
Paper ID #37377

WIP: Replication of a 1/5th-Scale Autonomous Vehicle to Facilitate
Curriculum Improvement in Cyber Engineering

Dr. Wookwon Lee, Gannon University

Wookwon Lee, P.E. received the B.S. degree in electronic engineering from Inha University, Korea, in
1985, and the M.S. and D.Sc. degrees in electrical engineering from the George Washington University,
Washington, DC, in 1992 and 1995, respectively. He is currently a full professor in the Department of
Electrical and Cyber Engineering at Gannon University, Erie, PA. Prior to joining Gannon in 2007, he had
been involved in various research and development projects in industry and academia for more than 15
years.

Joseph Mendez
Naveen Kumar Manimaran

©American Society for Engineering Education, 2023

WIP: Replication of a 1/5th-Scale Autonomous Vehicle to Facilitate
Curriculum Improvement in Cyber Engineering

1. Background and Motivation

To respond to the industry trend and the recent nationwide initiative for producing engineering
professionals in the cyber domain, our university launched an undergraduate degree program in
cyber engineering three years ago. Cyber engineering combines the fundamentals of computer
engineering, cryptography, and cybersecurity techniques to design, incorporate, and secure systems
across the digital landscape. This includes, but is not limited to, embedded technology, autonomous
technology, edge and end-point technologies. Compared to cybersecurity in general, however,
cyber engineering still requires further refinement in its curriculum coverage. The current
curriculum for the cyber engineering program at our university is centered on cyber physical
systems (CPS) and their security including device-level security, boot security, and attack-resilient
hardware/middleware. As an engineering curriculum, cyber engineering also requires a variety of
hands-on laboratory-based learning as well. To better facilitate hands-on learning in a curricular
setting, we have been developing a 1/5th-scale autonomous vehicle as a framework of cyber
physical systems for a set of cyber engineering courses. For the development, we have adopted an
existing 1/5th-scale autonomous vehicle known as AutoRally [1] which was developed as a high-
performance testbed for self-driving vehicle research and funded by DARPA in mid-2010.

When we began our effort in late 2021, however, due to the nature of rapidly advancing

products in embedded systems, sensors, and computing technologies, it quickly became clear that
numerous parts used in AutoRally had already been discontinued and our effort to replicate it as a
CPS platform encountered a series of challenges although much documentation and a detailed parts
list were available. Having spent more than a year since then to find alternative comparable parts,
construct the mechanical and electrical subsystems, and configure them as needed, our CPS
platform is nearly ready for its initial field test on a football field. The overall development efforts
have provided us with a great deal of insights on how we may apply our learning during the
development phase to the curriculum improvement in cyber engineering. In this paper, we present
details of our effort in developing a 1/5th-scale electric autonomous vehicle as a CPS platform from
an AutoRally years after the DARPA project was completed. Also, using our cyber engineering
curriculum as an example, we present a set of mappings of technical coverage between the CPS
platform and core courses in cyber engineering.

2. Overview of 1/5th Autonomous Vehicle Platform

Figure 1 shows (a) the key components of our CPS platform and (b) the current shape of a
completely assembled car ready for a field test. The key components are largely grouped into the
chassis and the compute box. The chassis holds an electronic box and an electric speed controller
(ESC) as well as sensors and batteries (not shown in the figure); the compute box contains a
custom-built computer running on the Linux operating environment, a power board for DC-DC
conversion from the batteries, and various sensors and electronic devices such as IMU, cameras,
Wi-Fi modules, to name a few.

