
Paper ID #36640

Work in Progress: A Visualization Aid for Learning Virtual
Memory Concepts
John A Nestor (Professor)

John Nestor is a Professor of Electrical Engineering at Lafayette College. He received the Ph. D. and MSEE degrees from
Carnegie Mellon and the BEE degree from Georgia Tech. Prior to joining Lafayette, he was a faculty member at Illinois
Institute of Technology. His interests include computer engineering, digital design, VLSI, engineering education, and the
history of semiconductors and computers.

Zheping Yin

Zheping Yin is a Senior undergraduate student at Lafayette College. His research interests are computer engineering and
VLSI design.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Work in Progress: A Visualization Aid for Learning Virtual Memory Concepts
Abstract

Virtual memory is a key feature in modern computer systems. A virtual memory system
simulates a memory with a large virtual address space using a smaller physical memory coupled
with a backing store such as a disk drive. Virtual memory employs a combination of processor
hardware and operating systems software to translate virtual addresses to physical addresses and
manage the movement of data between physical memory and disk. Virtual memory is a complex
topic which students can find difficult to understand using the static diagrams found in textbooks
and lecture notes.
This paper describes an interactive graphical tool called VMV (Virtual Memory Visualization)
that is intended to improve student understanding of the underlying concepts and operation of
virtual memory. VMV uses animated diagrams to illustrate the organization and operation of a
virtual memory system on a step-by-step basis. It supports multiple configurations that can be
used emphasize the different roles of hardware and software during different operations. The
source code for VMV is available at (https://github.com/jnestor/CADApps).
VMV is being used this semester in a sophomore-level computer organization and architecture
course. We developed a set of case studies using lectures and student exercises that focus on
basic page translation, page faults, handling memory writes, and using a translation lookaside
buffer (TLB). The effectiveness of these case studies will be assessed using a combination of
pre/post quizzes, exam problems, and a student survey.

1. Introduction
In its idealized form (Figure 1(a)) [1], a computer system consists of a processor that is
connected to a memory containing instructions and data organized as binary words. The
processor operates by fetching instructions from memory and executing the instructions specified
by the architecture of the processor, including instructions that read and write data in memory.
It is difficult to build a single memory that is both large enough to support modern applications
and fast enough to operate at the speed of modern processors. Instead, memory systems are
generally implemented using a memory hierarchy [2] that replaces a single memory with
multiple levels of memory, as shown in Figure 1(b). In this hierarchy a small and fast cache
memory is used to store recently used data and instructions, a main or physical memory is used to
store the bulk of program instructions and data, and a larger backing store (usually a hard disk or
solid-state drive) is used to support programs that require more storage than is available in the
main memory.
The process of managing the interaction between the main memory and the backing store is
known as virtual memory. In a virtual memory system, a processor executing a program
accesses memory via idealized virtual addresses. In paged virtual memory, the virtual address
space is divided into fixed-size pages. Each page can reside either in main memory or in the
backing store. A virtual address is partitioned into a virtual page number (VPN) and an offset.

During a memory access, processor hardware attempts to map the virtual address into a physical
memory address consisting of a physical page number (PPN) combined with the offset from the
virtual address. During this address translation process, the processor reads a data structure in
memory called a page table that records the location of each virtual page (either in physical

memory or in the backing store). When the page is resident in physical memory, the processor
can complete the memory access immediately. When the page is not resident in physical
memory, a condition called a page fault occurs. When this happens, the processor suspends the
program requesting the memory access and invokes the operating system. The operating system
copies the nonresident page from the backing store into main memory – a process known as
swapping. If there is no available space in physical memory to store the new page, another
resident page must be evicted from the main memory using a page replacement algorithm. Once
swapping has completed, the operating system restarts the suspended program, which completes
its memory access to the now-resident page.
A key advantage of virtual memory is that it uses main memory as a cache that stores recently-
used pages, ensuring fast execution of the most commonly used instructions and data while at the
same time allowing programs that require more storage than is available in the main memory. A
second key advantage of virtual memory is the protection provided when a computer runs
multiple programs concurrently. Each program has its own virtual address space which is
distinct from the virtual address spaces of other programs. This enhances the reliability and
security of the overall system by preventing programs from interfering with each other.

