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Abstract

Tensors of the second rank, such as stress, strain, and the inertia tensor, are of fundamental
importance in structural analysis and many other engineering applications. Unfortunately, the
way in which these tensor components transform under coordinate rotations can be difficult to
visualize and comprehend, and this poses a major conceptual challenge for many students.
Mohr’s circle is a graphical method commonly used to visualize planar stress transformations in
traditional solid mechanics courses, but it has several drawbacks, including that it only applies to
rotations about a single axis and that the angle subtended on the circle is not the actual angle of
rotation. More recently, tensor component transformations have been illustrated in three
dimensions with the aid of computer software. Currently these programs are static, in that the
user specifies the initial tensor components and the rotation to be applied, and the program
displays the final results without any intermediate history. In an effort to make these programs
more engaging for students, the present authors have developed two pedagogical tools that
illustrate three-dimensional tensor transformations dynamically, in real time: one using virtual
reality software, the other using traditional web-based software. Both applications were created
using the Unity game engine. In each case, the user manually manipulates a given system using
either the hand controller (in a VR headset), the cursor (on a traditional computer), or their finger
(on a mobile device), and the relevant tensor components update continuously while the
transformations are being performed. All rotations are handled using quaternions in order to avoid
gimbal lock. Both apps are available online completely free of charge for anyone to use. Here we
give a detailed account of the development of these applications and the underlying theory.

1 Introduction and background

The pedagogical question of what tensors are [1–3] and how one ought to understand them—at
once both philosophical and pragmatic—persists to the present day, due both to their
mathematical nuance and to the prevalence of two competing schools of thought regarding their
definition. The first approach to emerge for tensors of the second rank, sometimes referred to as
the algebraic approach or the component approach, views tensors as sets of components that
transform in prescribed ways under given coordinate transformations [4–8]. In general, a tensor
of integer rank r ≥ 0 may be defined as a set of N r components ai1i2···ir (each index ix ranges
from 1 to N , where N is the dimension of the space of interest) that transform according to the
following rule:

a′i1i2···ir = Ri1j1Ri2j2 · · ·Rirjraj1j2···jr , (1)



where the aj1j2···jr are the tensor’s components in some coordinate frame S, the a′i1i2···ir are the
components of the same tensor in a frame S ′ obtained from S by applying one or more of the
transformations of interest (those being translations and proper rigid rotations in Euclidean space,
and Lorentz transformations in Minkowski spacetime), Rij is an orthogonal matrix representing
the transformation, and we are employing the Einstein summation convention whereby repeated
indices are implicitly summed over from 1 to N . The issue of covariance and contravariance [2]
arises in non-Euclidean spaces where the metric tensor does not coincide with the identity [9].

The second approach, referred to formally as the geometric approach (and playfully by Misner,
Thorne, and Wheeler [9] as the “machine-with-slots definition”) views tensors as geometric
objects with certain coordinate-independent properties [9–11]. According to the geometric
approach, a vector may be defined as a quantity with a scalar magnitude and a direction in space,
and higher-rank tensors may be defined as linear operators (“machines”) that can operate on other
tensors (by inserting them into its “slots”). In general, when a tensor of rank r > 1 operates on a
tensor of rank p < r, the result is a new tensor of rank r − p.

The algebraic and geometric approaches are mathematically equivalent in that they yield the same
computational results and it is straightforward to deduce the transformation rule (1) from the
geometric definition [3]. It is perhaps a reflection of human psychology, then, that the academic
community has become so staunchly divided between the two approaches. Indeed, the rift dates
back to the formulation of relativity theory. According to Norton [12],

