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Who is Hiring Whom: A New Method in Measuring Graduate
Programs

Abstract

In this paper, based on the assumption that “schools tend to hire Ph.D.s from peer or better
schools”, we propose a statistical and mathematical approach to rank graduate programs using
algorithms deployed on a mutual “hiring graph” among universities. In order to validate our
approach, we collect faculty data from the top 50 Computer Science (CS) departments, the top 50
Mechanical Engineering (ME) departments and the top 50 Electrical Engineering (EE)
departments across the United States according to U.S. News so as to construct our hiring graph.
We refine the PageRank (PR) algorithm and the Hyperlink-Induced Topic Search (HITS)
algorithm in order to rank the graduate programs from the hiring graph. Our new rankings are
generally consistent with U.S. News rankings, while exposing some new observations about some
particular programs. By conducting extensive data analysis, we discover many interesting patterns
and insights from our data. Finally, we propose a cross-domain model for graduate program
ranking and introduce weight differentiation adjustment and tiles into our rankings.

Introduction

Academic programs are ranked using different objective and subjective metrics, providing
different perspectives on the quality, productivity and affordability of the programs. Program
rankings are closely followed by aspiring students, universities and employed in hiring and
funding decisions. Among the many rankings of programs, U.S. News rankings have a wide
following. U.S. News updates the ranking of graduate programs in multiple fields annually.
According to the statement from U.S. News’ website1, they rank the graduate programs based on
both statistical data and expert assessment data. The statistical data includes both input and output
measures, reflecting the quality of resources into the programs and educational outcomes from the
programs. The expert assessment data is collected from the input of program deans. Each dean is
asked to rank a program from 1 to 5 and the average rating is used as the ranking score. Finally
these two types of measurements are normalized, weighted and totaled into a ranking score for
each program.

Related research on university program ranking has been done. For example, a comprehensive
study on university ranking is provided in book2, revealing the theoretical basis of traditional
university ranking system. Besides this, various ranking metrics such as citation counts, hiring
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preference and some other indicators have been explored. For example, some researchers
proposed using citation as a measurement, such as relative citation counts among universities3

and h-index4, to evaluate the research quality of graduate programs in a particular field. Barnett et
al5 proposed the use of faculty hiring networks as an indicator in the university program ranking.
Lopes et al6 proposed a social network analysis on university ranking based on the internal
collaborations among universities.

We propose a methodology to generate rankings of university programs from what we call a
“hiring graph”. The hiring graph is basically a directed social graph revealing the employment
relationships of Ph.D.s among universities. The hiring graph consists of different university
programs as nodes, and edges corresponding to the hiring of one program’s graduates by another
program. In the hiring graph, a directed edge from program A to program B indicates that A
hires at least one Ph.D. from B as its faculty member. Our hypothesis is that “schools tend to hire
Ph.D.s from peer or better schools”. We note that a lot of resources are placed in the hiring
activity, including assessment from domain experts, academic review, salaries and so on, and
therefore the hiring decision reflects the academic quality of the faculty member in a
comprehensive way.

Our rationale for employing the hiring graph has several reasons. First, this is based on our
hypothesis that “universities tend to hire Ph.D.s from peer or better programs”. This is anecdotally
validated by many school hiring practices. Second, we did not want a school’s ranking to be
impacted by its own decisions; the ranking of a program has to be validated by decisions of
others. Hence, we only consider the incoming edges of our hiring graph, i.e., only the Ph.D.s
hired by other programs impact its ranking. Third, the hiring graph is somewhat self-consistent in
the sense that we don’t need any external input in the process of ranking. For example, if we were
to consider hiring by industry, we would need to somehow have a notion of the relative value of a
“Google hire” versus an “IBM hire”. Fourth, since the hiring slots tend to be few and expensive in
resources, we postulate rankings based on hiring decisions are harder to “game”.

There are several issues with employing the university hiring graph. First, a very small
percentage of graduates actually get hired by universities and hence this is a small sample of the
total population. Second, a university professor’s tenure system biases the hiring graph towards a
“survival bias”. Given that tenure decision is made within 5-7 years and a typical professor’s
career may span 30 years, most of the information in the hiring graph tends to reflect professors
who get through the tenure process.

Third, the longevity of a typical professor’s career makes a hiring decision that reflects on that
program for a long period of time. Our analysis reflects this as explained later. Fourth, most
departments tend to be small with a faculty size between 20 and 50, and hence the amount of
sample data cannot be increased. Fifth, a department faculty may support multiple graduate
programs and separating faculty into these programs requires more work. For example, several
departments support both Electrical Engineering and Computer Science programs. When this
data is available, it can be factored into our approach to rank individual programs.

We show that the proposed methodology that depends on hiring decisions provides valuable
insight into ranking of graduate programs. We don’t claim that this is superior to other methods of
ranking, but that it provides a new way to rank graduate programs.
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2 Data Set

2.1 Data Description

In order to construct the hiring graph, we collected two faculty profile data sets, from the top 50
Computer Science (CS) Departments7 and the top 50 Mechanical Engineering (ME)
Departments8 across the USA respectively, both retrieved from U.S. News’ latest released
rankings. We did not combine these two data sets even though we have found a few ME
professors graduated with CS Ph.D.s. For each faculty member in our data set, we collected two
pieces of information, where and when the faculty member got his/her Ph.D.. Table 1 shows some
sample data that we have collected. In Table 1, columns 2 to 5 represent all 4 entries for each
faculty member: 1) Dept.: Department that the faculty member works in; 2) Univ.: University that
the faculty member works in; 3) Ph.D. From: University from which the faculty member got
Ph.D.; 4) Year Grad.: Year the faculty member got his/her Ph.D..

There are several things that we have to point out in our data set. First, some professors do not
post their educational information on the web at all. Luckily, most of the faculty members
disclose their resume or educational information on their department page or personal page,
making it possible for us to collect a large enough sample for the hiring graph. Second, all the
faculty data we collected reflects the current status of each program. This is to say that, the graph
only reflects current employment and does not reflect historical employment. Third, the graph
also does not reflect the the hiring decisions that may have been terminated without tenure.

