this study, we explore the creation of ‘Chord Diagrams’ as a way to analyze talk time between a child and adult speakers in learning spaces. The proposed illustration provides an opportunity to study the variations in speech duration and the interaction among speakers that are involved in the communication with each other over a certain time learning duration.

Description

Motivation

The development of speech and language is a very critical aspect for a child’s long term learning ability and educational growth. If a child is not exposed to a multitude of language environments, then there is a risk that it could have a negative impact on the child’s language growth[1]. Recent studies [2-4] have shown that the LENA recorder (see figure 1) allows for the collection and initial analysis of these interactions between the parents and children. Chord diagrams are visual mapping tools to present the density of conversations among speakers. The speakers involved in each conversation can be seen from the chord connecting them (within the circle) and so they are referred as Chord Diagrams. This tool was previously used on NASA Apollo conversational audio data[5-6] to study the interactions between astronauts and CAPCOM. In this study we hypothesize that the
creation of Chord diagrams would help visualize the engagement between teachers and children as such conversations are characterized by quick turn taking of short duration talk.

Figure 1. Violet Colored Lena Device in pocket of a jacket worn by children/adults.

Figure 2. Illustrative Example of a day in a Preschool Classroom.

Dataset

The dataset in this study contains a spontaneous conversational speech which was recorded with aid of the LENA device. This device is a digital audio recorder which is lightweight and compact. This device was attached to children aged 3-5 years. The purple-colored device shown in the figure is used only to capture voice of naturalistic conversations, the audio was analyzed offline using human
transcriptions to develop further on speech technology advancements. Multiple sessions were recorded in a U.S. childcare center (see figure 2) across 2 classrooms, and some of the sessions have LENA recorders being worn by the adults. A total of 208 hours of speech and non-speech audio were transcribed by the UT Dallas-CRSS transcription team except the break, sleep and play times. Conversations having engagements were marked for some of the sessions (in addition to the text transcription), to visualize them as proposed before.

Method

Programs were developed to calculate the total talk time duration of the conversations with existing engagements among the speaker categories (also referred to as speakers), and this was achieved using the engagement specific transcribed text. The Primary Child (PC) was the child that was wearing the LENA recording device, the other children were known as the Secondary Children (SC), and the adult teachers were known as Adults (AD). The talktime information from the engagement transcripts are compiled using python programs to show the amount of talk time between the speaker categories and are visualized here using Chord Diagrams from the tool plotapi [7]. The circumference of the circle represents the conversations among the speaker categories in terms of arcs comprising of arc islands. Red arc is used to represent the AD category, blue arc is used to represent the SC category, and lastly green arc is shown to represent the PC category. Each arc island along the circumference represents a specific conversational exchange. The width of the arc island represents the total duration of the talk time between the related speakers in that exchange. The chords connecting the arc islands represent the duration of interactions among two of the connected speaker categories.

Analysis

Figure 3 illustrates the proposed Chord Diagram which consists of the following three speaker categories: PC, SC, AD. We can see that the last exchange among the three speakers (referred from now as conversation A) has an arc island of good width and is the highlighted one having a total duration of 49.1 seconds of engagement between the speakers. However, the individual speaker talk times are different as in this example SC has lesser talktime with AD as compared to PC, which can be perceived from the width of the connecting chord. Thus, the duration of interaction among 2 speaker categories can be described by the thickness of each individual chord. The length of the circumference of each arc in the Diagram represents the total talktime duration for the concerned speaker in the recording (e.g., 525 seconds by PC in this example).
Conclusion

This study has proposed the use of Chord Diagrams as a viable tool to visualize communications within child-adult learning spaces from a broad perspective. Such interactions among speakers can reflect conversational engagement given that speaker ID tag as well as transcriptions with text are provided. A natural next step in this study would be to assess educator’s ability to interpret Chord Diagrams. Further we would like to utilize speech diarization/recognition technology for automating the transcript generation process as well as child-adult tagging, and thereby allowing for conversational engagement-based Chord Diagram generation as a visualization tool for studying child/student to adult/teacher learning interaction.
References

Mr. Sathvik Sai Datla, CRSS, University of Texas at Dallas, TX, USA

Sathvik Datla is pursuing BS degree Software engineering in Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas (UTD), Richardson. He is also an active member of the Cyber Security Club. Currently he is recipient of National Science Foundation's Research Experience in Undergraduate Education award on the Cyberlearning project, under the supervision of Dr. John H. L. Hansen. As undergraduate researcher in Center for Robust Speech Systems, his research interests focus on Computer Science and Software Development for STEM Education.

