
Paper ID #39391

WIP: Skip the Lecture: A Decoding First Approach to Introductory
Computing Education

David Zabner, Tufts University
Trevion S Henderson, Tufts University

Trevion Henderson is Assistant Professor of Mechanical Engineering at Tufts University. He earned his
Ph.D. in Higher Education at the University of Michigan.

©American Society for Engineering Education, 2023



(WIP) Skip the Lecture: A Decoding First Approach to
Introductory Computing Education

David Zabner
david.zabner@tufts.edu

Trevion Henderson
trevion.henderson@tufts.edu

Abstract
Existing research suggests introductory computer programming courses (i.e., CS1) constitute a significant
barrier for students’ entry into computer science and related disciplines. For example, extant literature
suggests as high as 33% of students fail or drop out of introductory computer programming courses [1],
precluding these students from pursuing computer science education in college. The purpose of this
work in progress is twofold. First, we describe the development and implementation of a pedagogical
approach to computing education that draws and expands on the Use-Modify-Create (UMC) framework
[2, 3] to support students’ learning in introductory computer programming courses. Second, drawing
on unique qualitative data sources, such as student-produced lists of Python’s rules, students’ code an-
notations produced during the “use” phase of UMC, and ethnographic fieldnotes, we describe our pilot
of a mixed-methods study examining students’ sense-making, competency, and computing self-efficacy.
Our preliminary examination of rules notebooks indicated that some students developed code tracing
strategies and that most were able to discover many of the rules that underlie Python’s runtime execution.

1 Introduction
Computing educators must balance several, at times competing, pedagogical and learning goals. For
example introductory computer programming courses must foster students’ learning about fundamental
computing concepts, like iteration, variables, and recursion, as well as prepare students for professional
practice by developing learning activities that resemble real-world computing work. Thus, it is important
that instructors teaching introductory computer programming courses, which can serve as either deterrents
or inspiration to continuing computing education, draw on frameworks that support these various goals.

Active learning, a broad category of learning activities that entails anything students participate in be-
yond passive, instructor-centered, lecture-based learning activities, [4] has long been studied as a method
of improving student engagement, self-efficacy, and learning outcomes in STEM courses. This research
is concerned with inquiry based learning (IBL), defined as a pedagogical approach where students “arrive
at an understanding of the subject matter by engaging in self-directed investigations [5].”

Inquiry based learning pedagogies are common in STEM education and have been studied in many
science and engineering education contexts. Existing research on IBL has found that these pedagogies
improve student affect, self-efficacy, and academic performance [5–7]. Still, inquiry learning approaches
remain understudied in computer science education, especially at the college level.

In this research study, we draw on IBL strategies in the process of teaching students new programming
languages. To do so, we also draw on second language acquisition literature (SLA), which we contend
shares many parallels with the learning of new programming languages. Specifically, we combine in-
quiry learning pedagogies with elements of Krashen’s “Input Hypothesis” [8] to teach an introductory

1



programming course. In this work in progress paper, we focus on the theoretical framework guiding our
teaching in an introductory computer science course, as well as share a preliminary examination of data
from the pilot phase of a study of the course. Finally, we discuss preparations for the study phase of the
research.

2 Theoretical Framework

2.1 Inquiry Based Learning
Inquiry-based learning (IBL) is a type of active learning in which students are encouraged to pose and in-
vestigate questions as the primary form of learning [5]. IBL draws inspiration from the scientific method
and has been primarily studied as a pedagogical and curricular approach in science classes. The foun-
dations of IBL pedagogy lies in encouraging students to learn about a scientific field by scientific means
[5].

Research suggests IBL strategies offer students ownership of knowledge by allowing them to choose
the phenomena they want to explore, as well as the questions they wish to answer [9]. While student
agency is thought to be an important mechanism underlying the benefits of IBL strategies, offering stu-
dents agency in the classroom can prove challenging since instructors often value control over the learning
environment, and research suggests offering unassisted opportunities for inquiry may undermine learning
goals [10, 11]. However, in IBL pedagogies, instructors tacitly shape the ways students ask questions by
carefully constructing the environment for student learning activities, and through providing feedback to
direct student learning.