Since we cannot find any organization that can provide such data, our data is collected from the
website of each graduate program. This data was collected manually from March 2014 to April
2014. For the top 50 CS programs data set, we collected data from 2,018 faculty members
currently in those programs. Out of these, 1,793 (88.9%) faculty members have their Ph.D.
graduation year information on their web page. For the top 50 ME programs data set, we
collected data from 1,941 faculty members currently in those programs, of which 1,709 (88.0%)
faculty members have educational year information on their web page.

Our data reflects that the faculty Ph.D. graduation years range from 1949 to 2014 in the CS data
set and from 1946 to 2013 in the ME data set. This enables us to bin the data based on the year to
obtain a historical progression of school hirings. While our methodology can be applied to the
entire hiring graph of all CS or ME programs, we restrict ourselves to the top 50 programs due to
difficulties in collecting the data manually. The data used in this paper is publicly accessible at
our shared data set oursharedata.

2.2 “Hiring Graph”

Mathematically, the hiring graph could be denoted as a directed graph G = (V,E), comprising a
set V of nodes (programs) and a set E of edges. An edge E(x, y) means there is at least one Ph.D.
from university y hired by university x as a faculty member. In the hiring graph, one university
might hire several Ph.D.s from another university as faculty members. In this case, we set the
weight of each edge to be the number of Ph.D.s hired by that university. For example, assuming
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(a) Subtracted Hiring Graph (b) Extended Hiring Graph

Figure 1: Hiring Graph in CS Data Set

university A hires 9 Ph.D.s from university B, regardless of the year in which the Ph.D.s were
graduated, the weight of edge E(A,B) would be 9.

There are self-edges in the hiring graph, given that some programs hire their own Ph.D.s as
faculty members. We also have faculty members from many other universities outside the Top 50.
For example, in the CS data set, many faculty members come from universities like Hebrew
University and University of Toronto. In our CS data set, we have 182 universities in our graph in
total, among which are the top 50 CS Schools. In our experiments, we might or might not
consider those universities outside the top 50 while running our algorithms. Similarly, there are
211 universities in our ME data set. Figure 1a is the subtracted hiring graph exclusively for the
top 50 CS schools; figure 1b is the extended hiring graph when including those CS schools
outside the top 50. We will discuss both the cases in our results. No matter in which case, we only
consider the top 50 U.S. News programs for ranking.

While we limit our attention to this smaller set (due to difficulties in collecting the data), our
methodology can be applied to all the schools when the data is available. Even with this data, we
find insights about other schools that are not part of this set.

Table 1: Sample Data Format

Faculty Dept. Univ. Ph.D. From Year Grad.
F1 CS CMU MIT 2005
F2 CS Princeton UTAustin 2009
F3 CS TAMU UIUC 1997

..
.

..
.

F4 ME Cornell Caltech 1987
F5 ME UCLA UCBerkeley 1991
F6 ME Purdue Stanford 2012

..
.

..
.
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3 Our Approach

The hiring graph and ranking of graduate programs have similarities to web graph and rankings
of web pages. In page-ranking methodologies10,11,12,13, links pointing to a web page are seen to
increase the authority or importance of that page. Similarly, we postulate that hiring links provide
similar information in our hiring graph about the quality of graduate programs. Hence, we
propose to employ page ranking algorithms on the hiring graph to ascertain the quality of the
programs.

The simplest way is to rank graduate programs according to their in-degree, which represents “the
number of Ph.D.s who got hired by other schools” in the hiring graph. We also apply various
link-based algorithms based on the PageRank (PR) algorithm10 and the Hyperlink-induced Topic
Search (HITS) algorithm11 to generate our rankings.

3.1 PR-based Algorithms

3.1.1 PR Algorithm

The PR algorithm was originally invented to rank web pages according to their relative
importance. It is based on a model called “random surf model”, in which a random surfer is
assumed to periodically jump to any random web page in the Web10. According to our
assumptions described before, an incoming edge of a program would increase the importance of
that program, which is consistent with idea of PageRank. Thus we believe that
PageRank(PR)-like algorithms could be applied to our problem.

Here we describe an iterative manner of computing the PR score of every node in a graph. Let
G = (V,E) be the directed graph with a set V of vertices or nodes and a set E of edges. At the

beginning, the PR scores of all nodes are initialized as
1

N
where N is the total number of nodes in

the graph. In each iteration, the PR score r(pi) of node pi is defined as:

r(pi) =
(1− α)
N

+ α ·
∑

pj∈M(pi)

r(pj)

L(pj)
(1)

where N is the total number of nodes, p0, p1, . . . , pN−1 ∈ V, M(pi) is the set of programs that link
to pi, L(pj) is the number of outgoing links from pj , and α is the damping factor. Letting the
damping factor α = 0.85 is a democratic choice10. Hence, in our PR-based approach we also use
the same value, 0.85, as our damping factor. The algorithm stops when the PR scores converge, or
in other words, remain unchanged or change little between two consecutive iterations.

As we can see in Equation 1, the sum of PR scores of pj ∈M(pi) brings a normalization effect to
node pi since the PR score of pj is divided by the number of outgoing links of pj .

One significant difference between the hiring graph and the web graph is that in the hiring graph,
every edge has a weight. Therefore, we refine the original PR algorithm by considering edge
weights. We consider two models for taking edge weights into consideration. The first model
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gives a weight of 1 for each hire. The second model gives a total weight of 1 for all the hires of a
program. If a program has Ni faculty, the outgoing edges from that program add up to Ni and in
the second model, each hire of that program is given a weight of 1

Ni
for a total weight of 1 for all

the outgoing edges. These two models roughly correspond to the “House of Representatives” and
“Senate” models of representation. Accordingly, we expect the first model to favor large
programs and the second model to favor smaller programs.