(a) Top view of key subsystems

(b) Side view of the platform for a field test

Figure 1. A 1/5-scale autonomous vehicle under development as a Cyber Physical System (CPS) platform

For an autonomous vehicle that is battery-powered and electronically controlled for operation,

the initial development of AutoRally began with converting the gasoline engine of a 1/5th-scale
remote-control (RC) car into an electric engine. A step-by-step guide to construct the chassis of
AutoRally is available in [2]. Since, as one of the challenges we encountered, however, the RC car
with the gasoline engine was discontinued, we chose an RC car with an electric engine [3] for our
further modification and development in reference to the step-by-step guide for the chassis of
AutoRally. For the construction of a computer box, we followed a step-by-step guide in [4] as well
as the software setup instructions [5], the operational procedure [6], and the configuration
instructions in [7]. These documents served as very useful references for our development effort
but also to some extent, due to a set of new off-the-shelf devices replacing obsolete ones, gathering
additional information on our own was necessary. Below we present a summary of our activities
and additional learning or clarifications needed to complete key tasks, while pointing to the
referenced sources of the information as much as appropriate to avoid repeating the same
instructions in this paper.

3. Key Activities for a Successful Development

3.1. Chassis
To operate the chassis with the battery, it was necessary to construct a capacitor pre-charge

circuit according to the chassis instructions (pp. 6-9, [2]). For this, however, the battery leads were
not altered but, instead, IC5 connectors with proper current ratings were used. This pre-charge
circuit with an additional resistor in series with the capacitor is to prevent a spark from occurring
when plugging in the batteries. The following shows a list of subsequent steps to complete the
chassis:

• With the Castle Serial Link and Castle Link software downloaded from the Castle
homepage (castlecreations.com), configure the ESC and Castle Serial Link device
according to the instructions (pp. 36-37, [2])

• Configure the Futaba transmitter according to the instructions (pp. 35-36, [2]) and verify
that the transmitter connects to the receiver.

• Connect the motor, ESC, receiver, transmitter, and batteries; calibrate the ESC according to
the Castle ESC manual on line [8].

• Construct the Protoshield Assembly (pp. 37-45, [2]) and the Electronics Box circuit (p. 46,
[2]). This step required much effort and time for accuracy and troubleshooting.

• With the code for the Arduino Due (i.e., autorally_chassis.ino) downloaded onto the device
and perform minor tweaking for a simple remote-controlled operation in a lab setting,
verify that the transmitter successfully switches between auto and manual using the buttons
on the transmitter.

3D printing of the electronics box base (2 pieces), the electronics box lid (2 pieces), and the

relevant support pieces was done with Fusion. Installing the electronics box components such as
Protoshield assembly, multiplexer, relay, Castle serial link device, and receiver into the separate
halves of the electronics box base was straightforward as well as mounting the Electronics Box on
the chassis frame. 3D-printing the magnet holders (x4), hex adapters (x4), front hall mounts (x2),
and rear hall mounts (x2), and testing the hall effect sensors was based on the instructions (pp. 24-
28, [2]) although our parts were slightly different. As for the amount of time and effort on this
development phase, all of this work was performed by a master-level graduate student for a period
of about 2 months.

3.2. Compute Box
Compared to the construction of the compute box, the work on configuring the compute box

was much more challenging for our development team of 2 master-level graduate students. For the
compute box operation on the CPS platform, another Linux-based computer is required for the
remote control and configuration purposes, which is referred to as the Operator Control Station
(OCS) laptop. A summary of our activities to initially construct the compute box is provided below.

• Construction of a custom-built (mini-ITX form factor) computer running on the Linux
operating environment.

• 3D printing of parts with Fusion for the compute box base and lid, giving attention to
various mounting hole diameters for specific inserts; 3D printing of GPU cover/holder,
microcontroller holder, and GPS box/lid.

• Construction of all cable assemblies (pp. 28-46, [4]), keeping cables longer than specified
in the manual to allow for error during testing and ease of installation.

• Download Teensyduino [9]; construct the Run-stop Box (pp. 46-49, [4]); load the
corresponding Arduino file onto the Teensy-LC; also load the other Teensy-LC board with
the camera trigger Arduino file. Note that these Arduino files are available on a specific file
path once the software tools [7] are downloaded and installed on the Linux-based computer
in the compute box.

