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WIP: A Pedagogical Unboxing of Reservoir Simulation with Python: 

Backward Design of Course Contents, Assessment, and Pedagogy (CAP) 

 

Abstract 

Reservoir simulation is a state-of-the-art tool for reservoir performance prediction and remains 

an essential part of chemical and petroleum engineering undergraduate and post-graduate 

curricula. While the science of reservoir simulation is considered well-taught in academic 

programs, the literature suggests that students are still unaware of the foundational coding 

processes behind reservoir simulation software packages. Very little teaching attention has been 

given to the coding of the governing models and solutions to make these software packages, 

making reservoir simulation appear like a black box to students. Yet, the coding is indisputably 

the link between the science and the art. This paper stems from an ongoing project called 

Pedagogical Unboxing of Reservoir Simulation with Python (PURSIM-Py). This paper presents 

a proposed classroom adaptation of the project at a private University in Nigeria. Using 

backward design, in this paper, we present an alignment of the proposed course contents, 

assessment, and pedagogy (CAP) elements of the course. We propose this alignment be 

implemented in classes either as a stand-alone course or an accompanying lab to help students 

unbox reservoir simulation. 

 

Introduction 

Background 

The need to minimize risks and maximize returns associated with alternative petroleum reservoir 

development options is the compelling motivation for the task of reservoir performance prediction. 

Such predictions are necessary for investment and operational decisions. Reservoir simulation is a 

state-of-the-art performance prediction tool that deploys physics, mathematics, programming, and 

reservoir engineering to formulate and implement reservoir fluid flow models as a computer 

program [1]. Thus, students are typically expected to have some command of programming, 

numerical methods, and reservoir engineering to be able to successfully understand reservoir 

simulations. Naturally, reservoir simulation is an essential part of the undergraduate and post-

graduate curricula of petroleum engineering programs. 

 The science of reservoir simulation (i.e., the governing models and solutions) is well established 

[2] and considered well-taught in academic programs and specific training institutes around the 

world [3]. However, the literature surrounding workplace learning and onboarding reveals that 

companies continue to invest heavily in on-the-job learning and development for new and existing 

workers [4]. A recent report suggests that programming and coding are some of the most important 

skills for students to have in engineering in 2023 [5]. Yet, coding is arguably one of the most 

important links between the science and the art of reservoir simulation. Regrettably, this missing 

link has made reservoir simulation appear like an opaque black box to students.  

This paper sets out as advocacy for an ongoing project (PURSIM-Py) to pedagogically unbox 

reservoir simulation via an interactive Python script that completely implements the workflow of 

a simple 3D oil reservoir simulator. Specifically, this paper presents a proposed Content, 

Assessment, and Pedagogy (CAP) alignment for an undergraduate classroom adaptation of the 



project. This is also in an attempt to redesign the course modules of an undergraduate reservoir 

simulation class at a private University in the Federal Republic of Nigeria. This initiative is timely 

considering the recent developments in Nigeria’s Core Curriculum and Minimum Academic 

Standards, CCMAS [6] which allows institutions to independently design 30% of their academic 

curricula.  

The engineering profession is known for its problem-solving orientation [7]. Today, a modern 

approach to solving digital engineering problems systematically is to implement established 

workflows [8], [9]. These workflows may be expressed as algorithms. In practice, these algorithms 

are often coded as computer programs for subsequent implementation on modern computers. 

Incorporating computer coding of workflows into relevant engineering course modules is therefore 

of immense benefits. Apart from strengthening their problem-solving skills, exposing engineering 

students to such coding experience confers attributes of systems thinking, creativity and deeper 

understanding of processes on students [10]. Additionally, such exposure enhances research 

capabilities of graduate students as it offers the opportunity to experiment new ideas. 