3.1.2 Weighted PR Algorithm with Weights Normalized

When still considering the normalization effect, the new formula of the PR score r(pi) of node pi
would become

r(pi) =
(1− α)
N

+ α ·
∑

pj∈M(pi)

r(pj) · w(ε(pj, pi))
W (pj)

, (2)

where w(ε(pj, pi)) denotes the weight of ε(pj, pi), M(pi) is the set of programs that link to pi, α
is the damping factor, and W (pj) is the sum of the weights of outgoing links from pj , whose
formula is:

W (pj) =
∑

ε(pj ,pk)∈E

w(ε(pj, pk)). (3)

3.1.3 Weighted PR Algorithm with Weights Unnormalized

We also test another refinement of the PR algorithm, in which the incoming link effect is not
normalized by the sum of link’s outgoing weights, but the total number of nodes in the graph. The
formula of this refined PR algorithm is defined as follows:

r(pi) =
(1− α)
N

+ α ·
∑

pj∈M(pi)

r(pj) · w(ε(pj, pi))
N

. (4)

As we can see in Formula 4, since the normalization factor is a fixed value, the normalization is
not taken into effect. In this case, the actual number of edges and the actual value of edge weight
matter.

3.2 HITS-based Algorithms

3.2.1 HITS Algorithm

The HITS algorithm was designed to discover the “authoritative” sources of a particular topic in
the World Wide Web (WWW). It defines two types of pages in the Web: hubs and authorities. A
hub is a page that links to other pages; an authority is a page that is linked to by other pages. The
ranking philosophy behind HITS is a mutually reinforcing relationship: “a good hub is a page that
points to many good authorities; a good authority is a page that is pointed to by many good

P
age 26.1736.7



hubs”11. HITS is usually implemented in an iterative manner. In each iteration, the updating rules
for the authority value Auth(p) and hub value Hub(p) of page p are formulated as

Auth(p)←
∑

ε(q,p)∈E

Hub(q) (5)

and
Hub(p)←

∑
ε(p,q)∈E

Auth(q). (6)

In each iteration, the new values are updated from the old values from last iteration. The hub
scores and authority scores are normalized every time before the next iteration. The algorithm
stops when the hub scores or authority scores converge. Finally, we look at the authority score of
each program for ranking.

Unlike the PR algorithm, the HITS algorithm considers the effect of hubs. In the HITS algorithm,
the effect of hubs and authorities will reinforce each other, and the authorities pointed to by strong
hubs will stand out from the authorities pointed to by weak hubs. In the hiring graph especially,
to UCBerkeley for example, we expect that a link from MIT would be more important than say, a
link from TAMU, because MIT has more credits to support UCBerkeley being a better school.
Under this assumption, we develop several variations of the HITS algorithm on our hiring graph.
We employ the two weighting models described above.

3.2.2 Weighted HITS Algorithm

The updating rules are defined in Equation 7 and 8 for the weighted HITS algorithm. The only
difference in the following updating rules from the formula of HITS is that we multiply the
weight of the incoming/outgoing edges when calculating the authority/hub of a given node.

Auth(p)←
∑

ε(q,p)∈E

Hub(q) · w(ε(q, p)) (7)

and
Hub(p)←

∑
ε(p,q)∈E

Auth(q) · w(ε(p, q)), (8)

where w(ε(p, q)) is the weight of the edge from node p to node q.

3.2.3 Weighted HubAvg Algorithm

To overcome the shortcoming of the HITS algorithm that a hub might get a high weight when it
points to a large number of low quality authorities, we suggest the following refinement
accordingly14. While the updating rule for authority remains the same as Equation 7, the hub
score is normalized by the number of outgoing edges of the node:

Hub(p)← 1

M(p)

∑
ε(p,q)∈E

Auth(q) · w(ε(p, q)), (9)

where M(p) is the sum of the weights of outgoing edges of node p.
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4 Evaluation Methodology

In order to evaluate the performance of the above link-based algorithms, we use the U.S. News
ranking as a baseline. However, this is not to say that U.S. News’ rankings are the “ground truth”,
since they are a subjective point of view. We only use it as a reference to analyze our own ranking
method so that we can discuss and reach conclusions based on what we have observed.

4.1 RankDistance

In order to measure the distance between two rankings, we employ a measure called
“RankDistance”. The computation of “RankDistance” is described as follows. Suppose R1 and
R2 are two rankings from a set of samples S = (a0, a1, . . . , aN−1). Defining the rank of ai in Rj

as PRj
(ai), the RankDistance RankDist(R1, R2) between R1 and R2 is:

RankDist(R1, R2) =

∑
ai∈S

|PR1(ai)− PR2(ai)|

N
, (10)

where N is the total number of samples.

From Equation 10 we can see that the smaller the RankDist(R1, R2) is, the closer R1 and R2

are. In our experiments, we compare our method with U.S. News’ results using RankDist. As
we said before, we are not taking U.S. News as the ground truth with which our results have to
perfectly match.

4.2 Sensitivity Analysis

Apart from RankDist, which measures how close our rankings are to those of U.S. News, we
also employ another measurement called “sensitivity analysis”, which measures how robust the
algorithm is to small changes in data. The intuition of sensitivity analysis is that universities keep
hiring and professors retire or leave universities every year for various reasons. We do not expect
significant movements in ranks due to minor changes in the hiring graph. The sensitivity analysis
looks at this issue.

Our methodology to measure the sensitivity is as follows. For each ranked program, we carry out
two hypothetical changes separately in the graph regarding this program: 1) add a non-existing
edge from one top ranked program to this program; 2) delete one existing edge from the best
program that links to this program; if not available, delete one existing edge from the best
program that is linked to by this program. The first change will boost the rank of the program and
the second change will lower the rank of the program. Thus by running a specific algorithm, we
will have both an upper bound and a lower bound for each program.
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5 Results on Top50 CS Data Set

In this section we present our experimental results on the Top50 CS data set. We deploy five
methods in our experiments: in-degree ranking, weighted PageRank algorithm with weights
normalized, weighted PageRank algorithm with weights unnormalized, weighted HITS algorithm
and weighted Hubavg algorithm. Table 2 provides a mapping between each algorithm and its
abbreviation, which will be used frequently in the following discussions. A reference between
programs mentioned in this paper and their full names can be found in our shared data9.

5.1 Graph extended or subtracted? Self-edges removed or retained?

Considering the entire Top50 CS data set, we have 182 schools and 1,106 edges. The total weight
is 2018 in the extended CS hiring graph. We generate a subtracted graph that only contains the
top 50 schools. In the subtracted graph, we have 50 schools and 842 edges; the total weight is
1740. In addition, as we know that there are self-edges in the graph, we also compared the
differences between the one with self-edges and the one without self-edges.