In Einstein’s hands, Lorentz covariance was a purely algebraic property. Space and
time coordinates were, in effect, variables that transformed according to certain
formulae. Hermann Minkowski was responsible for introducing geometric methods
and thinking into relativity theory. He explained the background to his approach in
his more popular (1909) lecture. [...] The difference between Einstein and
Minkowski’s approach to the same theory and even the same formalism is a polarity
that will persist in various manifestations throughout the whole development of
relativity theory, both special and general. Einstein’s emphasis is on the algebraic
properties of the theory, the equations that express its laws and their behaviour under
transformation, its covariance. [...] Minkowski’s emphasis is on the geometric
properties of the theory, on those geometric entities which remain unchanged behind
the transformations, its invariance. [12]

Evidently not everyone was impressed by Minkowski’s geometrization. In his well known treatise
on analytical mechanics, Lanczos [13] remarks rather cryptically,

Little can be gained and a great deal lost in clarity if we try to operate with the tensor
as a whole rather than its components. [13]

We can only speculate as to what Lanczos [13] meant by this. Perhaps he was referring to what
Misner, Thorne, and Wheeler [9] describe as the “ambiguity of slots”:

Because the frame-independent geometric notation is somewhat ambiguous (which
slots are being contracted? on which slot is the divergence taken? which slots are
being transposed?), one often uses component notation to express
coordinate-independent, geometric relations between geometric objects. [9]



Nevertheless, we may infer from Misner, Thorne, and Wheeler’s [9] exquisitely detailed
geometric treatment of tensors that they did not entirely agree with Lanczos’s [13] sentiment. It is
also worth mentioning that a beautiful geometric proof of Cauchy’s stress theorem (provided by
W. Noll in a private communication to the editor) appears in Volume II of Truesdell’s Mechanics
of Solids (formerly Volume VIa/2 of the Encyclopedia of Physics) [14] alongside a more
traditional algebraic proof thereof. The present authors, too, are of the opinion that there is
nothing to be lost in understanding a topic from multiple perspectives (after all, this is one of the
pillars of modern pedagogy).

On the topic of pedagogy, both approaches present challenges to the novice, and it seems that the
polarization of the community has only exacerbated this confusion [10]. As observed by
Sanders [3], it appears to be common practice in the United States to introduce vectors from the
geometric approach (as quantities with both magnitude and direction) in high school and
lower-division university courses [15–17], and then to switch abruptly to the transformation rule
(1) in upper-level university courses where higher-rank tensors appear [6–8]. Some authors may
even switch between the two approaches in the same text. For example, Taylor [7] defines tensors
by their transformation rule in Section 15.17 of his celebrated Classical Mechanics, but he later
includes Noll’s geometric proof of Cauchy’s stress theorem [14] in Section 16.7, evidently
deeming the geometric proof superior to the algebraic. Sanders [3] argues that it is better to be
consistent, advocating for the geometric approach as definition and the transformation rule as
corollary, while conceding that some may prefer the more concrete algebraic approach.

Regardless of which approach one takes, the problem remains that the physical meaning of the
transformation rule (1) is difficult for the novice to grasp. For tensors of the second rank
(particularly stress and strain), Mohr’s circle is commonly used to visualize the transformation
rule [18, 19]. While Mohr’s circle is a useful tool, it only applies to planar rotations about a single
axis, and the angle subtended on the circle is not the actual angle of rotation (those being related
by a factor of 2). This has led some educators to develop computer programs and mobile apps
designed to illustrate coordinate transformations in three dimensions. Notably, Bischof and
Edelbauer [2] have created a graphical interface in which the user may specify the components of
a vector in a Cartesian coordinate basis, as well as another set of basis vectors (not necessarily
orthonormal), and the program outputs the covariant and contravariant components of the vector
in the new basis. Unfortunately, similar programs that attempt to illustrate stress and strain
transformations are either static (in the sense that the user specifies the initial tensor components
and the rotation to be applied, and the program displays the final results without any intermediate
history) or not widely available (e.g., [20]). In response, the present authors have developed
applications that illustrate three-dimensional tensor transformations dynamically, in real time.
This paper documents the development of these applications and serves as their public debut.

