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Abstract
The terminal velocity problem is a popular classroom example for Calculus instructors. It is often posed in a 
version that is simplified to the point of being unrealistic. This paper uses a volleyball as the example object and 
computes terminal velocities under a variety of assumptions. Actual values for the drag coefficient are used and 
computations are done in Mathematica. The computations illustrate how the drag crisis intervenes and complicates 
the mathematical analysis. The Mathematica code used is provided in an appendix. No attempt has been made to 
assess the efficacy of this approach in the calculus classroom.

Introduction
Terminal velocity problems have long been popular with instructors in calculus and differential equations.1  They 
can be posed in their full aerodynamic complexity or simplified in a variety of ways that meet the needs of the 
moment and exemplify the mathematical ideas that are being studied. They are inherently one-dimensional and so 
can be posed that way with no loss of generality.
 

The idea is that an object is dropped from a high altitude, accelerated by gravity and this acceleration is opposed by 
an aerodynamic force called drag.  Later we'll be specific by making the object a volleyball.  Gravity acts 
downward and drag acts in the direction opposite to the direction of motion.  So all forces are vertical and a single 
axis is required to represent the position of the object at any later time. We'll assume here that upward is the 
positive direction.  Drag is in some sense proportional to the square of the object's speed. One would expect that 
the object would be accelerated by gravity with rapidly increasing opposition from drag and would asymptotically 
approach a velocity that could be computed by setting the drag equal to the weight of the ball. 
 

So how does this work out in practice?  We would need to determine the velocity at time from what we know 
about the aerodynamics of the object.  Questions might arise also about position and acceleration but the main 
questions of interest here have to do with velocity. All computations below are done in Mathematica and the 
required code is given in the appendix. 

Zero drag case
The simplest case, included in every calculus text, is the one in which the drag is assumed to be zero which means 
that the ball is dropping in a vacuum. In this case one begins with Newton's second law, f = ma, where ||f|| is the 
weight of the ball (direction down), m is its mass and a is a the acceleration due to gravity. Since gravity 
accelerates every object downward at about 9.8 m ë s2, this simplifies to a = -9.8 j m ë s2 where j is the vertical 
unit vector. The problem is one dimensional and so the mathematics can play out in its scalar version 
a = -9.8 m ë s2. 
 

Now integrate this expression with respect to t. The units are dropped below but, of course, t is in seconds and v 
and v0 are m/s. v0 is ± the initial speed. If the problem is proposed in its most general form,  v0 will be positive or 
negative as the direction is up or down. 



Ÿ a „ t = -Ÿ 9.8 „ t
v = -9.8 t + v0

Integrate again wit respect to t. y0 is the initial position. The units for y and y0 are meters.

Ÿ v „ t = -Ÿ 9.8 t „ t + Ÿ v0 „ t
y = -4.9 t2 + v0 t + y0

A variety of problems can be posed at this point. They might involve assuming that the ball was not just dropped 
with an initial velocity of 0, but was propelled up or down. But the problem we're considering here is the terminal 
velocity and these generalizations provide no additional insight.  So we'll assume that v0 = 0 and v = -9.8 t. This is 
too simple a case to be really interesting because it never happens that the drag is zero and, if it did, the limiting 
velocity would work out to be limtØ¶ v = -¶.

Real world cases
In the interest of realism we're dropping a volleyball which is an object we know a lot about.  Common sense tells 
us that the effect of drag on a moving object and its terminal velocity as well depend heavily on its shape and 
construction, especially the nature of its surface that is presented to the airstream.  Sports balls offer an interesting 
and useful choice.  In recent decades there have been many studies on the drag and lift of sports objects, especially 
balls, moving through air.2,3  In this case lift usually is a result of spin. The technical name for lift due to spin is the 
Magnus effect.  Good examples include a topspin forehand drive in tennis and an overhand curveball from a 
baseball pitcher. Examples of sports objects that lift by aerodynamic effects other than Magnus effect are frisbees, 
javelins and ski jumpers.  The balls we drop mathematically to study terminal velocity will not be spinning.  If they 
were, a lateral force would be produced by the Magnus effect and the ball would be diverted from a vertical path. 
So sports balls it is and, in particular, volleyballs.  Why volleyballs?  We'll see that volleyballs occupy an 
interesting spot among the family of sports balls with respect to aerodynamic effects. 
  