Table 3 shows the results of our algorithms compared with U.S. News Ranking using RankDist
measurement. According to the definition of RankDist, given a set of 50 samples, the maximum
RankDist between two rankings we can get is 25, which occurs when one is exactly the reverse
of the other one. Another common case is that when we randomly shuffle the ranking, we get a
RankDist 16.63, averaged by 1000 trials of random shuffles. In Table 3, column 1 represents the
algorithms that we use; column 2 shows the RankDist to U.S. News ranking when we employ the
algorithm on the subtracted graph with self-edges retained; column 3 shows the RankDist to U.S.
News ranking when we employ the algorithm on the subtracted graph with self-edges removed;
column 4 shows the RankDist to U.S. News ranking when we employ the algorithm on the
extended graph with self-edges retained; column 5 shows the RankDist to U.S. News ranking
when we employ the algorithm on the extended graph with self-edges removed. The last column
and the last row show the average of each row and each column respectively.

We can see from Table 3 that the RankDist values are not much different for HITS-based
algorithms and IndeRank whether we consider extended or subtracted graph. However, the
PageRank-based algorithms have smaller RankDist values with extended graphs.

By comparing column 2 and column 3, we can see that, except WeightedPR w n, RankDist
values in column 3 are all smaller than those in column 2, indicating that results obtained from the
graph without self-edges are generally closer to the U.S. News ranking compared with the graph

Table 2: Algorithms and their Abbreviations

Algorithm Abbreviation
In-degree Ranking Algorithm IndeRank
Weighted PR Algorithm with weights normalized WeightedPR w n
Weighted PR Algorithm with weights unnormalized WeightedPR wo n
Weighted HITS Algorithm HITS Weighted
Weighted Hubavg Algorithm HITS Hubavg
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Table 3: Results on Top50 CS Data Set

RankDist to the U.S. News Ranking

Algorithm
Subtracted
graph with
self-edges

Subtracted
graph w/o
self-edges

Extended
graph with
self-edges

Extended
graph w/o
self-edges

Average

Max. 25.0 25.0 25.0 25.0 25.0
RandomShuffle 16.63 16.63 16.63 16.63 16.63
IndeRank 5.04 3.92 5.00 4.08 4.51
WeightedPR w n 5.28 5.04 5.08 4.72 5.05
WeightedPR wo n 5.00 4.44 4.76 3.92 4.53
HITS Weighted 4.72 4.20 4.72 4.16 4.45
HITS Hubavg 4.44 3.92 4.40 3.88 4.16
Average 4.896 4.304 4.792 4.152 —

with self-edges. By comparing column 4 and column 5, we can observe a similar fact like this.
The above observations indicate that removing self-edges in the CS hiring graph probably helps
improve the performance of our algorithms. In the case of the extended graph with self-edges
removed, HITS Hubavg is performing the best with a RankDist of 3.88, then comes
WeightedPR wo n (3.92), IndeRank (4.08) and HITS Weighted (4.16). In addition, HITS-based
algorithms generally produce closer rankings to U.S. News than PR-based algorithms, probably
because they consider the mutual reinforced effect from both hubs and authorities. What’s more,
WeightedPR wo n consistently gives smaller RankDists than WeightedPR w n.

Given that we would like a program’s rank to be not impacted directly by its own hiring decisions,
we will consider hiring graph with self-edges removed from now on.

5.2 Original Rankings

Table 4 shows the resulting rankings obtained from all five proposed algorithms along with the
U.S. News ranking. We note that all the results in Table 4 are retrieved from the experiments on
the extended graph with self-edges removed from the entire CS data set. We also note that the
U.S. News gives the same rank for some programs, which could be ranked in any order. In
addition, programs with the same in-degree could be ranked in any order in IndeRank
ranking.

A number of observations can be made from the results. MIT, CMU, Stanford and UCBerkeley
always occupy the top 4 schools in the rankings. What’s more, CMU seems to be a little bit
over-ranked by U.S. News and MIT stands out in all our five algorithms.

By comparing the results from WeightedPR w n and WeightedPR wo n, the rankings of some
schools are dramatically different. UIUC is ranked No. 5 in WeightedPR wo n while No. 8 in
WeightedPR w n; Harvard is ranked No. 5 in WeightedPR w n while No. 8 in
WeightedPR wo n. UCLA and Caltech are also ranked differently by these two algorithms.
UCLA is ranked No. 13 in WeightedPR wo n while No. 18 in WeightedPR w n; Caltech is
ranked No 11 in WeightedPR w n while No. 15 in WeightedPR wo n. This is to say that large
programs, like UIUC and UCLA, are ranked higher in WeightedPR wo n, while smaller
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programs like Harvard and Caltech are ranked higher in WeightedPR w n. As we have discussed
in Section 3.1, it is the actual number of incoming edges and the actual value of corresponding
weights that matter in WeightedPR wo n, in which case those large programs which place lots of
Ph.D.s might have an advantage. In short, for PR-based algorithms, normalization favors smaller
programs while unnormalization favors bigger programs, as expected. Considering
WeightedPR wo n yields a closer result to U.S. News’ ranking, we can conclude that the U.S.
News probably favors bigger programs as well.

What’s more, the HITS-based algorithms, HITS Weighted and HITS Hubavg seem to give very
similar rankings according to Table 4. This is probably because HITS-based algorithms are more
stable than PR-based algorithms since HITS-based algorithms take the effects from both hubs and
authorities into consideration.

From Table 4 we can also observe that there are some programs with huge divergences between
our rankings and U.S. News ranking, such as Harvard, Duke, StonyBrook, UMass and Utah. We
will discuss some of these cases in detail later.

5.3 Recent Years vs Earlier Years

Here we compare the results obtained from recent data with results from earlier years data. As we
described in Section 2.1, more than 80 percent of the entries have Year Grad. information in our
data. By generating the Cumulative Distribution Function (CDF) of year distribution, the CDF
curve crosses 50 percent between calendar year 1994 and 1995. In fact, before 1994 inclusively,
there are 875 data points; after 1994 exclusively, there are 918 data points. The numbers are
roughly equal and it would be fair to divide the data set by year 1994 into two equally large
subsets to analyze the effect of year of graduation.