• Connect the power switch assembly, the hot swap board, the 2-pin power connector, and
the power supply board. For lab testing, all other cables were disconnected from the power
supply board and a lab power supply is used to apply ~22.6V to the 2-pin connector (Refer
to Step ‘e’ (p. 85, [4]). Once the power supply board has been successfully powered with
the lab power supply, follow steps ‘f’ through ‘l’ (pp. 85-87, [4]).

• Once successful, connect the rest of the compute box components per the “Installation and
Routing” instructions (p. 50, [4]). It should be noted that the lab power supply must be able
to supply at least 6 amps to allow the compute box to turn on and run at full load.

For the configuration of the CPS platform following the instructions in [5] and [7], the software

setup is necessary on both the compute box and the OCS laptop and some other configuration steps
are required only on one of the computers. The complete configuration steps can be summarized in
the following 20 steps [7] - 1. Install Tools; 2. Configure IP addresses and ssh permissions; 3.
Clock synchronization setup (chrony and gpsd); 4. Set roscore to auto start; 5. Set AutoRally
udev rules; 6. Setup Compute Box Data Drive; 7. Change Power Button Behavior; 8. Disable
Login and Lock Screen Password Prompts; 9. Setup on-board sensors; 10. Install M4api and
Configure Cutoff Voltage; 11. Setup Cameras; 12. Configure XBees; 13. Configure GPS; 14.
Configure Chassis Microcontroller; 15. Configure Compute Box Microcontroller; 16. Configure
Run-stop Microcontroller; 17. Configure and Calibrate IMU; 18. Configure GPU; 19. Configure
Platform-Agnostic Launch System; and 20. Verification.

Among these steps, some of the major challenges we encountered were for cameras, XBees,

and GPS. For the cameras, the links provided in the instructions manual were obsolete and no
longer active. The difficulty in configuring XBees was primarily due to the global shortage of the
semiconductor devices and thus the availability of a specific model, XBee-PRO 900HP (S3B), and
lack of instructions for other models of XBees for possible application to our CPS platform. The
difficulty in configuring the GPS device was that the GPS device available and acquired in Jan.
2022 (Hemisphere GNSS P/N 940-4137-10 Phantom 34 Module) for our CPS platform was
outputting the GNSS position data, e.g., with a prefix of $GNGNS, while the GPS device used in
AutoRally and its instructions (Hemisphere Eclipse P307 GPS) was outputting the GPS positioning
data, e.g., with a prefix of $GPGNS. Also, the AutoRally code was filtering out all $xxGNS
messages other than $GPGNS. Errors were cleared once $GNGNS messages were allowed to be
processed by the code and some delay adjustments were made in reading the incoming GNSS data
through the COM port since the udev rules for the GPS port didn’t work in our application.

4. Relevance to Cyber Engineering Curriculum

In the emerging field of cyber engineering, embedded systems play a key role in technological
advances and engineering education. The configuration and operation of the CPS platform require
fundamental knowledges and technical skills in the Linux operating environment and interfacing
with embedded systems that are placed on the CPS platform for the purposes of autonomous
driving. With direct access to all configuration details and operational aspects, our CPS platform
has a great potential to contribute to improving the cyber engineering education. Below using our
cyber engineering curriculum as an example, we provide a set of content mappings between the
technical knowledges that the CPS platform presents for student learning and possible integration
of them into the course coverage.

Our BS program in cyber engineering requires 63 credit hours of major course work among

124 credit hours for the degree. Table 1 shows a set of major courses for the curriculum, excluding
mathematics, science, and liberal studies courses [10].

