AC 2010-1840: WORK IN PROGRESS: ADOPTION OF CCS0 COMPUTATIONAL
METHODS AND CIRCUIT ANALYSIS TECHNIQUES INTO AN

INTRODUCTORY PROGRAMMING COURSE FOR ELECTRICAL ENGINEERS

Virgilio Gonzalez, University of Texas, El Paso

Eric Freudenthal, University of Texas, El Paso

© American Society for Engineering Education, 2010

T'28€T°GT obed

Work in progress: Adoption of CCS0 Computational Methods
and Circuit Analysis Techniques into an Introductory
Programming Course for Electrical Engineers

Abstract

We report on the content and early evaluation of a pilot for a revised introductory programming
course for ECE students titled “Software Design I, modified.” (SDIm.) SDIm incorporates
pedagogical components from a course developed by our computer science department (CCSO0)
combined with an introduction to electric circuits and other ECE topics. SDIm is being
developed in response to observations from several ECE faculty that many students, who
attended the previously-offered courses in introductory C-programming and in computer
organization, had struggled with minor programming assignments throughout the ECE
curriculum. They also reported that fewer than 20% of students demonstrated mastery of
programming in later senior courses.

The CCSO0 course employs a simple interpreted programming environment based on “Python.” It
uses simple small programs associated with mathematical and physical applications in order to
illustrate the concepts of programming techniques. This intervention is based on the hypothesis
that students will more quickly learn the fundamentals of programming using CCS0’s
pedagogical model and programming environment than with a conventional course in C, and that
they will effectively transfer these understandings to the study of C during the second half of the
same course. Furthermore, SDIm’s inclusion of projects that examine the dynamic behavior of
simple RLC circuits will reinforce key concepts taught in foundational ECE courses.

Introduction and motivation

The University of Texas at El Paso (UTEP) offers bachelor programs in several engineering
disciplines and in Computer Science. One problem reported by many faculty members is the
limited programming skills that the students acquire through the degree plans. This is more
crucial to the Electrical Engineering area where we proposed this intervention. There are several
factors that negatively affect our students, including the methodologies used to teach computer
languages. The Computer Science department developed an introductory course in programming
titled “Computational CS-Zero” (CCSO0) or also called “Introductory Computational Systems”
ICS’ used in the entering program4 that has shown its effectiveness in the pastg’ %10 Therefore,
we proposed the modification of our engineering course incorporating some modules from CCS0O
and adding more relevance by applying the assignments to the simulation of electric circuits or
other physical systems.

Our school is considered a Minority Serving Institution. One characteristic of the entering
students is that the majority have not been exposed to any programming skill before attending
college. The problem is compounded by the limited number of credits the student must take on
the subject. The State Legislature has imposed a limit on the number of credits for an
undergraduate program. Consequently, the EE degree plan can only afford to include one
mandatory software course. Students that select the Computer Engineering concentration take

2'28€T1°GT obed

additional programming courses but the other concentrations rarely do. Therefore, the skill level
for most students is not enough to work later on many projects.

The department of Computer Science offers an introductory course with the objective to assist
students in developing the skills necessary to succeed in the STEM areas. CCSO’s activities are
designed to provide analytical challenges typical of STEM professions and to motivate additional
inquiry. It exploits programmed systems’ lenience at manipulating computation to provide
students with a review of foundational mathematical concepts in the context of graphical
manipulation such as such as the use of nested for-range statements to enumerate the coordinates
of pixels within geometric objects. For the new course we modified the context of the programs
to associate them with electric circuit topics and focus the content to the EE students. Previous
efforts have suggested to start teaching the programming fundamentals with interpreted
environments, such as MATLAB® ' | Infinity Project”’ 13 and the emphasis on practice in a
relevant context'”. Other discussions about the best beginner computer language show the
advantages of using Python over other programming environments'.

Pedagogical approach

Activities and projects of the prior introductory computing course generally focus on the
outcomes of tasks whose programming challenges are frequently more clerical than analytical.
While the outcomes of these projects are important, we have concern that the technical tasks
have little relevance to engineering applications, causing the students to fail to understand the
importance of programming to their intended major. In retrospect, the computer science
department’s recently developed CCSO which successfully engages Freshmen in the
programming of analytically focused problems. The original programming interface used a rich
object oriented (OO) Java AWT toolbox'. With this approach, even the design of extremely
simple algorithms requires fairly complex access code before anything can be programmed. The
assignments examine the mathematics of dynamic systems of relevance to the engineering by
applying numerical solutions’ without overwhelming the students. Some exercises mimic the
familiar phenomenon of ball bounce and spring resonance, which are frequently poorly
understood, even by students who have completed a semester of college physics® . New
assignments include programs that simulate and plot voltage and current of an LC oscillator.
Students in CCSO program in “Jython”, a variant of Python. It is an easily learned interpreted
programming language with expressive syntax.

In order to permit students to focus on analytical tasks and algorithm design, typical
programming projects in CCSO or SDIm are surprisingly short — typically four to ten lines of
Python code that include numerical iteration controlled by for-range statements. In order to
provide visceral understandings of program behavior, output is generally graphical, involving the
direct manipulation of pixels within an RGB image addressed using Cartesian coordinates.
Subsequent labs first examine the plotting of simple mathematical functions, which are later
extended to explore the simulation and mathematical simulation of familiar physical phenomena
such as ballistics and resonance. Previous work describes the rationale and initial modules
introducing the programming environment.