Table 5 shows the comparison between the results of recent years and earlier years. In Table 5,
column 2 shows the resulting RankDists obtained on the entire data set; column 3 shows the
resulting RankDists obtained on the data set from 1949 to 1994; column 4 shows the resulting
RankDists applied on the data set from 1995 to 2014.

The RankDist values in column 4 are all smaller than those in column 3, indicating that recent
year data reflects the U.S. News ranking better than earlier year data. In the future, we plan to
employ a weight differential model based on the year of hiring to make the rankings more
sensitive to recent year data.

Figure 2 shows the ranking divergence of all CS programs obtained from recent data. Compared
with Table 4, in recent data ranking, Harvard is no longer ranked higher than U.S. News and Yale
drops down greatly in our recent data ranking.

5.4 Observations

In order to know where the differences between U.S. News ranking and our rankings come from,
we investigate into the actual rank difference for each program in our results. We use
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Table 4: Resulting Rankings Obtained from Top50 CS Data Set

The rankings are retrieved from experiments on the entire extended graph with self-edges
removed

Rank USNews IndeRank WeightedPR w n WeightedPR wo n HITS Weighted HITS Hubavg
1 cmu mit mit mit mit mit
2 mit ucberkeley stanford ucberkeley ucberkeley ucberkeley
3 stanford stanford ucberkeley stanford stanford stanford
4 ucberkeley cmu cmu cmu cmu cmu
5 uiuc uiuc harvard uiuc uiuc uiuc
6 cornell cornell cornell cornell washington cornell
7 washington princeton washington washington cornell washington
8 princeton washington uiuc harvard princeton princeton
9 gatech utaustin princeton princeton harvard harvard

10 utaustin harvard wisconsin utaustin ucla utaustin
11 caltech upenn caltech wisconsin upenn upenn
12 wisconsin wisconsin utaustin upenn wisconsin wisconsin
13 ucla ucla upenn ucla utaustin ucla
14 umich gatech umass gatech caltech caltech
15 columbia umaryland gatech caltech umass gatech
16 ucsd purdue umich umaryland gatech umass
17 umaryland caltech yale purdue umich umaryland
18 harvard umass ucla umass umaryland umich
19 upenn umich ucsd umich ucsd columbia
20 brown columbia columbia columbia columbia purdue
21 purdue usc purdue ucsd yale ucsd
22 rice ucsd umaryland yale purdue yale
23 usc northcarolina northcarolina usc usc nyu
24 yale yale stonybrook northcarolina nyu usc
25 duke nyu uminnesota nyu northcarolina northcarolina
26 umass brown nyu brown stonybrook stonybrook
27 northcarolina stonybrook brown stonybrook brown brown
28 johnshopkins uminnesota utah uminnesota pennstate rice
29 nyu rice usc rice uminnesota uminnesota
30 pennstate pennstate uvirginia ohiostate ohiostate ohiostate
31 ucirvine ohiostate rice pennstate ucirvine pennstate
32 uminnesota utah ohiostate utah utah utah
33 uvirginia northwestern pennstate uvirginia northwestern uvirginia
34 northwestern ucirvine johnshopkins ucirvine uvirginia ucirvine
35 ohiostate uvirginia ucirvine northwestern rutgers northwestern
36 rutgers johnshopkins northwestern johnshopkins rice johnshopkins
37 ucdavis rutgers uchicago rutgers johnshopkins rutgers
38 ucsb uarizona ucolorado uarizona ucolorado uarizona
39 uchicago ucolorado dartmouth ucolorado uarizona ucolorado
40 dartmouth uchicago rutgers uchicago uchicago uchicago
41 stonybrook duke duke duke ucdavis duke
42 tamu ucsb uarizona ucsb duke ucdavis
43 uarizona ucdavis boston ucdavis ucsb wustl
44 ucolorado wustl wustl boston wustl dartmouth
45 utah boston ucsb wustl dartmouth ucsb
46 vatech dartmouth ucdavis dartmouth boston boston
47 wustl ncstate tamu tamu ncstate ncstate
48 arizonastate tamu ncstate ncstate tamu tamu
49 boston arizonastate arizonastate arizonastate arizonastate arizonastate
50 ncstate vatech vatech vatech vatech vatech
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Table 5: Results between Recent Years and Earlier Years on CS Data Set

RankDist to the U.S. News Ranking
on extended graph w/o self-edges

Algorithm Entire Data 1949∼1994 1995∼2014
IndeRank 4.08 6.28 4.28
WeightedPR w n 4.72 6.44 4.68
WeightedPR wo n 3.92 6.04 4.20
HITS Weighted 4.16 6.42 5.00
HITS Hubavg 3.88 6.12 4.64

Figure 2: Ranking Divergence of CS Programs Compared to U.S. News (1995-2014)

WeightedPR wo n and HITS Hubavg for analysis because these two algorithms seem to be doing
better than other algorithms according to our previous discussion.

Table 6 shows the exact difference for some of the programs in WeightedPR wo n ranking and
HITS Hubavg ranking compared with U.S. News. The positive value means our rank is higher
than the rank in U.S. News; the negative value means our rank is lower than the rank in U.S.
News. The AbsDif value is the absolute difference between the value in ’49 ∼ ’94 and the value
in ’95 ∼ ’14.

The first block, consisting of Yale, Purdue, Harvard and NYU, contains the programs that were
doing much better before 1994 than they did after 1994. Part of the reason could be that they are
old programs, who have established their academic strengths in the earlier days. Another reason
could be that they have fallen behind in recent years.