Pedaste and colleagues [12] describe IBL as a 5-part cycle: Orientation, Conceptualization, Inves-
tigation, Conclusion, and Discussion. In the orientation phase the instructor introduces a general topic
and students begin to observe some phenomena. In the conceptualization phase students begin to explore
questions they have about the phenomenon and make predictions. In the investigation phase students
undertake a large variety of activities in order to try to answer their questions and test hypotheses. In
the conclusion phase students grapple with and celebrate the results of their investigations before finally
sharing with their classmates in the discussion phase.

Research has found that the process of inquiry-based learning is rarely linear [12]. As a result, students
participating in IBL learning activities are likely to be seen rapidly moving between the phases, and the
length of each of the phases is likely to vary. IBL may involve multi-day experiments with formal data
collection, or it may involve students less formally testing many small hypotheses over the course of a
few minutes. Still, IBL contrasts to the primary form of instructor-led education in computer science -
direct instruction - wherein instructors primarily lecture on the material they expect students to learn.

2.2 Krashen’s Input Hypothesis
The input hypothesis, a hypothesis about second language acquisition we believe is applicable to pro-
gramming language learning, states that progression in a learner’s comprehension of a second (natural)
language happens as a result of striving to understand input in that language that is just above the learner’s
current level. Importantly the input hypothesis argues that language input (e.g., reading, hearing) to the
learner is the primary driver of learning and that output (e.g., writing, speaking) is an effect of that learn-
ing. Two of Krashen’s claims, as explained by Lichtman and Vanpatten [13] are of particular interest
to this research. The first is that mental representations of language are constructed by learners through
implicit learning processes as they work to comprehend a new language. The second is that the most
important data for language acquisition is in the “communicatively embedded comprehensible input that
learners receive (p. 296)” and that comprehension of a language must come before production of that
language.

We contend that these hypotheses are also applicable to the learning of programming languages in
computer science education. These theoretical claims suggest that students might learn programming lan-

2



guages best by attempting to comprehend messages (i.e., programs) directed to them in those languages,
as they do during the conceptualization and investigation phases of IBL. Thus, pedagogical practices
that focus too heavily on learning the rules of formal languages (e.g., Python, C++, Java) might under-
mine students’ comprehension and application of these languages in introductory computer programming
courses.

The second claim suggests to us that the limiting factor in student acquisition of a programming
language is the amount of code students read and understand. If the principal data for the acquisition
of a programming language is found in comprehensible code, students’ ability to apply a programming
language might be predicated on the quantity of code they have seen and attempted to comprehend. Thus,
we developed pedagogical strategies that position students to view and attempt to comprehend code prior
to activities wherein they produce their own code—the Use-Modify-Create approach.

2.3 Use-Modify-Create as IBL for CS Education
Use-Modify-Create (UMC) is a CS-specific pedagogical approach introduced by Lee and colleagues in
2011[14] for use with K-12 students. They proposed a three-stage model for learning to code. In the first
stage, students first used instructor designed code. In the second stage, students modified existing code.
Finally, after gaining the skills to code their own projects, students responded to programming problems
by creating their own code.

We argue that the UMC approach constitutes three complementary cycles of IBL in introductory
CS education, where the subject of students’ inquiry are the rules of programming languages, such as
programming syntax and semantics. For example, just as IBL approaches begin with orientation activities,
UMC begins from instructor-scaffolded learning activities that make use of pre-written code in structured
tasks.

Other phases of IBL—the conceptualization, investigation, conclusion, and discussion phases—are
manifested across the use-modify-create model in specific student activities (Table 1).