Pedagogically, computer program scripts written for teaching and learning purposes could be 

deployed as tools to engage learners in simulation-based reflection on their performance in manual 

computations [11]. The teaching and learning of reservoir simulation, as a petroleum engineering 

course module, stands to benefit a lot from this workflow coding approach. The reservoir 

simulation body of knowledge is naturally presented in academic texts as a workflow of steps to 

be taken in developing a simulator computer program [1]. 

 

Motivation 

The first author’s classroom experiences in teaching Reservoir Modelling and Simulation (PET 

524) as a final-year undergraduate course module at Covenant University provides a strong 

motivation to undertake this project. Over the past eight academic sessions, instructors have taught 

and assessed over 400 final-year undergraduate students. Historically, the delivery of the course 

module has focused primarily on the science of reservoir simulation. However, we have had a few 

instances of observing the performances of some students on the art of using commercial reservoir 

simulator software to execute their research projects. In those instances, we have observed 

students’ lack of understanding of the inner workings of these software packages as well as their 

inability to interpret results therefrom. It is our considered opinion that this shortfall in 

understanding is a skill-gap and is arguably attributable to the fact that the students are not exposed 

to the underlying computer codes in those software packages.  

Additionally, we are motivated to embark on this project as we observed the dearth of teaching 

resources and research interests in the pedagogical use of computer coding to enhance learners’ 

understanding of reservoir simulation. While materials on general applications of computer coding 

(and machine learning) to petroleum engineering have been published in recent years [12], [13], 

there is a dearth of materials on specific topical applications such as is being advocated in this 

paper. Our ongoing efforts to pedagogically unbox reservoir simulation using the Python 

programming language is therefore in response to the foregoing. This paper advocates the initiative 

of that project and also presents the alignment of the content, assessment, and pedagogy (CAP) 

being proposed for the classroom adaptation of this initiative. 

 



Project Overview 

The tentative product of the ongoing PURSIM-Py project is an interactive Python script that 

completely implements the workflow of a simple 3D oil reservoir simulator.  In the script, the 

reservoir fluid flow model is presented in a format that is deemed programmatically convenient. 

Thereafter, the entire simulation workflow is depicted as a flowchart. For pedagogical purposes, 

the script is presented in sequential modules (algorithms and codes). The modules address different 

sub-routines of the workflow such as data file preparation, import and formatting; reservoir 

discretization; gridblock ordering; preliminary computations; gridblock categorization; gridblock-

level modeling; volumetric computations; and sensitivity analysis. Where necessary, the fine 

details of the sub-routines are further presented as flowcharts. The Python script is enriched with 

visual representations of some model parameters and intermediate results. Additionally, interactive 

web apps that would enable students to visualize the effects of model parameters on simulation 

results would be provided as supplements to the script. All materials pertaining to this project 

(scripts, data files, graphical objects, and web apps) would be available in an open-access online 

repository: https://github.com/TTOWG/Unboxing_Reservoir_Simulation_with_Python. 

 

Overview of CAP Alignment 

The content, assessment, and pedagogy alignment proposed for this course follows the 

recommendations of Streveler and Smith [14] and the stipulations of backward design by Wiggins 

and colleagues [15]. The authors proposed approaching course design from the perspective of the 

student, with a focus first on the intended learning outcomes of the course - essentially, focusing 

on what course instructors would like students to be able to know or do at the end of the course. 

By focusing on the intended learning outcomes, instructors can perform a backward design by 

identifying acceptable evidence before planning instruction. Thus, instructors are able to identify 

which concepts are enduring outcomes, important to know, or good to be familiar with (contents). 

Backward design also enables instructors to intentionally approach how they would achieve their 

learning outcomes in choosing appropriate pedagogies and assessments that determine if indeed 

students have achieved the intended learning outcomes.  