Harvard and Yale seem to be two representative examples of such programs. Table 7 shows the
incoming edges of Harvard with year. Before 1994, 33 Ph.D.s from Harvard were hired widely at
MIT, UCBerkeley, Cornell, Purdue and many other programs; After 1994, only 11 Ph.D.s from
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Table 6: Rank Difference Comparison on CS Data Set

WeightedPR wo n HITS Hubavg
Univ Entire ’49∼’94 ’95∼’14 AbsDif Entire ’49∼’94 ’95∼’14 AbsDif
Yale +2 +12 -22 34 +2 +12 -21 33
NYU +4 +12 0 12 +6 +16 -5 21
Purdue +4 +8 -1 9 +1 +5 -9 14
Harvard +10 +11 -2 13 +9 +12 -1 13
UCSD -5 -19 +2 21 -5 -19 +3 22
Gatech -5 -20 0 20 -6 -24 -3 21
Rice -7 -16 -2 14 -6 -16 -1 15
Columbia -5 -9 0 9 -4 -10 0 10
Utah +13 +17 +9 8 +13 +18 +6 12
Duke -16 -8 -18 10 -16 -9 -19 10
StonyBrook +14 +20 +10 10 +15 +21 +13 8
Caltech -4 -7 -8 1 -3 -6 -7 1
UIUC 0 0 -2 2 0 0 -4 4
Stanford 0 0 0 0 0 +1 0 1
UTAustin 0 +1 0 1 0 +1 +2 1
MIT +1 +1 +1 0 +1 +1 +1 0

Harvard got hired. For another example, Table 8 shows the incoming edges of Yale with year. We
can see that Yale’s Ph.D.s were hired widely among Princeton, UCLA and some other schools
before 1994, while after 1994, there was only one Ph.D. from Yale currently at Cornell. Since
these programs did not place as many of their graduates into other programs in recent years, their
ranks fall down substantially when we look at recent data.

The second block, including Gatech, UCSD, Rice and Columbia, contains the programs that are
ranked lower before 1994 but have improved in standings recently. This is probably because they
are young programs and grew fast in the recent years.

The third block includes those programs that are either “under-estimated” or “over-estimated” by
U.S. News. For example, in our case, StonyBrook and Utah are under ranked by U.S. News while
Duke and Caltech are over ranked by U.S. News.

The fourth block consists of those programs that are ranked similarly in both our rankings and
U.S. News ranking, such as UIUC, Stanford, UTAustin and MIT.

These observations are not coincidental but all reflected from the hiring graph. Here is an
example. Duke and UMass are both ranked No. 25 in U.S. News ranking. However, they are
performing differently in placing their Ph.D.s in the academia. Figure 3a shows the neighbours of
UMass in the hiring graph; Figure 3b shows the neighbors of Duke in the hiring graph. We can
see in Figure 3a that CMU, UCBerkeley, Princeton, Cornell, Harvard and some other schools
(Light Nodes) have hired Ph.D.s from UMass. On the other hand, in Figure 3b, Utah, UVirginia,
UMaryland, Dartmouth, NorthCarolina and OhioState (Light Nodes) have hired Ph.D.s from
Duke. Since these programs are not as highly ranked as the programs that hired UMass Ph.D.s,
UMass gets ranked higher in our approach.

P
age 26.1736.15



Table 7: Incoming Neighbours of Harvard in CS Data Set

Harvard’s Incoming Nodes
Univ. Year Univ. Year Univ. Year Univ. Year
NYU 1950 UMaryland 1970 Caltech 1980 Yale 1968
NorthCarolina 1956 Duke 1970 Cornell 1981 USC 1969
UCBerkeley 1959 NYU 1970 MIT 1984 Wustl 1978
UCLA 1963 MIT 1972 UMaryland 1985 Stanford 1980
Purdue 1963 Princeton 1973 Dartmouth 1986 Columbia 1993
Yale 1965 Harvard 1974 Gatech 1989 UPenn 1993
UMass 1966 UArizona 1974 UPenn 1989
NorthCarolina 1967 StonyBrook 1976 Boston 1992
UCDavis 1967 Duke 1977 CMU 1993
UIUC 1995 StonyBrook 2003 Duke 2008 StonyBrook 1998
UCLA 1996 Boston 2003 Northwestern 2012 Harvard 2007
Cornell 1997 ArizonaState 2005 ArizonaState 2012

Table 8: Incoming Neighbours of Yale in CS Data Set

Yale’s Incoming Nodes
Univ. Year Univ. Year Univ. Year Univ. Year
Dartmouth 1975 UCLA 1982 Northwestern 1986 NYU 1980
UMass 1977 UMaryland 1982 USC 1987 Northwestern 1986
CMU 1979 Princeton 1986 NYU 1988 Rutgers 1994
Princeton 1980 Northwestern 1986 UPenn 1994
Cornell 2005

(a) UMass (b) Duke

Figure 3: One-level Neighbouring Graphs in CS Data Set
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5.5 Sensitivity Analysis

Our expectation is that, one or two faculty members coming or leaving the department should not
affect the rank of the department dramatically. Any change in rankings from such small changes
in the hiring graph is considered to provide an idea of fidelity of rankings. To measure the
sensitivity of program’s rank, we add a “virtual” edge from the # 1 program (e.g., MIT in CS
data) to that program, which means that MIT just hired a Ph.D. from that program; if there is
already an edge from MIT to that program, we increase the edge weight by 1. In a second
experiment, we delete an existing edge from the highest ranked program to that program. If the
target edge has a weight more than 1, we decrease the edge weight by 1; if the target edge has a
weight exactly as 1, we remove the edge from the graph; if the program doesn’t have any
incoming edge at all, we delete one outgoing edge pointing to the best program from that
program. The reason we perform these two manipulations is that we have already seen that the
quality and quantity of incoming edges play an essential role in the ranking of programs.

Figure 4 shows the sensitivity bound of each program by all our five algorithms. In Figure 4, the x
axis represents the programs ordered by the rank from 1 to 50; the y axis represents the ranks. In
these figures, each program has a bar that represents its sensitivity variation bound. The bottom of
the bar represents the upper bound, or how high it could be ranked when adding a virtual
significant edge; the top of the bar represents the lower bound, or how low it could be ranked
when deleting a significant edge to that program. Thus, the narrower the variation bound is, the
less sensitive that program’s ranking is to minor changes in the hiring graph.