Figure 1 - Memory Systems - Idealized View vs. Memory Hierarchy

Managing virtual memory is a complex process that involves a collaboration between processor
hardware and operating system software. The concepts behind virtual memory are explored in
textbooks from the perspective of either processor hardware (e.g., [1], [2]) or operating system
software (e.g. [3], [4]). From either perspective, students often find these concepts difficult to
understand using the static diagrams and written explanations provided in these textbooks. This
motivates the development of VMV, a simulation-based Virtual Memory Visualization tool that
illustrates these concepts graphically using step-by-step animation.

The goal of VMV is to help students build a solid understanding of the following concepts:
● How virtual memory provides an abstraction to a running program in the form of a virtual

address space that is broken up into fixed-size pages, while physical memory provides
access to a (typically smaller) number of physical pages of the same size.

● How virtual memory pages reside on disk while a subset of these pages are cached in
physical memory.

● How memory accesses are handled by processor hardware using page translation.
● What happens when a page fault occurs because a virtual page is not present in physical

memory.
● How operating system software handles a page fault by selecting a location in physical

memory for the page, evicting the virtual page currently residing there if necessary, and
copying the new page from disk to memory.

● How memory writes differ from memory reads and how they are handled during page
replacement.

● How a Translation Lookaside Buffer (TLB) is used as a cache of address translations to
reduce memory accesses to the page table.

● How a page is chosen for replacement when swapping occurs.
VMV provides a visual simulation of how processor hardware and operating system software
collaborate when processing a sequence of memory accesses. It features a graphical
representation of the initial virtual address, the page table and translation lookaside buffers used
in address translation, the resulting physical address, the physical memory and disk, and the data
structure used by the operating system to perform page replacement.

There have been a number of simulation/visualization tools developed for virtual memory in the
past ([5]–[13]). These visualizations tend to be written from an operating systems perspective,
with a focus on the contents of virtual and physical memory using a fixed configuration and
limited features. VMV improves on these visualizations in a number of ways. First, it supports
viewing virtual memory from the perspective of both the processor hardware and the operating
system software and highlights the role of each. From the hardware perspective, it provides a
visualization of the flow of information during address translation via either the page table or
translation lookaside buffer (TLB). From the software perspective, it provides a visualization of
the flow of data between disk and physical memory during swapping using a page replacement
algorithm. VMV can be customized using a configuration file that specifies the size of the
virtual address space, the page size, the number of physical pages available, whether to include a
TLB, and which page replacement algorithm to use. The configuration file also includes a list of
memory references that can be used to initialize the configuration followed by additional
memory references that the user can simulate in either single-step or free-running mode. Finally,
it allows the user to enter and simulate memory references directly.
VMV complements a similar tool for visualizing the operation of cache memories [14]. Both
tools are being used during the Spring 2022 semester in a second-year ECE course covering
computer organization and architecture. To support its use, a set of lecture demonstrations and
homework assignments have been developed. These tools are also being considered for use in a
third-year Computer Science course in operating systems. Both tools are available for download
on GitHub at (https://github.com/jnestor/CADApps).
The remainder of this paper is organized as follows: Section 2 describes the goals and overall
design of VMV and its implementation. Section 3 describes several case studies that will be
used in a sophomore-level computer engineering course to illustrate different concepts of virtual
memory. Section 4 concludes the paper and discusses plans for future work.
2. Design and Implementation

2.1 Goals of the Visualization
VMV was created with the following objectives in mind:

● Show the flow of address and data information between the processor, memory, disk, and
operating system during the various processes of Virtual Memory including:

○ Memory accesses by the processor starting with a virtual address that is translated
to the physical address of a page that is resident in physical memory.

○ Handling page faults, including swapping of pages between disk and physical
memory by the operating system.

○ Handling of memory writes, both when the virtual address is resident in physical
memory and when a page fault occurs.

○ The operation of different page replacement algorithms.
○ The use of a translation lookaside buffer (TLB) to reduce memory accesses to the

page table.
● Clarify the roles of processor hardware and operating system software in handling

memory accesses.
● Allow more advanced features (e.g. TLB) to be removed from the display to simplify the

visualization when teaching initial concepts.
● Be configurable in terms of page size, memory size, and TLB size.
● Provide both single-step and free-running operation.
● Allow a memory access to be restarted to review its effects.