Thus, the CAP alignment follows the order prescribed above. First, we introduce the contents of 

the course, beginning with a distinction between course objectives and learning 

objectives/outcomes. In this paper, we refer to course objectives as stipulated course goals, 

presented from the perspective of the instructor and the institution. These are the pedagogical 

actions that will be taken in the class and facilitated by the instructor to achieve the learning 

outcomes for the students. Conversely, learning outcomes or learning objectives are described 

from students’ perspectives. These are the skills and knowledge that students are expected to 

achieve at the end of the course. After presenting the learning objectives, we proceed to categorize 

them in order of importance into curricular priorities. Fundamentally, enduring outcomes refer to 

concepts and skills that we would like our students to possess many years after the course is over. 

Simply put, we would like students of the PET 524 course to be able to know these concepts and 

perform these skills if they took nothing else from the course. Consequently, the important-to-

know and good-to-be-familiar-with concepts are of lesser importance but also valuable.  

Next, we present a mapping of the learning objectives to the curricular priorities and proceed to 

present the taxonomy of said objectives. For this task, we applied Bloom’s taxonomy framework 

modified by Anderson and Krathwohl [16]. This presents the learning objectives separated into 

https://github.com/TTOWG/Unboxing_Reservoir_Simulation_with_Python


cognitive process dimensions and cognitive knowledge complexities. For the assessment, we 

developed a worksheet for the learning objectives using backward design principles. Each learning 

objective is mapped to an assessment task to be performed by the students. Acceptable evidence 

is also listed in the sections. The goal of this exercise is to create rubrics for the students to 

understand specifically what is expected of them in the assessments [17]. Finally, the pedagogy 

section details the steps to be taken by the instructor to achieve the intended learning outcomes. 

Thus, this section presents information about the learning environment, guidance in terms of 

course objectives (from the instructor’s perspective and supported by the institution), learning 

sequence, learning resources, and instructional strategies. We invite comments and suggestions on 

the appropriateness of this CAP alignment. 

  



Content 

The “C” in the CAP model refers to the course contents. We begin by first identifying the learning 

objectives of the course. Essentially, these consist of the intended skills and knowledge that 

students of the course are expected to be able to perform and know at the end of the course. Thus, 

we interpret these as the expected skills and knowledge to be gained by the students.  

Learning Objectives 

It is expected that at the end of the course, students should be able to: 

1. Outline the ordered computational tasks that constitute the operation of a reservoir 

simulator software. 

2. Deploy Python’s functionalities to automate the tasks of reservoir discretization and 

gridblock ordering. 

3. Validate the discretization parameters on the visual depiction of the discretized reservoir 

model. 

4. Develop Python scripts to compute preliminary simulation parameters. 

5. Create a custom Python function that can classify gridblocks with respect to their 

interactions with reservoir boundaries. 

6. Set up nested repetitive loops in Python to transverse gridlocks in all relevant axes of the 

discretized reservoir. 

7. Develop Python scripts to execute core simulation tasks such as inter-block flow, boundary 

conditions, well model, coefficient matrix, RHS vector and matrix solution to linear 

models. 

8. Develop a Python script to execute the MBE-based volumetric computation workflow. 

9. Relate changes in reservoir model parameters (inputs) to changes in reservoir performance 

parameters (outputs). 

 

Curricular Priorities 

Following the recommendations of backward design, we separated these objectives in order of 

importance or curricular priorities. The rationale for ordering curricular priorities is to emphasize 

what knowledge or skills are essential, important, or peripherally good to be familiar with. Thus, 

these objectives are listed as follows curricular priorities listed as enduring outcomes, important-to-

know, and good-to-be-familiar-with concepts. A summary of the curricular priorities is provided in figure 

1. 

Enduring Outcomes (EO) 

• EO1: The logical flow of the sequence of computational tasks of a reservoir simulator 

software. 

• EO2: The use of Python’s functionalities to implement the reservoir simulation workflow. 

• EO3: The sensitivity of reservoir performance predictions to values of reservoir model 

parameters. 

Important to Know (ITK) 

• ITK1: Python implementation of reservoir discretization and gridblock ordering 



• ITK2: Computation of preliminary simulation parameters, in Python. 