In Figure 4a, IndeRank generally has a small variation bound for each program. However, the
greatest disadvantage of IndeRank is that IndeRank is not able to rank those programs with the
same number of incoming edges. This is because IndeRank only considers the quantity of edges
regardless of the quality of edges. As an example, the in-degree of Caltech is 26 and in-degree of
Purdue is 30 in our extended hiring graph without self-edges. For IndeRank, Purdue is ranked
higher than Caltech. However, in the hiring graph, MIT, UCBerkeley, Stanford and many other
highly-ranked programs hire Ph.D.s from Caltech, while this is not the case for Purdue. The edge
quality of Caltech is better than Purdue. As a result, all other four algorithms in our approach rank
Caltech higher than Purdue (For example, in HITS Weighted, Caltech is ranked #14 while Purdue
is ranked #22).

In Figure 4b, WeightedPR w n looks very sensitive to graph changes because the upper bounds
for the lower ranked programs are extremely wide. This happens for two reasons. First, PageRank
only cares about the authority, which brings up the authority of that program instantly when
adding an edge to that program pointed by another well established authority. Second, adding a
high quality incoming edge provides a major contribution to that program because of
normalization.

The performances of the other three algorithms are similar in terms of the sensitivity analysis.
They all have small variation bounds, indicating that they are less sensitive. In addition, we can
observe a “step-like” shape from Figure 4c to Figure 4e, indicating that some programs share
either upper bound, lower bound or both. It is a good indicator that these programs could
probably be ranked together.
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(a) IndeRank (b) WeightedPR w n

(c) WeightedPR wo n (d) HITS Weighted (e) HITS Hubavg

Figure 4: Sensitivity Graphs on CS Data Set

Table 9: Average Sensitivity Bounds of all Algorithms on CS Data Set

Algorithm UpperBound LowerBound Abs.Range
IndeRank +1.54 -1.54 3.08

WeightedPR w n +5.76 -1.98 7.74
WeightedPR wo n +1.54 -0.92 2.46

HITS Weighted +1.60 -1.24 2.84
HITS Hubavg +1.40 -1.16 2.56

Table 9 summarizes the average sensitivity bounds for all the algorithms. The UpperBound
indicates the average boost-up of all programs; the LowerBound indicates the average degradation
of all programs; the Abs.Range is the absolute difference between UpperBound and LowerBound.
The UpperBound of WeightedPR w n (5.76) is extremely high, which is consistent with our
analysis on the sensitivity graph. According to Table 9, Weighted wo norm, HITS Weighted and
HITS Hubavg seem to offer a better distinction of programs.

6 Results on Top50 ME Data Set

Our proposed approach is seen to work well on our Top50 CS data set. We employ another data
set of CS hirings collected independently15. The results on that data set are consistent with the
rankings obtained based on our data collection, showing that there are no significant gaps in our
data collection. WeightedPR wo n, HITS Weighted and HITS Hubavg are doing well in terms of
both RankDist to U.S. News and sensitivity analysis. We also discover interesting patterns from
our data. In order to validate our approach, we re-run the same experiments on a completely
different data set—the top 50 ME data set. If our approach is robust, we should expect similar
results from the ME data set.

We examine how our approach performs in the four cases discussed in Section 5.1 on our ME
data set. Table 10 shows the comparisons among these cases.
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Table 10: Results on Top50 ME Data Set

RankDist to the U.S. News Ranking

Algorithm
Subtracted
graph with
self-edges

Subtracted
graph w/o
self-edges

Extended
graph with
self-edges

Extended
graph w/o
self-edges

IndeRank 5.36 4.88 5.52 4.96
WeightedPR w n 6.84 6.80 6.60 6.04
WeightedPR wo n 6.08 5.52 5.08 5.00
HITS Weighted 4.48 5.12 4.48 5.12
HITS Hubavg 4.84 5.04 4.80 4.84

Table 11: Results between Recent Years and Earlier Years on ME Data Set

RankDist to the U.S. News Ranking
on extended graph w/o self-edges

Algorithm Entire Data 1946∼1990 1991∼2013
IndeRank 4.96 7.12 5.60
WeightedPR w n 6.04 7.84 5.60
WeightedPR wo n 5.00 7.4 5.52
HITS Weighted 5.12 7.76 6.00
HITS Hubavg 4.84 7.36 5.68

As we can see in Table 10, results obtained from the extended graph without self-edges are the
best among the four, which is consistent with the CS results. The best RankDist we achieved is
from HITS Weighted, which is 4.48. HITS Hubavg (4.8), IndeRank (4.88) and
WeightedPR wo n (5.0) also yield rankings close to U.S. News ranking. On average, results from
the extended graph without self-edges are the smallest. One thing we notice is that the RankDist
in the ME data set is slightly larger than that in the CS data set.

For Top50 ME data set, we also compare the cases between earlier years and recent years. In ME
data set, the earliest year is 1946 and the latest year is 2013. the CDF curve of year distribution in
ME data set crosses 50 percent between calendar year 1990 and 1991. Table 11 shows the
comparison between the results from the recent and earlier years data.

We can see clearly from Table 11 that the result is consistent with the result obtained from the CS
data set. The rankings obtained from the years between 1991 and 2013 are generally closer to the
U.S. News than the rankings obtained from the years before 1991. It again proves that recent data
reflects the U.S. News ranking better.

Table 12 summarizes the average sensitivity variation bound for each algorithm deployed on the
ME data set. As we can see, HITS Weighted has the smallest variation bound as
Abs.Range = 1.88, then follow HITS Hubavg (Abs.Range = 2.12) and WeightedPR wo n
(Abs.Range = 3.28).
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Table 12: Average Sensitivity Bounds of all Algorithms on ME Data Set

Algorithm UpperBound LowerBound Abs.Range
IndeRank +2.44 -2.42 4.86

WeightedPR w n +7.50 -2.34 9.84
WeightedPR wo n +1.86 -1.42 3.28

HITS Weighted +0.46 -1.42 1.88
HITS Hubavg +0.80 -1.32 2.12

7 Cross-Domain University Graduate Program Ranking Model

A CS program may not always hire Ph.D.s from other CS programs. It is possible that a CS
program may hire Ph.D.s from other programs such as Electrical Engineering and Math, for
example. In order to take this into account, we can carry out something like “cross-domain”
ranking, consolidating different hiring graphs of different programs into one. We will show how
this can be carried out here. More extensive data collection of several programs would be needed
to carry out this comprehensively. Given the fact that, though not the majority, cross-domain
hiring exists in the hiring graph, we propose our cross-domain university graduate program
ranking model based on our previous model. When considering only the cross-field effect, for
every school p in hiring graph G = (V,E), the ranking of school p is actually a set of ranking
scores of p in multiple fields:

rp = 〈rp(f1), rp(f2), · · · , rp(fm)〉, (11)

where f1, f2, · · · , fm are all the programs in school p. Taking HITS Weighted as an example, the
new updating rules become:

Authp(fi)←
∑

q(fj)∈M(p(fi))

Hubq(fj) · w(ε(q(fj), p(fi))), (12)

where M(p(fi)) is the set of incoming neighbors of p(fi); and

Hubp(fi)←
∑

q(fj)∈O(p(fi))

Authq(fj) · w(ε(p(fi), q(fj))), (13)

where O(p(fi)) is the set of outgoing neighbors of p(fi).