Table 1. Major Courses in the Curriculum for BS in Cyber Engineering

FRESHMAN
Fall

Spring

3 Intro to Networks/CIS 290

3 Digital Logic Design/ECE 140

1 Digital Logic Design Lab/ECE 141

3 Circuit 1/ECE 228

1 Circuit 1 Lab/ECE 229

3 Intro to C/C++/ECE 111

1 Network Security Lab/CYSEC 101

SOPHOMORE
Fall

Spring

3 u-controller Applications with IoT/ECE 245

3 u-controller Essentials for Cyber Appl/CYENG 225
3 Data Structure and Algorithm/ECE 217

3 Embedded OS Appl. Programming/CYENG 220

JUNIOR
Fall

Spring

3 Trusted OS/CYENG 312

3 Tech Selective
3 Intro to Cyber-physical Syst/CYENG 237

1 Professional Seminar/ECE 380

1 Project Experience/ECE 381

3 Secured Embedded System/CYENG 350
3 Test, Measurement, and Control/ECE 243

SENIOR
Fall

Spring

3 Tech Elective 1

3 Technical Elective 2
3 Senior Design I/ECE 357 3 Senior Design II/ECE 358

In particular, the following CYENG core courses are relevant to the CPS platform and further
development could be facilitated:

• Embedded OS Appl. Programming/CYENG 220
• Trusted OS/CYENG 312
• Intro to Cyber-physical Syst/CYENG 237
• Secured Embedded System/CYENG 350
• Technical Selective -- Embedded Kernel and RTOS/ ECE 311

Although two other sophomore-level classes, u-controller Applications with IoT/ECE 245 and u-
controller Essentials for Cyber Appl/CYENG 225 could also use the CPS platform, it is not
envisioned for course improvement as acquiring the knowledge about micro-controllers and
applications can be achieved with individual embedded systems devices.

Embedded OS Application Programming/ CYENG 220 teaches the student how to architect an
embedded Linux environment for a distributed co-operating multi-application environment. The
course explores how to leverage the Linux programming, inter-process communication, and shell
programming. Topics also include bootup, scheduling of applications, and load balancing across
multiple cores. This course is a good fit to perform the configuration and operation of the OCS
laptop as the CPS platform is configured via close communication between the compute box and

the OCS laptop both running on the Linux environment and interacting with various embedded
systems.

Trusted OS/ CYENG 312 covers basic understanding and configuration for hardening and

securing an embedded Linux operating system. Topics include boot-time configurations and
forensics, user and directory hardening, application vulnerability minimization, and minimizing
memory attacks. The course will focus on a common Linux distribution architecture, security
modules, cryptography tools, and how the system works. The CPS platform can be the playground
for applying the knowledges covered in this course in order to improve the security of the
embedded systems on the platform as well as serve as the real-time system for improving student
learning experiences in the course.

Introduction to Cyber-Physical Systems/ CYENG 237 covers cyber and physical systems

developed via high-level modeling and virtual/real prototyping using MATLAB/Simulink as well
as real prototyping of an autonomous driving robot for advanced implementation and verification.
Although not mentioned earlier, the operation of AutoRally and thus, the CPS platform can be
simulated and verified in an autonomous driving simulator. The virtual/real CPS devices created in
this course can be integrated into the CPS platform to re-enforce student learning with a small
autonomous robot being currently used in this course via our CPS platform that is much more
complex.

Secure Embedded Systems/ CYENG 350 provides a hands-on approach of understanding

cyber-attacks using only the processing power and memory of resource-constrained embedded
devices, architecting and implementing a root of trust (RoT) embedded system from power-up,
firmware launching, boot-loading, and applications following the various industry-trusted system
paradigms. Although not directly related to configuration of the CPS platform, this course can use
the CPS platform as a playground for students applying the knowledges covered in this course such
as implementing and experiment with a root of trust.

Embedded Kernel and RTOS/ ECE 311 covers basic understanding of embedded kernel and

real-time operating system paradigms. Topics include process management, process
synchronization, and memory management. For this course, embedded kernel topics can be
implemented on the CPS platform serving as an embedded-system platform and RTOS topics can
be easily implemented on the real-time operating systems of the OCS laptop and compute box of
the CPS platform.