Mr. Prasanna Vasant Kothalkar, CRSS, University of Texas at Dallas, TX, USA

Prasanna Kothalkar received the B.S. degree in Computer Engineering from Mumbai University, Mumbai, India in 2010, M.S. degree in Computer Science from University of Texas at Dallas, Dallas, United States, in 2014. He has interned at technology companies for research positions in the areas of Speech Processing and Machine Learning. Currently he is pursuing his Ph.D. degree as a Research Assistant in the Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas (UTD), Richardson, United States under supervision of Dr. John H. L. Hansen. His research interests focus on Child Speech Pronunciation Modeling, Speech Recognition and Diarization, Machine Learning and Deep Learning.
Dr. John H. L. Hansen, CRSS, University of Texas at Dallas, TX, USA

John H.L. Hansen, received Ph.D. & M.S. degrees from Georgia Inst. of Technology, and B.S.E.E. from Rutgers Univ. He joined Univ. of Texas at Dallas in 2005, where he is Associate Dean for Research, Prof. of Electrical & Computer Engineering, and holds a joint appointment in School of Behavioral & Brain Sciences (Speech & Hearing). At UT Dallas, he established Center for Robust Speech Systems (CRSS). He is an ISCA Fellow, IEEE Fellow, past TC-Chair of IEEE Signal Proc. Society, Speech & Language Proc. Tech. Comm. (SLTC), past Technical Advisor to U.S. Delegate for NATO (IST/TG-01), and past President of ISCA (Inter. Speech Comm. Assoc.). He has supervised 95 PhD/MS thesis candidates, was recipient of 2020 UT-Dallas Provost’s Award for Grad. Research Mentoring, 2005 Univ. Colorado Teacher Recognition Award, and author/co-author of +800 journal/conference papers in the field of speech/language/hearing processing & technology.

Dr. Dwight Irvin, JGCP, University of Kansas, KS, USA

As an assistant research professor at Juniper Gardens Children’s Project (JGCP) at the University of Kansas, Dr. Dwight Irvin's research interests center on developing/refining measurement approaches to: 1) capture movement and location in young children at-risk for or with intellectual and developmental disabilities; 2) better understand and enhance the language environments that these children experience in school, home, and community settings. He directs and codirects several research projects from federal agencies. For example, he leads an Institute for Education Sciences project titled, Validity Studies of the Classroom Code for Interactive Recording of Children’s Learning Environments; this project focused on validating the use of the CIRCLE, an observational instrument designed to close the literacy gap for all learners. He also directs a National Science Foundation project focused on using existing wearable technology and advanced speech recognition/diarization algorithms to monitor student engagement over time in science activity areas in classroom and community-based settings.

Dr. Jay Buzhardt, JGCP, University of Kansas, KS, USA

As an Associate Research Professor at the University of Kansas, Dr. Buzhardt’s research interests focus on developing and testing technology solutions to support data-driven intervention decision making in early childhood education. At Juniper Gardens Children’s Project (JGCP), he leads the Technology Innovation Development & Research (TIDR) Lab, which is a hybrid of onsite fulltime application developers and externally contracted developers, where online and mobile applications are designed, developed, tested, and maintained for nearly all JGCP interventions that utilize technology. Through grants funded through OSEP and IES and led by Dr. Buzhardt, the TIDR Lab developed and currently maintains the MOD and IGDI platform where it is hosted. Additionally, Dr. Buzhardt has led or co-led 10 federal grants from the Department of Education (5 from Office of Special Education Programs, 5 from Institute of Education Sciences) and four from the National Institute on Disability, Independent Living, and Rehabilitation Research. He currently directs a project funded by the Institute of Education Sciences to develop a web application that guides educators’ data-driven intervention decision making. He also leads a $2.5M project funded by the Office of Special Education Programs to develop and test strategies and applications grounded in Implementation Science to scale-up sustained use of data-driven decision-making practices by infant-toddler service providers. He recently completed a 2nd successful RCT of the MOD across four states to test web-based decision-making support vs. self-guided decision making in Early Head Start home visiting settings. Other relevant projects include investigations of the construct and predictive validity of infant-toddler IGDI assessments, development of web-based professional development for elementary educators, and a current NSF-funded project to develop technology to automatically measure child and adult language in preschool and informal learning contexts.