• ITK3: Use of Python’s looping structure to traverse gridblocks. 

• ITK4: Use of Python to implement block-level modelling. 

• ITK5: Use of Python to execute MBE-based volumetric computations. 

Good to be familiar with (BFW) 

BFW1: Flowchart of a reservoir simulator’s operations 

BFW2: Visualization of the discretized reservoir model. 

BFW3: Gridblock categorization algorithm and implementation in Python. 

 

Figure 1. Curricular Priorities. Enduring outcomes are at the core of the rings in green. Important-

to-know concepts are in the yellow ring, and good-to-be-familiar-with concepts are in the orange 

ring.  

In the table below, we attempt to map each learning objective to the curricular priorities.  

 

BFW

ITK

EO 



Table 1: Mapping Learning Objectives to Curricular Priorities 

Learning Objective  Curricular Priorities  

1. Students should be able to outline the ordered computational 

tasks that constitute the operation of a reservoir simulator 

software.   

EO1:    The logical flow of the sequence of computational tasks of a 

reservoir simulator software. 

BFW1:   Flowchart of a reservoir simulator’s operations  

2. Students should be able to deploy Python’s functionalities to 

automate the tasks of reservoir discretization and gridblock 

ordering.  

EO2:    The use of Python’s functionalities to implement the reservoir 

simulation workflow. 

ITK1:     Python implementation of reservoir discretization and gridblock 

ordering. 

3. Students should be able to validate the discretization parameters 

on the visual depiction of the discretized reservoir model. 

BFW2:   Visualization of the discretized reservoir model. 

4. Students should be able to develop Python scripts to compute 

preliminary simulation parameters. 

EO2:    The use of Python’s functionalities to implement the reservoir 

simulation workflow. 

ITK2:    Computation of preliminary simulation parameters, in Python. 

5. Students should be able to create a custom Python function that 

can classify gridblocks with respect to their interactions with 

reservoir boundaries. 

 

    EO2:     EO2:    The use of Python’s functionalities to implement the 

reservoir simulation workflow. 

BFW3:   Gridblock categorization algorithm and implementation in Python. 

6. Students should be able to set up nested repetitive loops in 

Python to transverse gridlocks in all relevant axes of the 

discretized reservoir. 

EO2:     The use of Python’s functionalities to implement the reservoir 

simulation workflow. 

ITK3:    Use of Python’s looping structure to traverse gridblocks. 

7. Students should be able to develop Python scripts to execute core 

simulation tasks such as inter-block flow, boundary conditions, 

well model, coefficient matrix, RHS vector and matrix solution 

to linear models. 

EO1:    The logical flow of the sequence of computational tasks of a 

reservoir simulator software. 

EO2:     The use of Python’s functionalities to implement the reservoir 

simulation workflow. 

ITK4:    Use of Python to implement block-level modelling. 

8. Students should be able to develop a Python script to execute the 

MBE-based volumetric computation workflow. 

EO2:    The use of Python’s functionalities to implement the reservoir 

simulation workflow. 

ITK5:    Use of Python to execute MBE-based volumetric computations. 

9. Students should be able to relate changes in reservoir model 

parameters (inputs) to changes in reservoir performance 

parameters (outputs). 

EO3:     The sensitivity of reservoir performance predictions to values of 

reservoir model parameters. 



Table 2: Taxonomy of the Learning Outcomes  

 Remember  Understand  Apply  Analyze  Evaluate  Create  

Factual 

knowledge 

         

Conceptual  

Knowledge 

 

  LO1: Outline the ordered 

computational tasks that 

constitute the operation of a 

reservoir simulator software. 

  LO9: Relate changes in 

reservoir model 

parameters (inputs) to 

changes in reservoir 

performance parameters 

(outputs).  

  

Procedural 

Knowledge 

 

    LO2: Deploy 

Python’s 

functionalities to 

automate the tasks 

of reservoir 

discretization and 

gridblock ordering. 