So let's get to the real mathematics starting with the general case and paring it down to our special application.  The 
equation of motion of an object moving in air is m dv

dt = mg - 1
2  rACD v2 t + 1

2  rACL v2HsätL.4  This comes from 

setting the sum of the forces to zero.  Commonly used values for the entries in this equation specific to a volleyball 
are below. 

m - mass = .268 kg
g - acceleration due to gravity = -9.8 m ë s2

r - mass density of air = 1.23 kg ë m3

A - cross sectional area = pI .214
2 M2

 m2 U .036 m2

t - unit tangent vector in the direction of motion
s - unit normal vector
sät - unit binormal vector
CD - drag coefficient
CL - lift coefficient

Because of the assumption of no spin, CL = 0 reduces the equation to

m dv
dt = mg - 1

2  rACD v2 t

dv
dt = - 1

2 m  rACD v2 t + g
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where the magnitude of the drag is .5rACDv2 and so is a function of the square of the speed. Now introduce y(t) as 
the position so that v'(t) = y"(t) and evaluate .5 rA/m = .0825. Then the one dimensional equation becomes 

y "=-.0825CD »y'» y'-9.8

Even if CD were constant, it would seem futile to search for an analytic solution to this differential equation. As it 
is, CD is known only from experimental data.

Drag coefficient for a volleyball
To determine CD experimentally Beatrice Hahn and David McCulloch, two students at The University of 
Michigan, did a wind tunnel study in 1999 to determine the drag on a non-spinning volleyball as a senior project in 
aeronautical engineering under the direction of Dr. Don Geister.5  The results were an excellent set of data that 
were included along with other balls in a paper by Dr. Rabi Mehta of NASA Ames and Dr. Jani Pallis of Cislunar 
Inc and shown in Fig. 1.2

These data are available in numerical form in the Appendix and are used for CD in this paper. Fig. 2 contains a plot 
of the points. The curve through the data is the Mathematica interpolation thereof.
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Figure 2. CD for a Volleyball

The graph above is a log-log plot and the units for the horizontal axis are Reynolds numbers. Drag coefficient 
graphs are universally displayed in this way.  The Reynolds number, typically symbolized by Re, is an extremely 
useful device in fluid mechanics that allows engineers to abstract out a common mathematical problem from 
physical situations that appear to be different. An important feature of both Reand CD is that they are 
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dimensionless quantities.  For our purposes the Reynolds number is a scalar multiple of the ball speed given by 

Re =
rL
m

 v where

 r = 1.23 kg ëm3, mass density of air
L = .214 m, diameter of the ball

m = 1.79 × 10-5 N s ë m2, dynamic viscosity of air
v m ê s = ball speed 

This yields the relationship Re = 14705v where v is the ball speed in m/s. Most if not all CD versus Reynolds 
number curves look like this one, as can be seen in Fig. 1. The phenomenon at about Re = 100,000 where CD drops 
an order of magnitude is call the drag crisis. It occurs when the boundary layer of air about 1 mm thick and next to 
the ball switches from laminar to turbulent. This happens at different Re for different balls as shown in Fig.1.  The 
region of rapidly falling CD is called the critical region.  The four data points in the volleyball critical region are 
shown in Table 1 where v is in m/s.

