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Web-based Interactive Virtual Laboratories for Electrical
Engineering and Manufacturing Education

Abstract

The paper presents a discussion on the characteristics and assessment of the incorporation of
multilayered, highly interactive, simulation-based, integrated, and adjustable virtual laboratories
for engineering and technology education in the areas of telecommunications and manufacturing.
These labs are designed to enhance the understanding of technical concepts and underlying
fundamental principles, as well as to help students master certain performance-based skills
online. These virtual labs can be combined with related hands-on exercises to form hybrid
laboratories to be delivered via either online or on-site teaching methodologies.

Virtual labs contain expandable sets of virtual experiments (VE), as well as relevant learning
resources and assessment activities. Each VE focuses on a particular task and comprises such
components as highly interactive main and auxiliary Java or Flash simulations, specific learning
objectives, an experiment description, step-by step instructions for students, a worksheet, built-in
lessons and technical manuals to facilitate “just-in-time” learning, embedded assessments, and
other resources. An easy-to-use tool that enables instructors with no-programming experience to
produce appealing and pedagogically sound interactive virtual activities is available as well. An example
of a multilayered virtual lab on optical sensors is shown in Figure 1. Presented materials have been
developed with partial support from the NSF.

1. Introduction

Computer simulation plays an important role in engineering programs by providing a learning
platform that provides an efficient and effective way of teaching complex and dynamic
engineering systems. A simulation-based teaching environment enables students to acquire
experience and evaluate their previous results.’

Phenomenal growth in a wide spectrum of new and emerging technologies has led to increased
demand for engineering and engineering technology graduates who understand the fundamental
principles behind contemporary state-of-the art technologies, but also exhibit analytical, problem
solving, and expert thinking skills. To address these growing industry demands, new
technological tools and teaching methodologies need to be incorporated into engineering and
engineering technology curricula. However, incorporation and implementation of state-of-the-art
technological tools and equipment require considerable time and financial resources. Keeping
curricula and labs current with the rapid change of technology poses another challenge for
faculty. Engineering and engineering technology professors can address some of these challenges
by using simulation and virtual experiments.” In addition to cost savings, simulation offers a
number of other advantages, including the following:

e Allowing the user to modify system parameters and observe the outcomes without any
harmful side effects.

e Eliminating component or equipment faults that affect outcomes.
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e Supporting users progress at their own pace in discovery and understanding of concepts and
issues.

e Enhancing the presentation of “dry” concepts by integrating theory and practice.

However, simulation is not a panacea for the problems of keeping curricula current, as it has
some limitations too; for example, the use of software simulations of physical entities, such as
electronic circuits, denies the user a chance to physically handle the circuit components or
construct the circuit.’ On the other hand, simulation has another major advantage in that a
simulation is task- and learner-neutral; it models an object/system construction and operation or
learning situation. Within simulation functionality, there are no restrictions on the student’s
actions. Thus, the advantages of simulation outnumber its disadvantages. In the areas of electrical
and electronics engineering and technology and manufacturing technology, there are numerous
uses for simulation, starting from simulation of electric circuits to complex tasks such as
electromagnetic fields, networking, computer circuits, game programming, electron flow in
semiconductors, and manufacturing process control and monitoring.

II. Incorporation of Virtual Labs and Simulation Experiments in Electrical
Engineering and Manufacturing Education

The core components of all virtual labs discussed in this paper involve highly interactive and
complex Java and Adobe Flash simulations using HTML/XML code and scripts. State-of-the-art
graphical interfaces and realistic models of the simulations enable students to perform
experiments that precisely imitate calibration and operation of optical sensors used in production
lines. Allen-Bradley sensors were used as a prototype for these simulations. The set of the
virtual labs, further described below, enables students to explore and compare three different
optical sensing methods.

The virtual laboratories support technologies that can provide instructional opportunities in many
modes, whether at a campus or school (traditional on-site teaching), at home (warm-ups, post-
class tasks, or self-learning), in a corporate setting, or through distance learning. Realistic
simulations enable learners to:

(1) Calibrate sensors and targets and observe how each parameter impacts the system
performance.

(2) Analyze constraints between relevant parameters.

(3) Run “what if”’ scenarios to minimize risk

(4) Acquire data from virtual experiments for detailed analysis and comparison to actual
operating conditions in a theory-to-practice approach (narrowing the understanding gap
between theory and practice).