2.2 Visualization Layout
VMV is implemented as a Java application using the Swing GUI Toolkit . Figure 2 shows the
layout of the graphical components of the user interface, which is organized as a window divided
into several different panes. This window is optimized for viewing on a 1080p monitor, but can
also be used with scrolling on smaller monitors. The leftmost pane in the window provides a list
of memory references that will be applied during simulation. This sequence can be initialized by
the configuration file, but a user can add additional references using the control panel at the
bottom of the pane. As simulation proceeds, the current memory reference is highlighted in blue,
while previously processed references are highlighted in gray.
The main pane of the window shows the virtual address of the current reference, the physical
address that results after page translation, the page table, the physical memory, disk, and a page
replacement display that is used when handling page faults.

The page table is central to the address translation process, since it records whether a virtual page
resides in physical memory. Each page has a corresponding page table entry (PTE) that
contains three status bits (V, D, and R) and a physical page number. The V (valid) bit indicates
that the page is currently resident in physical memory in the location specified by the physical
page number. The D (dirty) bit indicates that the page has been altered through a memory write
but not updated on disk. The R (reference) bit indicates that the page has been “recently”
accessed (information that is used during page replacement to decide if a page should be
evicted). To allow the user to read this status at a glance, page table entries are color coded
depending on their status, as described in a legend placed underneath the page table.
The bottom of the display includes a control panel for loading configuration files and starting,
pausing, and single-stepping simulation. The “Information” pane displays updates about the
simulation while one of the two images is highlighted to indicate if current actions are being
performed by processor hardware or by operating system software. Finally, a performance pane
displays statistics about the simulation at its current point in time.

Figure 2 – Basic Layout Showing Address Translation

During simulation, the display is updated in steps as a memory reference is processed. For
example, Figure 2 shows the display at the moment that the virtual page number is used to index
the page table and successfully generate a physical address. As the user steps through the
simulation, other arrows and graphical cues indicate what is taking place while the contents of
the page table, memory, and disk are altered.

While VMV is configurable, it does make several simplifications over virtual memory in real
computer systems. First of all, it uses a single linear page table, while production computer
systems use hierarchical page tables. Second, to be of practical use during simulation, the
number of pages in the virtual address space and the physical memory must be small enough to
conveniently view in the space provided. Third, the system does not currently support accesses
from multiple processes. Finally, VMV does not support finer-grained protection of individual
page accesses that are common in real computer systems.
2.3 Simulation and Animation

VMV operates by animating the key steps that take place during each memory access. Each step
includes visual cues such as arrows indicating the direction of data flow and highlighting of
active components. It also updates the contents of different elements such as the page table,
TLB, and physical memory. A successful memory access to a resident page is completed in four
steps. Accesses to nonresident pages require several additional steps that illustrate the process of
handling a page fault and swapping pages in and out of physical memory.

The simulation is implemented using two software finite state machines - one for simulating
without a TLB, and one for simulating with a TLB present. Each state represents one of the
steps described above; sequencing between states depends on the state of the TLB and/or page

table and the actions that must be performed. Both state machines operate by reading memory
references from the list on the left side of the display and cycling through the steps required to
complete the reference.

Figure 3 – Basic Layout Showing Swap

For simulation without the TLB, the first step is to read the page table entry (PTE) for the virtual
page number specified by the current address. If the valid bit of the PTE is set (PTE shaded
yellow, green, or orange), then this indicates that the desired page currently resides in physical
memory. The physical address is then formed by concatenating the physical page number in the
PTE with the page offset from the original address and the memory reference is completed.

 If the valid bit is not set (PTE shaded red), a page fault occurs and the next steps show the
operating system arranging a swap of pages by selecting a physical page for replacement,
copying that page back to disk if the page is dirty (PTE shaded orange), and copying the new
page from disk to physical memory while updating the PTEs of the two pages. The next steps
show the hardware restarting the memory access and completing it successfully.
When the simulation includes the TLB, the first step is to determine if the TLB contains an entry
for the virtual page specified by the current address. If it does, the corresponding TLB entry is
used to compute the physical address and complete the memory reference. If not, the next step is
to read the page table entry for the virtual page. If the PTE is valid, the TLB is updated using the
PTE and the memory reference is restarted. If not, a page fault occurs; the TLB is flushed and
the page fault is handled by the operating system using the same process as the non-TLB
simulation.