Of particular relevance to the present work, we note that Pirker [21] has used virtual reality (VR)
to create a virtual “educational physics laboratory” and has compared the efficacy of the VR
experience on mobile devices versus in the classroom. The results of Pirker’s study [21] indicate
that the mobile experience profits from more flexibility and portability, while the room-scale
experience profits from a greater degree of interaction, hands-on experience, and immersion into
the virtual environment. Seeking the best of both worlds, the present authors have developed two
separate applications to illustrate tensor transformations: one designed for VR headsets such as



the Oculus Quest 2 [22] and another web-based app designed for traditional computers and
mobile devices. We document the VR and web-based apps in Sections 2 and 3, respectively. Both
applications were created using the Unity game engine. In each case, the user manually
manipulates a given system using either the hand controller (in a VR headset), the cursor (on a
traditional computer), or their finger (on a mobile device), and the relevant tensor components
update continuously while the transformations are being performed. It is our hope that these tools
will assist students at all levels in understanding tensor component transformations, in both
in-person and online learning environments.

2 Virtual reality application: Explore Tensors (EXTE)

The main focus of the VR application is a student or instructor’s direct interaction with rank-two
tensor quantities, and the video transmission of this interaction to third parties (such as a
classroom or lecture hall). For this purpose, a runtime and development environment for video
games (Unity) with the support of Visual Studio Community and Blender was developed as an
application for the VR headset Oculus Quest 2 [22]. The chosen VR headset is an all-in-one
system, i.e., no external sensors or cameras are needed. In addition, it offers several possibilities
for streaming, which supports the presentation of the game world to third parties.

Since motion sickness can occur in such room-scale VR applications, all menu items are located
in the so-called World Space. This means that all elements are represented as objects in space and
not bound to the user’s field of view as in comparable applications. In addition, the elements are
placed at a comfortable distance from the user, so that all elements remain neatly arranged and do
not restrict the view of the user. This ensures that the user moves as little as possible, which in
turn counteracts motion sickness.

In the present stage of this application, which was named Explore Tensors (EXTE) [23, 24], the
users have two tensor quantities to choose from, which are explored in two separate program
levels. In the Inertia Tensor level, users can explore the changes of the components of the mass
moment of inertia tensor by means of geometric manipulation of an object, i.e., by changing its
position, orientation and shape. In the Stress Tensor level, the users can view the stress field
within a simply loaded cantilever beam. Depending on the position of a reference volume element
and of the orientation of the sectional plane, the change in the components of the stress tensor can
be observed. In addition, the strain tensor and Mohr’s circles for a general three-dimensional state
of stresses can be displayed.

Both levels require sensitive manipulations with a high degree of precision, and the hand
animation and interaction, which is otherwise very popular in VR applications, is not applicable.
Instead, this application animates the controllers, as depicted in Figure 1. As can be seen in
Figure 1, a pointing laser is animated on these controllers, which enables precise manipulation of
orientation and at the same time defines the direction of the raycaster, a function for the
interaction with the elements. In addition, when pointing to menu items or other elements, a gaze
pointer, i.e., a kind of mouse pointer, is displayed on the surfaces. In order to further support the
user, the orientation of the VR glasses and the position of the controllers are used to provide
additional assistance in the form of tooltips, as shown in Figure 2.



Figure 1. Animation of the right controller with pointing laser.

Figure 2. Tooltips with information on the colors of the coordinate axes (x = red, y =
green, z = blue) and interaction buttons.



Figure 3. Example object cube with its displayed inertia tensor Θ.

2.1 Program level: Inertia Tensor

The Inertia Tensor level is intended to familiarize the user with the inertia tensor in a playful way.
By manipulating the position, orientation, and shape of an object, the corresponding change in the
tensor components becomes apparent. At the beginning, the user is given the choice between the
sample objects cuboid and sphere. The selected object then appears in room-scale, i.e., life-size,
as shown in Figure 3 with a cube as the selected object, in front of the user. The matrix
representation of the inertia tensor is labeled in the game by the Greek letter Θ.