 

LO6: Set up nested 

repetitive loops in 

Python to 

transverse 

gridlocks in all 

relevant axes of 

the discretized 

reservoir. 

  LO4: Develop Python scripts to 

compute preliminary simulation 

parameters. 

 

LO5: Create a custom Python 

function that can classify 

gridblocks with respect to their 

interactions with reservoir 

boundaries. 

 

LO7: Develop Python scripts to 

execute core simulation tasks 

such as inter-block flow, 

boundary conditions, well model, 

coefficient matrix, RHS vector 

and matrix solution to linear 

models. 

 

LO8: Develop a Python script to 

execute the MBE-based 

volumetric computation 

workflow. 

Metacognitive 

knowledge 

     LO3: Validate the 

discretization parameters 

on the visual depiction of 

the discretized reservoir 

model. 

  



Assessment 

Table 3: Assessment Worksheet 

Learning Objective  Assessment  

 LO1:  Students should be able to outline the 

ordered computational tasks that constitute 

the operation of a reservoir simulator 

software. 

Task:  students would write an in-class quiz 

Acceptable evidence of this learning objective will be: 

▪ Coherent responses to questions on the essence, rationality and 

interrelatedness of the following tasks in reservoir simulation: 

✓ Data input 

✓ Reservoir discretization and gridblock ordering 

✓ Simulation parameters computation 

✓ Looping through gridblocks 

✓ Gridblock-level modelling 

✓ MBE-based computations 

LO2: Students should be able to deploy 

Python’s functionalities to automate the tasks 

of reservoir discretization and gridblock 

ordering. 

Task: Students would undertake a take-home programming assignment to be 

submitted via GitHub 

Acceptable evidence of this learning objective will be: 

▪ A re-adaptation (transfer) of the class-delivered discretization script to a 

different scenario; for examples: 

✓ Point-centered discretization versus block-centered discretization  

✓ Engineering ordering versus natural ordering 

✓ 2-D grid versus 3-D grid 

LO3: Students should be able to validate the 

discretization parameters on the visual 

depiction of the discretized reservoir model. 

  Task:  students would write an in-class quiz 

Acceptable Evidence of this learning objective will be: 

▪ A successful attempt at correlating the following input data and 

discretization parameters to graphical depictions on the discretized model. 

✓ Reservoir dimensions 

✓ Block dimensions 

✓ Number of gridblocks in relevant axis. 



Learning Objective  Assessment  

Block ordering scheme adopted 

LO4: Students should be able to develop 

Python scripts to compute preliminary 

simulation parameters. 

 

Task: Students would participate in an in-class hands-on exercise. 

Acceptable evidence of this learning objective will be: 

▪ Attainment of error-free Python statements for the purpose of computing 

the following: 

✓ Gridblock areas and volumes 

✓ STOIP 

✓ Compressibility  

✓ Coefficients 

LO5: Students should be able to create a 

custom Python function that can classify 

gridblocks with respect to their interactions 

with reservoir boundaries. 

Task:  Students would undertake a take-home programming assignment to be 

submitted via GitHub. Reworking an incomplete, error-prone version of the class-

delivered function script. 

Acceptable evidence of this learning objective will be: 

▪ A successful attempt to identify and fix bugs (errors) in the function 

script. 

Completion of the script to handle all possible gridblock categories. 

LO6: Students should be able to set  up 

nested repetitive loops in Python to 

transverse gridlocks in all relevant axes of 

the discretized reservoir. 

Task:  students would write an in-class quiz 

Acceptable evidence of this learning objective will be: 

▪ Coherent responses to questions on the following contexts: 

✓ Frequency of loops execution: the fastest loop; the slowest loop 

✓ Inter-relationship of loops: inner loop; outer loop etc. 

✓ Loop counters: initialization, incrementation and termination 

criteria. 

✓ Axis of loops. 