UMC IBL Student activity
Use Orientation Read and run pre-written code

Conceptualization Develop questions about what is happening in the program and why
Investigation Attempt to answer the questions generated in the conceptualization

phase often by running and rerunning the code
Conclusion Document new coding rules
Discussion Discuss discovery with nearby students and instructors

Modify Orientation Read and run pre-written code
Conceptualization Develop hypotheses about how to achieve changes to code behavior
Investigation Delete, edit, copy, or move code to affect desired outcome
Conclusion Examine success or failure of code change and document new coding

rules
Discussion Share solutions with nearby students and instructors

Create Conceptualization Understand or invent a goal for a new piece of code
Investigation Create code to accomplish the goal. Test, debug, and retest
Conclusion Examine success or failure of code in accomplishing the goal and up-

date understanding of coding rules
Discussion Share solutions with nearby students, instructors, and the whole class

Table 1: Mapping of IBL and UMC

3



3 Course Design: Adapting UMC for the College Context
In this research, we have redesigned an introductory Python-based computer programming course for
first-year engineering students. Because of this context we opted to develop a curriculum that builds
from Python’s basics towards data analysis using NumPy, Pandas, and Matplotlib. We organized the code
students see in the course, as well as the amount of code students see each week, to align with the UMC
and IBL framework guiding this research. In the first three weeks of the course, we asked students to focus
the majority of their in-class time on using code in order to annotate and explain its behavior. Starting
in week 2, we began to ask students to modify code, progressively increasing the portion of the days’
activities that involved modifying code over the next 3 weeks. Starting in week 3, we asked students to
implement simple functions, which entailed modifying existing code that we provided. The overlapping
of the Use, Modify, and Create stages was chosen with the goal that starting in week 3 students would
be using a new concept in code, modifying code that used a recently used concept, and creating code
using concepts with which we hoped they were comfortable. Only in the course’s final project did we
ask students to begin coding from a blank page. Our curriculum design was also informed by the fact
that programming language acquisition takes time. For this reason we aimed to introduce new coding
concepts for annotation several weeks before asking students to create code that used those concepts.

4 Methods

4.1 Research Setting
The setting for this study is one section of an introductory computer programming course at a private
university in the Northeast of the United States. Participants in the study were primarily first-year engi-
neering students with little experience coding in Python. The course consisted of two types of content: (a)
UMC content that positioned students to participate in IBL activities and (b) projects designed to catalyze
students’ sociotechnical thinking by integrating coding with broader social issues. The section studied
had 30 students, of which 10 (6 female, 4 male) agreed to participate in our study.

4.2 Data Sources
We collected two forms of data over the course of the pilot phase of this research. First, the lead author
documented observations of learning activities in field jottings. Second, we asked students to document
their learning in Python “rules notebooks” and annotations on coding assignments. The rules notebooks
are explained to students as a note-taking tool to distill their understanding of Python. For students they
are meant to act as personal documentation of Python’s syntax and semantics. In this research, rules
notebooks were a window into students’ conceptions of Python’s syntax and semantics. We view the
rules notebooks as reflective activity germane to the conclusion and discussion phases of IBL.

5 Data and Preliminary Analysis
Our analysis of the data from this course is ongoing, and we are collecting more data on a second iteration
of the course. This work-in-progress paper reports on preliminary review of rules notebooks as well as
written assignments and observations from the course. Preliminary analysis of students’ rules notebooks
indicated that, while students did not consistently utilize the notebooks past the first 5 weeks of the
course, submissions pointed to the investigation strategies students used to understand Python syntax and
semantics. For example, tracing tables, wherein students traced variables in their code, were a common
fixture by which students developed an understanding of code functionality.