By means of the so-called gizmo, the user can manipulate the sample object. This can be done by
pointing to one of the gizmo elements with the pointer and “grabbing” it. The entire object can be
moved in all six degrees of freedom provided by the gizmo (see Figure 4; note that Unity uses a
left-handed coordinate system). In addition, the object can be scaled as a whole or independently
in any direction. As a result, the initial cube can be quickly shaped into a beam, a plate or simply
enlarged. The other example object, the sphere, can be transformed into an ellipsoid of any aspect
ratio. In Figure 5, the cube has been deformed into a beam by stretching in the z-direction (blue).
As a result, the xx- and yy-components increase, and the zz-component increases a little as well
due to the volume and corresponding mass increase (the density of the material is uniform).

Figure 4. Gizmo in initial position (left) and translated as well as rotated (right). Note
that Unity uses a left-handed coordinate system.



Figure 5. The cube has been transformed into a beam by direction-dependent scaling.

Figure 6. A rotation of the beam changes the components of the inertia tensor.

Figure 7. Assignment of transformation-dependent color codes to tensor components.



A rotation around the x-axis changes the components of the inertia tensor and causes products of
inertia to develop, as depicted in Figure 6. In Figure 7, the beam has been additionally rotated
around the y-axis and moved away from its original position relative to the reference frame. In
this way, the user can be shown which changes to the object or the parameters cause which
changes in the tensor components. It can be explored, for example, how great the influence of a
small volume with high density at some distance to the axis of rotation is, compared to that one of
a large volume with low density. For an analysis of the influences of these different operations on
the tensor components, they can be displayed in different colors. Changes in the tensor
components due to parallel shifts are shown in blue, and those by rotations in green. Other
influencing variables are volume (violet), mass (red), and density (orange).

2.2 Program level: Stress Tensor

In this level, the user is given the opportunity to get acquainted with the stress tensor. For this
purpose, a simple cantilever beam is provided to the user for virtual experiments. At the
beginning, the user can place a point load, represented by an arrow, anywhere on the beam as
shown in Figure 8. The parameter menu can be used to adjust its magnitude and the angles at
which the force acts.

Due to the resulting bending moment a stress field is induced in the beam. The user is given the
opportunity to look into the body with a movable sectional plane and to view the local stress state
at any point, represented by an infinitesimal cube. This sectional plane can be manipulated by
means of the gizmo. It can be moved freely in the entire volume of the beam and inclined at any
desired angle (see Figures 9 and 10). The center of the gizmo represents the point at which the
reference volume, the infinitesimal cube, is located and the stress state is determined. In Figure 9
the gizmo is placed exactly in the neutral surface of the symmetric beam, which is why only shear
stresses occur. On the left side, the user interface displays Mohr’s circles for this state of stress.

The cube that represents the local stress state is highlighted and displayed three-dimensionally in
the orientation of the sectional plane for better comprehensibility, as shown in Figures 9 and 10.
When tensor components become zero, the associated internal traction vector components also
disappear from the corresponding surfaces of the cube. The cube can be rotated on the spot
according to the orientation of the gizmo and the local stress state is displayed in the matrix
representation of the stress tensor, as depicted in Figure 10. In this figure, the tensor components

Figure 8. Simple cantilever beam with applied point load represented by the red arrow.



Figure 9. Sectional plane perpendicular to the neutral line of the beam.

Figure 10. Sectional plane inclined according to the orientation of the gizmo.

Figure 11. Display mode for the analysis of tensor components.



have changed, but as can be seen from Mohr’s circles, the local stress state has not changed at all.

Similar to the Inertia Tensor level, the representation can be extended so that the individual
influences on the tensor components can be represented by means of color codes, such as which
stresses cause bending or torsion at a certain point (see Figure 11). In addition, the toggle Strain
Tensor on the user interface allows the strain tensor to be displayed for the material properties
associated with the selected linear elastic material.