LO7:  Students should be able to develop 

Python scripts to execute core simulation 

Task:  Students would write a mid-term test. 

Reworking an incomplete version of the class-delivered function script. 



Learning Objective  Assessment  

tasks such as inter-block flow, boundary 

conditions, well model, coefficient matrix, 

RHS vector and matrix solution to linear 

models. 

Acceptable evidence of this learning objective will be: 

▪ Completion of the script 

▪ A re-adaptation (transfer) of the class-delivered script to a different 

scenario within the following context: 

✓ Boundary conditions 

✓ Well models. 

LO8: Students should be able to develop a 

Python script to execute the MBE-based 

volumetric computation workflow. 

Task: Students would undertake a group project:  

▪ Class presentation 

▪ Peer reviews 

Acceptable evidence of this learning objective will be: 

▪ A successful re-development of the class-delivered MBE script as a 

stand-alone subroutine with the following capabilities: 

✓ works independent of the main simulation script 

✓ accepts block pressure matrix and reservoir parameters as inputs 

✓ terminates at attainment of bubble point 

Group members coherent responses to questions from peers. 

LO9: Students should be able to relate 

changes in reservoir model parameters 

(inputs) to changes in reservoir performance 

parameters (outputs). 

Task: Students would undertake a take-home assignment: a short essay on the 

sensitivity of performance parameters to changes in reservoir model parameters. 

Acceptable evidence of this learning objective will be: 

▪ Production of performance prediction for a case-study 

▪ Coherent discussions on the impact of impact of various reservoir model 

parameters on predicted performance 

▪ Use of visual tools such as spider and Tornado plots. 

 

 

 



Pedagogy 

We interpret the course objectives as the content intended to be introduced to the students. 

Essentially, these are responsibilities of the instructor and they are as follows: 

 

Instructor’s Course Objectives 

1. Present the operation of a reservoir simulator as a flowchart of sequential computational 

tasks, using schemedraw Python library. 

2. Showcase a Python implementation of reservoir discretization and gridblock ordering 

schemes. 

3. Depict the discretized reservoir model with static and interactive graphics using matplotlib 

and plotly Python libraries. 

4. Present simple Python statements that compute the preliminary simulation parameters. 

5. Introduce and implement a gridblock categorization algorithm, as a precursor to block-

level modeling. 

6. Describe Python looping structures as a means of programmatically traversing through 

layers, rows and columns of a discretized model. 

7. Present a Python implementation of block-level model concepts: inter-block flow, 

boundary conditions, well model, coefficient matrix, RHS vector; leading to the 

obtainment of gridblock pressure solution. 

8. Showcase a Python implementation of MBE-based volumetric computations as the 

ultimate step in reservoir performance prediction. 

9. Analyze the sensitivity of simulation outputs (performance parameters) to various inputs 

(reservoir model parameters).  

 

Learning Environment 

• This module is recommended to be treated as lab component of the traditional 

undergraduate module on Reservoir Modeling and Simulation. 

• Hence, the learning environment should be a computer laboratory with a large display 

monitor and sufficient PCs to go all students. 

• Also, the module can be treated as a stand-alone course. 

• Base Python and Jupyter Notebook installations are required on each PC. In addition, 

Python libraries such as numpy, matplotlib, pandas, scipy, plotly and schemedraw are all 

required on the PCs. 

• To enhance collaborative learning among students (team members) as well as use of 

technology, it is recommended that Distributed Version Control tools (GitHub) should be 

used in this module. In actual fact, a GitHub repository should be set up for this module 

where all course resources would be made available. Specifically, the PCs should have the 

GitHub Desktop app and each student should have a GitHub account with a forked and 

cloned copy of the repository.  
 



Learning Resources 

• First, the main resource available for this module is the Python script presently being 

developed as the main product of this project. The interactive Python script completely 

implements the workflow of a simple 3D single-phase oil reservoir simulator. 