3. Case Studies for Lectures and Student Exercises
VMV is currently being used in a sophomore-level course in computer organization and
architecture. To support this activity, we are developing a set of case studies for use in lectures
and student exercises. Each case study uses a separate configuration file that sets the size of the
virtual and physical memory, selects the page replacement algorithm to be used, and indicates
whether a TLB is included. The configuration file contains two sequences of memory
references. VMV uses the first sequence to initialize the contents of the virtual memory,
physical memory, and page table at startup. The user can then simulate the remaining references
on a step-by-step basis.
To assess the effectiveness of the case studies, a brief quiz will be administered to students
before and after each case study is used to evaluate its effect on student understanding of basic
concepts. Traditional exam problems will be used to evaluate more in-depth understanding.
Finally, students will be administered a survey at the end of the semester to gather feedback and
suggestions for improvements.

3.1 Virtual Memory Organization and Page Translation
This case study is intended to introduce students to the basic concepts of virtual memory. The
learning objectives of this case study are to strengthen student understanding of:

• the organization of a virtual memory system consisting of physical memory, backing
store (disk), and page table.

• how a virtual memory address is translated into a physical memory address when a
virtual page resides in physical memory.

Because it focuses on basic concepts, the configuration file for this case study excludes the TLB.
It specifies an initial sequence of memory read operations that load the physical memory with a
number of virtual pages at startup. After startup, a user can sequence through an additional five
memory read operations, following how the page table is used to look up the physical location of
a virtual page and the physical address is formed by combining the physical page number with an
offset. For example, Figure 2 shows the simulation of a page translation from virtual page 01 to
physical page 00, which is concatenated with offset 044 to form the physical address 00044.
3.2 Page Faults and Page Replacement

This case study focuses on how a virtual memory system handles page faults. The learning
objectives of the case study are to reinforce student understanding of:

• how an access to a virtual page that is not resident in physical memory results in a page
fault, requiring the suspension of the program requesting the memory access.

• how the operating system handles a page fault by swapping, i.e., selecting a physical
memory page in which to place the requested virtual page, evicting the virtual page
currently residing in the physical page if necessary, and then copying the requested
virtual page into the selected physical page, as shown in Figure 3.

• how the memory access is restarted once swapping has been completed.
This case study uses the same configuration as the previous case study but begins with
additional memory references that fill all 8 pages of physical memory before pausing. The
user can then observe two additional references to nonresident pages, each of which triggers
a page fault and requires a sequence of steps where the page replacement takes place. Figure

3 shows one step in this case study where virtual page 04 is being copied into physical page
05 by the operating system. Operating systems use a variety of algorithms to select a page
for replacement when swapping. By default, VMV uses the well-known “clock” algorithm,
which uses the “R” (reference) bit in each PTE to determine if a page has been used recently.
It also supports the first-in-first-out (FIFO) and least-recently-used (LRU) algorithms.

Figure 4 – Saving a modified page during page replacement

3.3 Memory Writes
This case study illustrates how memory write operations are handled in virtual memory. The
learning objectives of this case study are to reinforce student understanding of:

• how memory writes to virtual pages are deferred using a “copy-back” strategy when the
virtual page resides in physical memory.

• how a page modified by a write operation is marked as modified using the D (Dirty) bit
in its page table entry.

• how a modified “dirty” page must be written back to disk when it is selected for eviction.
This case study uses a configuration file similar to previous case studies but with a physical
memory containing only 4 pages. A sequence of startup read and write operations load all four
pages of physical memory. After startup, user can step through a sequence of memory
references which illustrate show the effect of memory writes to resident pages and operation of
the page replacement algorithm when a page fault occurs, including writing a modified page to
memory. Figure 4 shows one step in this case study where modified virtual page 0A is copied
back to disk from physical page 00, after which virtual page 01 will be loaded in its place.

3.4 Translation Lookaside Buffer (TLB) Operation
This case study illustrates how a TLB can be added to a virtual memory system to reduce
memory access to the page table. The learning objectives of this case study are to build student
understanding of:

• how a memory access using virtual address translation actually requires a second memory
access to read the page table.

• how a Translation Lookaside Buffer (TLB) is used as a cache for recent address
translations to avoid of memory accesses to the page table.