The current instructions and hands-on learning in these courses are based on unit devices or

relatively-simple, small-scale subsystems. Our CPS platform serves as a complete complex system
for the primary functionality of autonomous driving with various subsystems and sensors
integrated. As such, our CPS platform is considered to be an excellent framework for our project-
based courses and also improved student learning experiences.

5. Concluding Remarks

We have presented a summary of development effort to create a 1/5th-scale autonomous driving
vehicle as the CPS platform for curriculum enhancement in our cyber engineering program. The
primary technical challenges in our development arose from the fact that some of the key

components of the vehicle became obsolete and/or discontinued. As such, part of the work done for
the self-driving features of the original AutoRally required revision with much effort. In return,
however, it provided us with an opportunity to acquire in-depth knowledges that can be applied to
improving course coverage and thus curriculum in cyber engineering education. We hope that the
information presented in this paper is useful to educators in cyber engineering in general as well as
those in embedded and cyber physical systems intending to create a complex educational platform
of hardware and software for their cyber/computer engineering curriculum.

References
[1] AutoRally: A high-performance testbed for self-driving vehicle research. [on line] https://autorally.github.io/
[2] Geogia Institute of Technology, AutoRally Chassis Instructions, ver. 1.4, June 2018. [on line]

https://github.com/AutoRally/autorally_platform_instructions
[3] Horizon Hobby, KRATON 1/5 4WD EXtreme Bash Roller: Instruction Manual. [on line] https://www.arrma-

rc.com/en/product/1-5-kraton-4wd-extreme-bash-roller-black/ARA5208.html.
[4] Geogia Institute of Technology, AutoRally Compute Instructions, ver. 1.4, March 2018. [on line]

https://github.com/AutoRally/autorally_platform_instructions
[5] Software for the AutoRally platform. [on line] Last accessed on Feb. 12, 2023 at:

https://github.com/AutoRally/autorally.
[6] Geogia Institute of Technology, AutoRally Platform Operating Procedures, ver. 1.3, February, 2017. [on line]

https://github.com/AutoRally/autorally_platform_instructions
[7] Geogia Institute of Technology, Platform Configuration Instructions, ver. last edited, July 1, 2020. [on line]

https://github.com/AutoRally/autorally/wiki/Platform%20Configuration%20Instructions.
[8] Tech Tip: Castle ESC Calibration – When, Why, Why and How. [online] Last accessed on Feb. 12, 2023 at:

https://home.castlecreations.com/blog/2020/1/9/tech-tip-castle-esc-calibration
[9] Teensyduino: Arduino 2.0.x Software Development, ver. 1.57. [on line] Last accessed on Feb. 12, 2023 at:

https://www.pjrc.com/teensy/td_download.html.
[10] Undergraduate Catalog, Gannon University, 2022-2023.

https://autorally.github.io/
https://github.com/AutoRally/autorally_platform_instructions
https://www.arrma-rc.com/en/product/1-5-kraton-4wd-extreme-bash-roller-black/ARA5208.html
https://www.arrma-rc.com/en/product/1-5-kraton-4wd-extreme-bash-roller-black/ARA5208.html
https://github.com/AutoRally/autorally_platform_instructions
https://github.com/AutoRally/autorally
https://github.com/AutoRally/autorally_platform_instructions
https://github.com/AutoRally/autorally/wiki/Platform%20Configuration%20Instructions
https://home.castlecreations.com/blog/2020/1/9/tech-tip-castle-esc-calibration
https://www.pjrc.com/teensy/td_download.html

	WIP: Replication of a 1/5th-Scale Autonomous Vehicle to Facilitate Curriculum Improvement in Cyber Engineering
	1. Background and Motivation
	2. Overview of 1/5th Autonomous Vehicle Platform
	3. Key Activities for a Successful Development
	3.1. Chassis
	3.2. Compute Box

	4. Relevance to Cyber Engineering Curriculum
	5. Concluding Remarks
	References