• Additionally, interactive web apps that would enable students to visualize the effects of 

model parameters on simulation results are provided as supplementary resources. 

• All these resources (scripts, data file, graphical objects and web apps) are freely available 

in the public GitHub repository for this project: 

https://github.com/TTOWG/Unboxing_Reservoir_Simulation_with_Python  

• In order to cascade the knowledge acquisition for students, a course module on basic 

Python programming with applications in petroleum engineering is recommended as a 

pre-requisite for this course module. For this purpose, lecture notes and demo scripts 

developed in our Computer Applications in Petroleum Engineering (PET 328) module are 

freely available at https://github.com/TTOWG/PET328_2021_Class.  

 

Lesson Sequence 

1. Reservoir Simulator Workflow - presentation of major workflow steps 

2. Input Data File 

● Data preparation with the .csv template 

● Data importation from .csv into Python as DataFrame 

● DataFrame formatting 

3. Reservoir Discretization and Visualization 

● Computation of gridblock dimensions 

● Generation of gridblock ordering data 

● 3D visualization of discretized model 

● Gridblock categorization 

o Stating the need for categorization 

o Establishing the basis of categorization 

o Scripting categorization functions 

● Visualization of gridblock categories 

o Static color-coded graphics using matplotlib 

o Dynamic interactive plots – using plotly 

4. Simulation Parameter Computations 

● Gridblock cross-sectional area, in x, y, z directions 

● Gridblock bulk volume, in ft3 and bbl. 

● Reservoir STOIIP 

https://github.com/TTOWG/Unboxing_Reservoir_Simulation_with_Python
https://github.com/TTOWG/PET328_2021_Class


● Gridblock STOIIP 

● Effective compressibility 

● Inter-block flow transmissibilities, in x, y, z directions 

● Setting flow model coefficients 

5. Gridblock-Level Modelling 

● Simulation loops through the discretized model: variables and counters 

● Programmatically-convenient presentation of the governing equation 

● Loop flowchart 

● Indices of the current block 

● Indices of the neighboring blocks: 

o Formulating the algorithm 

o Scripting the function 

● Implementation of boundary condition 

● The Coefficient matrix 

● Well-blocks identification and modelling 

● The RHS vector 

● Block pressures matrix 

6. Volumetric Computations 

● The MBE model 

● Computation flowchart 

● PVT Updating 

● Performance prediction 

7. Loop termination mechanism 

8. Output Aggregation and Export 

9. Sensitivity Analysis 

 

Instructional Strategies 

The primary mode of instruction recommended for teaching this content is classroom lectures. At 

any given stage in the content, the instructor should focus on guiding the students to establish the 

logic of the workflow at that stage. The use of analogical reasoning is highly recommended in this 

regard [18]. For example, the typical grid-like seating arrangement in classrooms lends itself as an 

analogy the gridblocks in a discretized reservoir. Once the logic is established, a class 

demonstration of the coding of that stage should be carried out with the active learning mode fully 

activated. Additionally, the simulation-based learners reflection activity is recommended as a 



supplementary strategy. Case-study data provided with the Python script could also be leveraged 

for learners’ independent experimentation. 

 

 

Conclusion 

This paper has laid out the underpinnings of an ongoing project aimed at pedagogically unboxing 

reservoir simulation with the Python programming language. The anecdotal evidence that 

motivated this project has been presented. The project’s framework and expected pedagogical 

products has also been previewed. At the core of the paper, the content, assessment and pedagogy 

(CAP) for classroom adaptation of the Python script has been designed using the backward design 

approach. Being a work in progress, we anticipate feedback suggestions on the alignment of the 

CAP design presented in this paper.   

 

References 

[1] J. H. Abou-Kassem, M. R. Islam, and S. M. Farouq Ali, “The engineering approach versus 

the mathematical approach in developing reservoir simulators,” 2020, pp. 373–396. doi: 

10.1016/B978-0-12-819150-7.00010-4. 