When different domains are treated equally, in each iteration, rp(fi) should be normalized such
that

∑
p∈N(fi) rp(fi) = N(fi), where N(fi) is the total number of nodes in fi and N(fi) denotes

all the programs in fi. When different domains are treated differently, the normalization should be
adjusted accordingly for each fi.

Here is an example showing how this works. We collect faculty data from top 50 Electrical
Engineering(EE) programs16 in U.S. News, along with their Ph.D. degrees. In our EE data set,
219 out of 4,484 EE faculty members were CS Ph.D.s. Figure 5 shows the difference between the
original CS ranking and the new CS ranking when considering the EE effect. As we can see,
Vatech boosts 11 ranks higher after considering the EE hirings. This is because EE programs in
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Figure 5: Cross-Field Effect from EE on CS Ranking given by HITS Weighted

UIUC and CMU hire 3 CS Ph.D.s from Vatech in our new cross-domain data, making Vatech
ranked higher in the cross-domain model. However, due to the lack of data, we are not able to
comprehensively analyze and validate the cross-domain graduate program ranking model.

8 Rankings with Tiles

In order to let our ranking more time-sensitive, we propose assigning larger weights to recent
hires while assigning smaller weights to older hires. The intuition behind weight differentiation
adjustment is to let our ranking model more sensitive to recent changes in the hiring graph. For
example, if the hiring decision is made after 2000, the adjusted weight Wnew = 1.0×Wold; if the
hiring decision is made between 1991 and 2000, the adjusted weight Wnew = 0.8×Wold; if the
hiring decision is made between 1981 and 1990, the adjusted weight Wnew = 0.6×Wold; ...; etc.
We note that the weight adjustment scheme is a subjective point of view. We also note that the
granularity of weight differentiation could be adjusted accordingly. For example, if we would like
the ranking to measure the program quality recently, we should decrease the weight more
drastically over years; If we would like the ranking to reflect the historical momentum of
programs in a few decades, we probably should have less drastic weighting differentiation
scheme. Weight differentiation scheme makes our ranking model more robust given the fact that
hiring graph keeps changing over years. The result discussed in this section is based on a “less
drastic” weight differentiation model, which is described as follows: if the hiring is made after
2000, the adjusted weight Wnew = 1.0×Wold; if the hiring is made before 2000, the adjusted
weight Wnew = 0.8×Wold.

In addition, we consider the cross domain effects among our three data sets: Top 50 CS, Top 50
ME and Top 50 EE in rendering our proposed ranking. In our cross-domain data set, 180 EE
Ph.D.s and 21 ME Ph.D.s joined CS programs; 219 CS Ph.D.s joined EE programs; 44 CS Ph.D.s
and 96 EE Ph.D.s joined ME programs. We note that, in our evaluation, we ignore the
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cross-domain from other fields, Math and Physics for example, even though there are a few such
links present in our data.

Finally, like what U.S. News does, we introduce tiles in our rankings. We assign some programs
with the same rank according to our sensitivity analysis. The observation that some programs
have the same upper bound or lower bound or both is a good indicator of the tiles of programs.
Our ordering strategy is described in Algorithm 1.

Algorithm 1 Tiles Ordering Strategy
pi: Program ranked as i
pi+1: Program ranked as i+ 1
R(p): The rank of program p
UB(p): Upper bound of program p
LB(p): Lower bound of program p
if UB(pi) ≥ UB(pi+1) then

if LB(pi ≥ LB(pi+1)) then
R(pi+1) = R(pi) = i;

else
the order remains;

end if
else

the order remains;
end if

Table 13 combined with Table 14 shows our final rankings with tiles. In Table 13 and Table 14,
we only present the results obtained from HITS Hubavg and WeightedPR won because they seem
doing better in the previous analysis.
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9 Discussion

As we have shown, our algorithmic approach produces objective and reliable rankings for
graduate programs across multiple fields. We also introduce cross-domain adjustment and ranking
with tiles into our model, making our model more versatile and practical. We note that different
algorithms produce different rankings while using the same data. HITS Hubavg and
WeightedPR won are the two algorithms that not only give accurate ranks of programs but also
stably produce reliable rankings of programs. Our intent is not to provide a new ranking of the
programs, but to provide a new methodology for ranking the programs. We leave the choice of
algorithm and the choice of weighting of recent hires over older hires to those interested in
producing a ranking of the programs.

Program rankings provide information for aspiring students, universities, hiring and funding
agencies about the relative quality, productivity and affordability of different programs. Our
methodology here adds another perspective for ranking graduate programs. Our methodology
provides insights about different programs’ progression over time and the impact of the program’s
size on rankings.

10 Conclusion and Future Work

We proposed a new and alternative way to rank graduate programs using the hiring data of these
programs. We have shown that our approach produces reasonable and reliable rankings for
graduate programs. In addition, we have seen that our approach works across different fields.
Moreover, by extensive data analysis, we not only discovered what is behind the hiring graph but
also revealed valuable knowledge beyond U.S. News ranking.

The future work is to refine and improve the “cross-domain” graduate program ranking model
with more data collection. We believe that the “cross-domain” effect across fields and countries
matters in the hiring graph. We also plan to extend our work into industry hires, making our
model more comprehensive and general. We plan to continue this work with more detailed data
collection in the future.
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