Students also documented their emerging understanding of Python syntax rules, keywords, and other
concepts in their rules notebooks during the use and modify stages of UMC process, which we also
documented in fieldnotes. For example, the quote below, taken from a student’s rules notebook, illustrates

4



the types of conclusions students drew about a program’s behavior on their first interaction with the
language:

* Some words are color coded. I realized that green text is indicative of text that is not
involved in the code, I think the black text denoted a particular word that can be then referred
to later in the code. Blue text words are ‘action’ words that carry with them a certain function
such as print that allows a phrase to be written and input that indicates that the user must
submit information into the code to be processed. Red text seems to be indicative of text that
is to appear in the code directly such as print (What is your name?), where “print” will be in
blue and “What is your name” will be in red.

* Programs must be defined by a function.

Still, evidence in students’ rules notebooks pointed to the ways their understanding grew and shifted
during the course. For example, one student wrote “Every command or print out message must be in
quotation marks” in the first week. In the second week the student updated the rule to read, “String data
must always be in quotations.” Although the word ‘string’ was something that came from discussions with
teaching staff, the understanding that string literals are created with quotation marks was something the
student discovered as part of the inquiry process. This combined with their success on coding assignments
is clear evidence that students were learning to code and raises questions about how the UMC approach
may shape students learning, particularly in comparison to more standard approaches.

Our analysis of in-class observations, as documented in fieldnotes, and student’s coding assignments
has so far focused on finding areas of student difficulty with the curriculum. Many of our findings have
led to changes in activity design (i.e. clarification of instructions, changes in pacing, improved topic
sequencing). We have also found evidence that our students were comfortable, by the end of the semester,
working in unfamiliar programming languages and libraries.

6 Conclusions and Future Work
Existing research suggests that the degree to which course activities are scaffolded in IBL pedagogies is
an important factor for supporting students’ learning [11]. Based on our preliminary review of data from
the pilot phase, we determined that further scaffolding was necessary to realize the promise of IBL in
introductory programming courses. As a result, we developed further scaffolding for students’ learning
by adapting several learning and reflection activities in the course.

For example, during the orientation phase, we ask students to document questions, new rules, code
examples, and other information they discover during the class activities. We also offer students the
last 5 minutes of class to update their rules notebooks, and remind students throughout class sessions to
document their thinking as a reflective activity. Moreover, whereas we reviewed rules notebooks only at
the conclusion of the course during the pilot phase, we now conduct weekly reviews of rules notebooks
to understand patterns of misunderstanding, using these and other observations to responsively develop
later class activities.

In the conceptualization and investigation phases, during which we offer students previously gener-
ated code examples, learning activities now include guided questions pointing students to explore specific
concepts (e.g., syntax, data structures, error messages) as well as to report on their understanding of those
concepts in open ended responses.

Our future work will continue to study the results of applying this pedagogical strategy. We will
collect more data, including surveying students to measure self-efficacy and other indicators of student
affect and collect high quality audio and video recording in order to explore the benefits and drawbacks of
this approach. Our goal is to more fully understand the utility of UMC approach in introductory computer
science courses.

5



References
[1] J. Bennedsen and M. Caspersen, “Failure rates in introductory programming,” SIGCSE Bulletin,

vol. 39, pp. 32–36, Jun. 2007. DOI: 10.1145/1272848.1272879.

[2] I. Lee et al., “Computational thinking for youth in practice,” en, ACM Inroads, vol. 2, no. 1, pp. 32–
37, Feb. 2011, ISSN: 2153-2184, 2153-2192. DOI: 10.1145/1929887.1929902. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/1929887.1929902.

[3] N. Lytle et al., “Use, Modify, Create: Comparing Computational Thinking Lesson Progressions for
Stem Classes,” in Proceedings of the 2019 ACM Conference on Innovation and Technology in Com-
puter Science Education, ser. ITiCSE ’19, New York, NY, USA: Association for Computing Ma-
chinery, Jul. 2019, pp. 395–401, ISBN: 978-1-4503-6895-7. DOI: 10.1145/3304221.3319786.
[Online]. Available: https://doi.org/10.1145/3304221.3319786 (visited on 10/04/2021).

