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WIP: Integrating Computation within an Engineering Physics
Course

Introduction

There has been much interest in supporting the development of computational thinking skills in
engineering students. Computational thinking (CT) supports both general problem solving as well
as computer programming. This work-in-progress paper describes efforts to develop a new
two-course sequence that combines an introduction to engineering physics with computation and
modeling. These courses were developed to support students who entered not calculus ready in
their first semester. Retention rates for these students were significantly lower than calculus ready
students, with 40% of these students never reaching their first engineering course. Evidence that
integrated curricula lead to strengthened learning outcomes was a significant motivator in the
development of this course sequence.

As expectations of computational literacy in the engineering workplace continue to grow, there is
increasing interest in effective methods to help engineering students gain proficiency in computer
programming and computational thinking. While the practices associated with computational
thinking are not restricted to computer programming [1], an introduction to computer
programming is a common element of first-year engineering programs [2] and in many cases may
be the only context in which these skills are explicitly taught. Teaching programming, even to CS
students who ostensibly are motivated to learn the skills involved, is a well documented challenge
[3, 4]. Introducing core computing skills to general engineering students faces the additional
challenge of engaging an audience that is not intrinsically motivated to learn the skills, or worse
who chose a non-CS major because of negative perceptions of computer programming. One
strategy that may be effective at motivating non-computing majors to learn computing skills is
situating the skills within a disciplinary context that they are motivated to learn [5].

While computer programming is often the tacit skill that students as well as educators associate
with computing skills, there has been an increasing emphasis on the related but more general
skills encompassing ”computational thinking”. Wing [1] defines computational thinking as “the
skills needed to reason about a problem solution in a way that could be implemented on a
computer”, and while that definition still couples the idea with a literal computer there is
recognition that “computational thinking” can be more broadly applied to all types of problem
solving. Thus, computational thinking provides a framework to help bridge concepts and content
within an integrated engineering problem solving and computer problem solving course [6]. By
integrating computational thinking instruction within an engineering physics class, we hope that
students will be able to demonstrate greater understanding of problem solving, physics concepts,
and computing concepts and skills [7].

Course Context

The primary motivation for developing a new course sequence was to increase retention within
the college of non-calculus ready students. The hypothesis was that by creating a course sequence
that allowed non-calculus ready students to take engineering courses and interact with



engineering professors their first year, they would be more likely to stay with engineering. This
context is important for two reasons: 1) it situates the goal of structuring the course around a CT
framework as emergent from the challenges intrinsic to creating a unified experience for learners,
and 2) the pre-calculus population suggests learners that may have lower math self-efficacy than
their peers which is significant as many of the skills required for math proficiency are also needed
for computational thinking [8].

The first iteration of the course aimed to remix the learning objectives and content of a 3 credit
engineering physics courses, a 1 credit computer-based skills course, and a 1 credit introduction
to the college of engineering course into a sequence of two 3-credit hour courses over two
semesters. During the initial pilot we discovered that this class-contact time was not sufficient to
bring this population to the desired level of mastery across all learning objectives. In particular,
the extra time and support students needed to develop and practice math skills in the context of
becoming familiar with the required physics concepts made it impossible for students to reach a
level of proficiency across the prerequisite physics concepts and problem-solving skills needed to
succeed in later courses. This motivated a redesign to a two 4-credit hour sequence with a pilot
during the 2022-2023 academic year.

Organizing Framework

Curzon and colleagues [9] organize a framework for course design around computational thinking
defined as “...the thought processes involved in formulating problems and their solutions so that
the solutions are represented in a form that can be effectively carried out by an
information-processing agent”. They divide CT into the following:

• algorithmic thinking: determining a sequence of steps that can be taken to solve a given
problem

• evaluation: determining whether a particular solution is viable, or particular algorithm does
what it is expected to do

• abstraction: reducing complexity by eliminating information that is not directly relevant

• decomposition: breaking a large problem into smaller pieces that are individually easier to
solve than the whole

We found that learning activities that had been developed in the precursors to this new course
could map skills to parts of this framework such as algorithmic thinking, evaluation, while links
to abstraction, and decomposition could be made more explicit. There is also the opportunity to
frame core-skills, such as algebraic manipulation in a CT context, e.g. by prompting learners to
list a sequence of steps that can be followed to symbolically solve a class of equations.

Assessment

Current practices for assessing computational thinking vary widely, from using course work
grades, computational thinking instruments, self efficacy instruments, to observations [10].
Currently, computational thinking is not an explicit learning outcome of our course and thus
existing assessments serve only as a proxy to these skills. We are currently evaluating whether we
should assess computational thinking more directly as this would allow us to answer questions
about possible correlations between CT skills and conceptual physics skills.



Challenges

Casting certain physics problems to a suitable form for a computer solution may not always be
feasible. For example, since most of the physics problems are meant to be worked by hand with
eventual assessment on a written exam, algorithmic structures such as iteration and conditional
branching do not arise naturally. Certainly these algorithmic components are part of a learner’s
process as part of problem solving, e.g. “First I need to calculate the push force and force of
impending motion, if the push force is greater than the force of impending motion, use the kinetic
friction equation, otherwise the force of friction comes from the free body and kinetic
diagram”

We also found that trying to situate computational activities within a physics problem-solving
context necessarily coupled physics problem-solving ability with computational skills. Finding an
appropriate level of scaffolding for programming assignments was a challenge, particularly due to
a high variance in comfort with physics concepts and math skills across the student population.
The level of scaffolding varied across programming assignments from very high: providing the
derived equations and flowchart describing an implementation, to minimal: providing a problem
statement describing a physics problem. The students who struggled with algebra and working
with physics concepts tended to struggled with all levels of scaffolding: For minimally scaffolded
assignments they understandably struggled with even setting up the problem, while tending to
view highly scaffolded assignments as busywork or having little value since they did not see any
connection to the physics they were learning. Further, students that struggled with conceptually or
algebraically understanding the problem and solution structure tended not to recognize this as
their bottleneck and would attempt a MATLAB implementation for a solution they didn’t
understand. This unsurprisingly lead to a jumble of error-riddled code that was as difficult for
graders to decipher as it was for the authors to describe.

Future Work

The pilot and first revision of this course focused on identifying and assembling a reasonable
sequence of content, activities, and assessment. In the next revision we plan to make the links to
computational thinking more explicit and build more synergy between existing physics concepts
and data analysis through complementary lab activities. We hope this provides a balance that can
help reduce the tension between need for abstraction and motivation that comes more naturally
from concrete application. To assess these changes we plan to administer a survey instrument
adapting existing self-efficacy and motivation measures to the CT and engineering problem
solving context. We will share a draft edition of this survey and solicit feedback.
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