• how TLB misses are handled.
• how page faults affect the TLB.
The configuration file for this case study specifies that the TLB is present in this simulation,
resulting in the display shown in Figure 5. It also specifies an initial sequence of memory
references that loads five virtual pages into physical memory while the TLB contains three
valid address translations. The user can then step through memory reads that include TLB
hits, TLB misses that are still resident in physical memory, and page faults. This is followed
by illustrating memory write operations that set the dirty bit in the corresponding TLB entry
but only update the page table when a TLB entry is evicted due to a TLB miss.

Figure 5 – Visualization with Translation Lookaside Buffer (TLB)

4. Conclusion
This paper described the ongoing development of VMV, a visualization tool to help students
understand virtual memory. VMV illustrates the underlying concepts of virtual memory
including address translation, handling of page faults, and page replacement algorithms. The
tool is currently being used in a class on computer architecture and organization with a collection
of case studies that illustrate different concepts of virtual memory. VMV’s effectiveness will be
assessed using pre/post quizzes of concepts, exam problems, and a survey of student response.
Several improvements are planned in the future, including support for multiple processes and
multiple processor cores, more sophisticated memory protection, and multi-level page tables.
References
[1] D. M. Harris and Harris, Sarah, Digital Design and Computer Architecture - 2nd Edition.

Elsevier, 2012.
[2] D. Patterson and J. Hennessey, Computer Organization and Design: The Hardware

Software Interface: RISC-V Edition, 5th ed. Morgan Kaufmann, 2014.
[3] R. H. Arapaci-Dusseau and A. C. Arapaci-Dusseau, “Operating Systems: Three Easy

Pieces.” https://pages.cs.wisc.edu/~remzi/OSTEP/#book-chapters (accessed Jan. 03, 2022).
[4] A. S. Tanenbaum, Modern operating systems, Fourth edition. Upper Saddle River, N.J:

Pearson, 2015.
[5] “Virtual Memory Workbench,” Archive of the Hyperlearning Center for the New Engineer.

https://denninginstitute.com/workbenches/vmsim/vmsim.html (accessed Jan. 17, 2022).
[6] S. Khuri and H.-C. Hsu, “Visualizing the CPU scheduler and page replacement

algorithms,” in The proceedings of the thirtieth SIGCSE technical symposium on Computer
science education, New York, NY, USA, Mar. 1999, pp. 227–231.

[7] L. Null and K. Rao, “CAMERA: introducing memory concepts via visualization,” ACM
SIGCSE Bull., vol. 37, no. 1, pp. 96–100, Feb. 2005, doi: 10.1145/1047124.1047389.

[8] R. Ontko, “MOSS | Memory Management Simulator | User Guide.”
http://www.ontko.com/moss/memory/user_guide.html (accessed Jan. 13, 2022).

[9] F. N. Sibai, M. Ma, and D. A. Lill, “Development of a Virtual Memory Simulator to
Analyze the Goodness of Page Replacement Algorithms,” in 2007 Innovations in
Information Technologies (IIT), Nov. 2007, pp. 536–540. doi: 10.1109/IIT.2007.4430437.

[10] E. Gopak, “Memory paging visualization.” http://ericgopak.github.io/operating-system-
concepts/ (accessed Jan. 03, 2022).

[11] A. Paramita and K. G. Smitha, “PARACACHE: Educational Simulator for Cache and
Virtual Memory,” in 2017 International Symposium on Educational Technology (ISET),
Jun. 2017, pp. 234–238. doi: 10.1109/ISET.2017.60.

[12] V. K. K. Musunuru, “Virtuo-ITS: An Interactive Tutoring System to Teach Virtual
Memory Concepts of an Operating System,” MS Thesis, Wright State University, Dayton,
OH, 2017.

[13] W. A. Bhat, A. Rashid, F. F. Wani, and F. Altaf, “Virtualization and visualization of virtual
memory system for effective teaching–learning,” Comput. Appl. Eng. Educ., vol. 27, no. 5,
pp. 1286–1294, 2019, doi: 10.1002/cae.22152.

[14] B. Ilbeyi and J. A. Nestor, “VCache: Visualization Applet for Processor Caches,”
Proceedings of the Fifteenth Annual Conference on Innovation and Technology in
Computer Science Education, June 2010.

[15] “Trail: Creating a GUI With Swing (The JavaTM Tutorials),” The JavaTM Tutorials.
https://docs.oracle.com/javase/tutorial/uiswing/ (accessed Jan. 17, 2022).