[4] R. M. Felder and R. Brent, Teaching and Learning STEM: A Practical Guide, en. John Wiley &
Sons, Mar. 2016, Google-Books-ID: 1Qh0CgAAQBAJ, ISBN: 978-1-118-92581-2.

[5] A. W. Lazonder, “Inquiry Learning,” in Handbook of Research on Educational Communications
and Technology, J. M. Spector, M. D. Merrill, J. Elen, and M. J. Bishop, Eds., New York, NY:
Springer, 2014, pp. 453–464, ISBN: 978-1-4614-3185-5. DOI: 10.1007/978-1-4614-3185-
5_36. [Online]. Available: https://doi.org/10.1007/978-1-4614-3185-5_36.

[6] J.-M. G. Rodriguez, K. H. Hunter, L. J. Scharlott, and N. M. Becker, “A Review of Research on
Process Oriented Guided Inquiry Learning: Implications for Research and Practice,” Journal of
Chemical Education, vol. 97, no. 10, pp. 3506–3520, Oct. 2020, ISSN: 0021-9584. DOI: 10.1021/
acs.jchemed.0c00355. [Online]. Available: https://doi.org/10.1021/acs.jchemed.
0c00355.

[7] V. R. Vishnumolakala, S. S. Qureshi, D. F. Treagust, M. Mocerino, D. C. Southam, and J. Ojeil,
“Longitudinal impact of process-oriented guided inquiry learning on the attitudes, self-efficacy
and experiences of pre-medical chemistry students,” QScience Connect, vol. 2018, no. 1, p. 1,
Aug. 2018, ISSN: 2223-506X. DOI: 10.5339/connect.2018.1. [Online]. Available: https://
www.qscience.com/content/journals/10.5339/connect.2018.1 (visited on 02/27/2023).

[8] S. D. Krashen, Second language acquisition and second language learning (Language teaching
methodology series). Oxford: Pergamon Pr, 1985, ISBN: 978-0-08-025338-1.

[9] C. D. Clayton and G. Ardito, “Teaching for Ownership in the Middle School Science Classroom:
Towards Practical Inquiry in an Age of Accountability,” Middle Grades Research Journal, vol. 4,
no. 4, pp. 53–79, 2009, ISSN: 1937-0814. [Online]. Available: https://www.proquest.com/
eric/docview/61816490/B1DD9F08E30F48EFPQ/2.

[10] A. R. Cavagnetto, B. Hand, and J. Premo, “Supporting student agency in science,” Theory Into
Practice, vol. 59, no. 2, pp. 128–138, Apr. 2020, ISSN: 0040-5841. DOI: 10.1080/00405841.
2019.1702392. [Online]. Available: https://doi.org/10.1080/00405841.2019.1702392.

[11] Á. Suárez, M. Specht, F. Prinsen, M. Kalz, and S. Ternier, “A review of the types of mobile activ-
ities in mobile inquiry-based learning,” Computers & Education, vol. 118, pp. 38–55, Mar. 2018,
ISSN: 0360-1315. DOI: 10.1016/j.compedu.2017.11.004. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0360131517302397.

[12] M. Pedaste et al., “Phases of inquiry-based learning: Definitions and the inquiry cycle,” Educa-
tional Research Review, vol. 14, pp. 47–61, Feb. 2015, ISSN: 1747-938X. DOI: 10.1016/j.
edurev.2015.02.003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1747938X15000068.

6



[13] K. Lichtman and B. VanPatten, “Was Krashen right? Forty years later,” Foreign Language Annals,
vol. 54, no. 2, pp. 283–305, 2021, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/flan.12552,
ISSN: 1944-9720. DOI: 10.1111/flan.12552. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/flan.12552.

[14] M. J. Lee et al., “Principles of a debugging-first puzzle game for computing education,” in 2014
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), ISSN: 1943-
6106, Jul. 2014, pp. 57–64. DOI: 10.1109/VLHCC.2014.6883023.

7