Table 1

v CD

10.2 0.47

15.7 0.15

17.0 0.10

19.7 0.08

The signifigance of the CD values for a volleyball is that much of the game is played in the critical region. A spike 
at 30 m/s (Re = 400, 000L is a very hard hit. Serves at 25 m/s are hard and at 20 m/s are common. Along a path of 
significant length a ball typically slows by about 4 m/s. The result, well known to volleyball players, is that the ball 
can be made to behave eratically, much like a knuckleball pitch in baseball. This occurs mostly in serves as a result 
of servers learning to serve a non-spinning ball at crucial speeds vis-a-vis the critical region.  It's also important to 
note that the Hahn-McCulloch data include all speeds that actually occur in volleyball. The data point [1,000,000, 
.12] corresponds to a speed of 68 m/s and it is likely that no volleyballs are ever hit faster than 34 m/s which is Re 
= 500,000.

Getting specific with terminal velocity
Some attempts have been made to use this kind of mathematical analysis to provide volleyball coaching insight.  
Apparently, there is some folklore that all sports balls exhibit a CD = .2.  The only way one could draw this 
conclusion is to presume that in practice all balls live their lives in the post-critical drag regime at which 
CD = .2 and neither assumption is correct for a volleyball. If we were going to simplify CD to be constant, we 
would either have to use the value of .47 at the precritical plateau or the postcritical value of .08. We could see 
what would happen in those two cases. In order to check answers, we will use two methods for computing the 
terminal velocity:

Method 1: Set drag equal to weight and solve for the speed
Method 2: Solve the ODE numerically

Assume CD = .47
Recall that drag = .5 rACD v2 and the ball weight is .268×9.8 N = 2.6264 N. Solving drag = weight using 
Mathematica's FindRoot[ ] produces a terminal velocity of 15.8941 m/s. This could have been solved by hand.

Numerical solution of the differential equation of motion in Mathematica using r = .47 requires the function 
NDSolve[ ]. This function produces an interpolating function that can be evaluated at time values within the time 

4 termVelPaper5.nb



range requested of NDSolve[ ] and the result is -15.8939 m/s. Plotting the interpolating function solution produces 
the graph in Fig. 3. 
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Figure 3. Velocity for CD=.47

Assume CD = .08
Solving drag = weight using Mathematica produces a terminal speed of 38.5247 m/s.  Solving the differential 
equation gives us -38.052.
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Figure 4. Velocity for CD=.08

Use CD values from the Hahn-McCulloch wind tunnel data
Solving weight = drag now requires a numerical algorithm. If we use Mathematica's FindRoot[ ], we must have a 
function that interpolates the drag instead of the drag coefficient. This is straightforward to produce in 
Mathematica and is included in the Appendix as dragInterp[ ]. The solution found this way is v = 38.7366. Clearly, 
this approach is inadequate and we should solve the differential equation for a complete set of values.

In this case we ask NDSolve[ ] to call the CD interpolation function at each iteration. The solution -38.6223 m/s 
and the graph is shown in Fig. 4.
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Figure 5. Velocity for Wind Tunnel CD

Plot all three cases
We can now plot the three cases on the same graph.
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Figure 6. Velocities for Three Cases

Conclusions
The above computations and plots illustrate what we might have reasoned. If one assumes CD = .47, the precritical 
value, the terminal velocity would be almost 16 m/s. But the wind tunnel data shows that the ball encounters the 
drag crisis prior to its velocity reaching that value. As long as the boundary layer is laminar, the velocity looks 
almost identical to the CD = .47 curve. The velocity easily makes it to 20 m/s at which value it has become 
postcritical and is behaving as if it had the constant value of  CD = .08.

Afterthoughts about drag
Even though CD drops rapidly at the drag crisis, it's not obvious that the drag also drops. This is because the drag is 
a multiplicative function of the square of the speed. We might guess that the speed would be increasing rapidly 
enough that the drag wouldn't decrease even in the face of the drag crisis. To answer this, we can compute the drag 
from the wind tunnel data and it is plotted in Fig. 7. This shows that the drag actually decreases during the drag 
crisis.
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Figure 7. Drag on a Volleyball
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