The software for Explore Tensors (EXTE) [23, 24] is available online completely free of charge
for anyone to use. Interested readers may find the link in the Bibliography under Reference [23].
The only cost associated with Explore Tensors (EXTE) [23, 24] is the VR headset. At the time of
this writing, the cost of an Oculus Quest 2 [22] starts at $299.00 (U.S. Dollars), although of
course this price will vary as time passes and demands change. As alluded to above, it is by no
means necessary for each student in an in-person classroom setting to have their own headset. A
small number of headsets (or even a single headset) may be shared among several students.
Alternatively, the instructor may cast their gameplay experience to a screen for students to view,
although this would certainly be less engaging for the students. Ultimately, the cost and economic
feasibility of the VR experience will be dictated by the individual institution and instructor’s
budgetary restrictions.

3 Web-based application: Tensor transform visualization

For many learning communities across the globe, the COVID-19 pandemic necessitated (at least
for a time) a transition to 100% remote instruction, and this has generated increased interest in
pedagogically effective remote teaching strategies. In a completely remote learning environment,
many students may not have access to a VR headset—especially students coming from
underprivileged backgrounds. For such cases, we have also developed a web-based application
similar in spirit to Explore Tensors (EXTE) [23, 24] that students can access via the internet on
their personal computers or mobile devices. It is tacitly assumed here that most students
nowadays have access to the internet, although of course this may not be a valid assumption in
some communities.

The web-based application, named Tensor transform visualization [25], is markedly simpler than
the VR application. The user interface consists of a single cube (as shown in Figure 12) meant to
represent an infinitesimal material element subjected to an imagined state of stress, as defined by
nine Cartesian components

[σ0] =

1 0 0
0 2 0
0 0 3

 (2)

in the initial configuration, in some imagined units of stress. The user may rotate the cube about
its centroid using the mouse cursor (on a traditional computer) or their finger (on a mobile
device), and the stress components update continuously while the rotation is being performed.
Figure 12 shows the element in two different configurations. Each column matrix e′

i represents
the components of one of the rotated basis vectors, while the square matrix S represents the nine
components of the stress tensor in the rotated basis. For example, with the rotated basis shown,



Figure 12. The infinitesimal material element within the web-based application, in two
configurations. Each column matrix represents the components of a rotated basis vector.
The square matrix represents the nine components of the stress tensor in some imagined
units of stress.



we have for the rotation matrix

[R] =

 0.8186 −0.2122 0.5338
−0.1754 0.7925 0.584
−0.547 −0.5717 0.6115

 , (3)

and for the transformed stress components

[σ] =

1.615 0.455 0.774
0.445 2.31 0.261
0.774 0.261 2.075

 . (4)

It is straightforward to check that [σ] = [R][σ0][R]T, in accordance with (1).

As of the time of this writing, the traction vectors are not illustrated on the faces of the material
element in the web-based application, although that modification is currently in development. For
now, the faces are color-coded in the same manner as Explore Tensors (EXTE) (x = red, y =
green, z = blue), with the exception that the displayed tensor components have been modified to
make this a right-handed coordinate system. Another planned modification is the functionality for
the user to specify the initial stress components.

The web-based application Tensor transform visualization [25] is available online completely free
of charge for anyone to use. Interested readers may find the link in the Bibliography under
Reference [25].

4 Summary and conclusion

This paper presents the public debut of two pedagogical tools the authors have developed to
illustrate three-dimensional, rank-two tensor component transformations in real time. The first,
Explore Tensors (EXTE) [23, 24], is a virtual reality application designed for VR headsets such as
the Oculus Quest 2 [22]. The second, Tensor transform visualization [25], is a simpler web-based
application designed to be accessed via the internet on traditional computers or mobile devices. It
is hoped that these tools will be used to assist students at all levels in understanding tensor
component transformations, in both in-person and online learning environments. A rigorous
assessment of the educational effectiveness of these tools is planned for future work.
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