There are clear differences between a simulation, virtual experiment, and virtual laboratory. A
simulation is task- and learner-neutral, i.e., it models a process, an object’s or system’s
construction and operation, or a learning situation. Within simulation functionality, there are no
restrictions on the user’s actions. In contrast with a simulation, a virtual experiment is focused on
a particular task. In addition to simulation, the virtual experiment includes specific learning
objectives, scenario/assignment worksheet, assessment tool, and, most importantly, step-by-step
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instructions for students. Virtual experiments may also include optional auxiliary simulations,
prerequisites, excerpts from interactive lessons and technical manuals, quizzes, and online
reference resources. The student is expected to follow a set of step-by-step instructions to
accomplish a particular educational assignment. Figure 1 shows the virtual experiment designed
to enable students to explore the Diffuse Optical Sensing Method in detail.
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Figure 1: Screenshots of the virtual laboratory Diffuse Optical Sensing Method

By changing the system and target object parameters, students can learn how the size of a target
can affect delectability and when target reflectivity is sufficient for detection by a standard
diffuse sensor. They can also observe the effect of making sensitivity adjustments for objects at
various distances from the target.

The main menu of the experiment (A in Figure 1) provides students with access to embedded
resources, such as evaluation quizzes, lessons, and a system diagnostic tool.

First, students are presented with the specific learning objectives and experiment description.
Then the simulation runs with step-by-step instructions for students underneath (B). The student
is expected to follow these instructions to accomplish the assignment.
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From within the experiment students may be asked to open a worksheet (D) to record acquired
data and answer questions. The worksheet can be an Excel, .doc, or .pdf file formats and can be
entered either online or manually on the printed-out worksheet. In addition the virtual lab
includes control quizzes (E) that can be answered either online or with pen and paper.

The second lab, Opposed Optical Sensing Method, (also known as the thru-beam method)
comprises a set of virtual experiments which help students to explore how this method is used for
monitoring items on a production line and what parameters affect its performance. In this lab the
light source—referred to as the transmitter or emitter—is aligned with the receiver, forming a
beam which is broken by the target. The thru-beam sensors provide a high level of optical
energy. Therefore, they are able to overcome lens contamination and/or misalignment, and they
are capable of the longest scanning range of all optical methods. To fulfill the experiment
assignment, students have to apply the proper alignment procedure to calibrate the sensor. They
can vary such parameters as emitter power, alignment, and distance between light source and
receiver; change size and transparency of the target; and make sensitivity adjustments. The
diagram at the right in Figure 2 illustrates the impact of each parameter and the detection
capabilities of the sensor.
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Figure 2. A screenshot of the virtual laboratory Opposed Optical Sensing Method

9'8GET'ST abed



The third lab, Retro-Reflective Optical Sensing Method, was designed to enable students to
explore this method and compare it to two other methods, to perform proper sensitivity
adjustments, and to observe how these adjustments affect the detection capabilities of the retro-
reflective sensor at various distances from the target. The lab also enables them to determine how
various targets made from different types of materials at various sizes affect the detectability of
the sensor. Figure 3 provides screenshots of this virtual laboratory. *>
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Figure 3. Screenshots of the virtual laboratory Retro-Reflective Optical Sensing Method

Virtual labs can also be linked with auxiliary simulations that help students explore the design and
operation of the device components and learn underlying fundamental principles.
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Screenshots presented in Figure 4 enable students to understand the design and operation of a
Light Emitting Diode (LED) used as a light source in the optical sensors.
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Figure 4. Screenshots of the simulation Light Emitting Diode
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Some virtual laboratories facilitate a multilayered instructional approach. A multilayered virtual
experiment is comprised of several interacting simulations. The main purpose of such an experiment is
to bridge technical skills and the scientific knowledge base. An example of a multilayered experiment
is presented in Figure 5. The lab enables students to achieve the following tasks:

¢ Assemble a Laser Diode to Fiber Coupling using different types of diodes, lenses, and fibers.
¢ Study the impact of various parameters on the coupling losses and collect virtual data.

¢ Explore the design and operation of the system components.

¢ Learn underlying fundamental principles.