[2] L. P. Dake, Fundamentals of Reservoir Engineering. Elsevier, 1983. 

[3] P. Andrews and J. Playfoot, Education and Training for the Oil and Gas Industry: Building 

A Technically Competent Workforce. Elsevier, 2014. 

[4] R. A. Berkley and D. M. Kaplan, Strategic training and development. Los Angeles : London: 

SAGE, 2020. 

[5] LinkedIn Learning, “2023 Workplace Learning Report: Building the Agile Future,” 

LinkedIn, San Diego, CA, 2023. Accessed: Feb. 28, 2023. [Online]. Available: 

https://learning.linkedin.com/content/dam/me/learning/en-us/pdfs/workplace-learning-

report/LinkedIn-Learning_Workplace-Learning-Report-2023-EN.pdf 

[6] National Universities Commission, “Engineering and Technology,” NUC CCMAS, Dec. 27, 

2022. https://nuc-ccmas.ng/engineering-and-technology/ (accessed Feb. 27, 2023). 

[7] B. V. Koen, Discussion of the method: Conducting the engineer’s approach to problem 

solving. New York, NY: Oxford University Press, 2003. 

[8] S. B. Davidson and J. Freire, “Provenance and scientific workflows: challenges and 

opportunities,” in Proceedings of the 2008 ACM SIGMOD international conference on 

Management of data, New York, NY, USA, Jun. 2008, pp. 1345–1350. doi: 

10.1145/1376616.1376772. 

[9] T. Ertekin and Q. Sun, “Artificial Intelligence Applications in Reservoir Engineering: A 

Status Check,” Energies, vol. 12, no. 15, Art. no. 15, Jan. 2019, doi: 10.3390/en12152897. 

[10] F. Kalelioğlu, “A new way of teaching programming skills to K-12 students: Code.org,” 

Comput. Hum. Behav., vol. 52, pp. 200–210, Nov. 2015, doi: 10.1016/j.chb.2015.05.047. 



[11] S. J. Dickerson and R. M. Clark, “Simulation-Based Reflection in a Digital,” Comput. Educ. 

J., vol. 12, no. 3, 2021. 

[12] H. Belyadi and A. Haghighat, “Chapter 1 - Introduction to machine learning and Python,” in 

Machine Learning Guide for Oil and Gas Using Python, H. Belyadi and A. Haghighat, Eds. 

Gulf Professional Publishing, 2021, pp. 1–55. doi: 10.1016/B978-0-12-821929-4.00006-8. 

[13] P. Bangert, “Chapter 1 - Introduction,” in Machine Learning and Data Science in the Oil and 

Gas Industry, P. Bangert, Ed. Gulf Professional Publishing, 2021, pp. 1–11. doi: 

10.1016/B978-0-12-820714-7.00001-7. 

[14] R. A. Streveler and K. A. Smith, “Opinion: Course Design in the Time of Coronavirus: Put 

on Your Designer’s CAP,” Adv. Eng. Educ., vol. 8, no. 4, 2020, Accessed: Feb. 08, 2022. 

[Online]. Available: https://eric.ed.gov/?id=EJ1287320 

[15] G. Wiggins, G. P. Wiggins, and J. McTighe, Understanding by Design. ASCD, 2005. 

[16] L. W. Anderson and D. R. Krathwohl, A Taxonomy for Learning, Teaching, and Assessing: 

A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, 2001. 

[17] Y. M. Reddy and H. Andrade, “A review of rubric use in higher education,” Assess. Eval. 

High. Educ., vol. 35, pp. 435–448, 2010, doi: 10.1080/02602930902862859.  

[18] M. S. Vendetti, J. Bryan, B. J. Matlen, L. E. Richland and S. A. Bunge, “Analogical Reasoning 

in the Classroom: Insights from Cognitive Science” Mind, Brain, and Education, 9, 100-106. 

https://doi.org/10.1111/mbe.12080 