Appendix A presents some of these experiments.
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Figure 5: Laser Diode (LD) coupling to an optical fiber system.
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III.  Assessment of the Incorporation of Virtual Experiments and Labs into
Wireless and Broadband Communication Courses

A number of simulations and virtual experiments based on ALSuite software have been
incorporated into the Wireless Communications Engineering course (EET-380) and Broadband
Communications course (ECET-425) at DeVry University, Addison, IL. (Sample experiments are
presented in Appendix A). The students’ assessments of ALSuite software-based experiments
reveal that these simulations and virtual experiments provide a systems overview, and help
students develop a good conceptual database. Students also believe that they are easy to use and
their effectiveness is enhanced by interfacing them with external systems in order to provide a
hand-on experience for users. Assessment results for the fiber optic experiments are presented in
Appendix B.

Overall, ATeL simulation software proved to be very effective in implementing the laboratory
objectives of the Wireless and Broadband Communications courses. Based on student feedback
and assessment results, the software was more effective in promoting student learning when it was
used in a hybrid (hands-on and simulation) mode. This fact is also supported by the findings of a
recent research study conducted at DeVry University in Addison, Illinois. The study was designed
to analyze the use of computer simulation design methods on student learning. The findings of the
study suggest that simulation is effective when it is followed by hands-on activity to reduce the
gap between theoretical knowledge and practical expertise. Students should be first exposed to
theoretical concepts in the simulation environment, and then required to perform a hands-on
activity. This approach ensures progressive and sequenced learning in the form of scaffolding, an
aspect of cognitive apprenticeship. Furthermore, the findings suggest that in order to enhance
student learning, the instructional design should consider three approaches. The first is to use
simulation-based experiments in the first half of the course, followed by hands-on experiments in
the second half (sequential design). The second approach is simultaneous use of simulation and
hands-on experiments (parallel design). And the third approach is to use simulation and hands-on
in an alternating mode (mixed design). All three approaches support a combinational approach or
hybrid instructional delivery.®

Acknowledgement: The authors appreciate the assistance provided by Mr. Terry Bartelt, a retired
electromechanical instructor at Fox Valley Technical College, who helped us in developing
scenarios for simulations and virtual labs.
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Appendix A

Sample Experiments
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Experiment 1:

Coupling a Double Heterostructure Laser (DHL) or Fabry-Perot Laser to a Fiber
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Virtual assembling a fiber pigtail:
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Examining the assembled pigtail:
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Experiment 2: Study of Dispersion
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TR AT e loss and dispersion simultaneously. You will have to reset the system each time vou make a
hange. Record the maximum distance and optimal Data Rate on the worksheet.
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Appendix B

Assessment Results for the Hybrid Experiment (Fiber Optic Attenuation Mechanisms)

ECET-425 Broadband Communications

Part-1 Hands-On Experience

1.

Instructions for this part of
experiment were clear and easy to

understand.

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree

If answered 2 or 1, what improvement would
you recommend:

SA
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2. Did this experiment help you
better understand the concepts of
attenuation mechanism and loss
measurement techniques in the
optical fiber?

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

SA A

NO D SD
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3. Did you accomplish your
learning objectives (learn how to
measure cable and bending loss
in fiber)?

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

10
9
g -
7 -
6 -
5
4 -
3
2
1 -
SA A NO D SD
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Part-2 Simulation Experience

4.

Instructions

for

this

part of

experiment were clear and easy

to understand.

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree _
1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

SA

NO D SD
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5. Did this experiment improve
your understanding of the
theoretical concepts about
attenuation mechanism in optical
fibers?

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

SA A

NO D SD
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6. Combination  of  Hands-on
experiment and simulation &
virtual experiment enhanced my
understanding of the theoretical
concepts.

5. Strongly Agree
4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree

If answered 2 or 1, what improvement would
you recommend:

SA A

NO D SD
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Overall learning Experience

7. 1 learn more with hand-on

approach.

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree _
1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

SA
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5. Strongly Agree

4. Agree
3. No Opinion
2. Disagree
1. Strongly disagree
8. I learn more with simulation
approach. If answered 2 or 1, what improvement would
you recommend:
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0 . . .
SA A NO D SD

e Add more explanation of various steps and processes
e Add more cause and effect information
e Add more mathematical formulas
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9. 1 learn more with the
combination of hands-on and
simulation approaches.

5. Strongly Agree

4. Agree

3. No Opinion

2. Disagree

1. Strongly disagree ___

If answered 2 or 1, what improvement would
you recommend:

SA A

NO D SD
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