€'28€T'ST abed

A common tool used in the analysis of physical systems is the simulation using numerical
methods and we commonly teach the methods in courses at the junior or senior level. This
approach assumes the student knows the analytical methods for modeling of a system, such as an
electric circuit or a mechanical device. With this new course, we present a simple model for the
devices and simulate the dynamic behavior by using simple incremental changes. Students get
simultaneously an insight on the physical system and apply simple programming methods.

Current course objectives and structure

EE 2372 is an introduction to software design with a structured computer language that focuses
on the construction of programs consisting of multiple functions residing in multiple files. It
covers program creation and top-down-design, basic elements and operations, modular program
construction, and the use of programming tools such as make files. It introduces object oriented
programming techniques. The prerequisites are: EE 1305 or CS 1401 with a minimum grade of
“C” or better. Course topics are:

Introduction, and structure, compilation and execution of C program. (4 hours)
Variables, data types and arrays. (3 hours)

Operators and expressions. (4 hours)

Assignment statements and flow of control statements. (4 hours)
Input and output statements. (3 hours)

Function definitions and function calls. (6 hours)

Structure programming techniques and programming tools. (3 hours)
Pointer definition and use. (5 hours)

Derived data structures. (5 hours)

File I/0. (3 hours)

Introduction to C++. (2 hours)

ATTERQIEOmOUAW»

Proposed new content modules

The introduction of new concepts will take place during the first period. That will enable the
students to begin using programming techniques quickly and applying it to practical uses. The
critical changes will be the first few weeks, and in preparing the right reference sheets so that
students can gain momentum quickly. The later periods of the semester will cover the original
material at a faster pace. The proposed new content is:

Introduction, installation of python environment (Jython) and interface. (1 hours)
Simple plots using arithmetic, iterations and “if-then” statements. (2 hours)

Use of summation and linear operations applied to image transformations. (2 hours)
Functions and example of class definition. (2 hours)

Application to simulation of simple mechanical systems. (2 hours)

Application to simulation of basic electric circuits. (3 hours)

Structure, compilation and execution of C program. (3 hours)

Variables, data types and arrays. (3 hours)

Operators and expressions. (2 hours)

Assignment statements and flow of control statements. (2 hours)

ST rRoammoawy

¥'28€T'ST abed

Input and output statements. (3 hours)
Function definitions and function calls. (3 hours)
. Structure programming techniques and programming tools. (3 hours)
Pointer definition and use. (3 hours)
Derived data structures. (3 hours)
File I/0O. (3 hours)
Introduction to C++. (2 hours)

CUOZZLIR

Examples of activities

Section B, simple plots: This module is imported directly from the CCSO course. The objective
is to demonstrate the use of summation to draw sloped lines and the computation of slope. As
illustrated by the top two images and programs from Figure 1, initial projects extend the concept
of iteration introduced to draw horizontal lines the first module to draw sloped lines using
summation. A row variable is initialized at column zero. A constant “step size” value is
repeatedly summed into the row variable increasing its value at a linear rate that is graphically
depicted. Students characterize the effect of various step sizes and initial row values. Later
exercises lead students to derive the meaning of their generalization as slope and y-intercept.
As illustrated by the image and program at the bottom of Figure 1, students are subsequently
challenged to draw lines that connect designated points (say, to draw a geometric shape). To do
this, students must derive the step size from the desired change in row and column using
division. We observe that most attending the class can recall “y=mx+b” as an equation for a
line, but nonetheless, initially have trouble computing step size; even math-phobic students
enrolled in non-STEM programs and are visibly delighted when they derive an approach to
determining step size (slope) using division.

pic = Raster ((80,80))

row = 15
for col in range(0,pic.width):
pic.setRGB((col, row), dJgreen)

row, step = 15, 0.5
for col in range(0,pic.width) :
pic.setRGB ((col, row), dgreen)

row = row + 1
first, last = (10, 10), (70, 50)
run = last[0]—-first[0]
rise = last[l]-first[1]
step, row = float(rise)/run, first[1l]

for col in range{(first[0], last[0]):
pic.setRGB((col, row), green)
row += step

Figure 1, Module 2 examples

G'Z8ET'ST abed

Section D, Functions: Functions are split among two lectures, the first one can introduce the
function abstraction, say in the definition of a function that will draw a line, that has a problem.
For example, it can’t deal with the parameters being in the wrong order (say, end is to the left of
start) and not dealing with vertical lines well. A homework could be to: (1) write a function that
deals with vertical lines well, and then (2) create another function that takes arguments in any
order and handles vertical lines correctly by calling the correct helper function with arguments in
the right order. The homework could then require them to use these functions to traverse a

sufficiently complicated maze to require all these features.

The next lecture then will plot a line with negative y, which could be used to introduce them to
PosNegGraph or CenteredGraph - and show them how it works. There is no need to have them
write their own class, but instead just show them that classes+functions can be used to create
powerful abstractions that they can subsequently exploit while ignoring the internal magic.

Section F, Application to basic electric circuits: After learning the basic concepts of iterations
and graphic manipulation, the students started applying the programming techniques to simulate
basic mechanical systems in the module 5, then module 6 expand the concepts to the solution of
RLC circuits. In Figure 2 we show a program to solve a simple RC circuit with the given initial
conditions. The student can get an insight on the exponential decay. Also the students can change
the parameters and see the effect on time and amplitude of the responses. In the same module, a

second order LC circuit shows how it behaves as a simple oscillator (Figure 3).

img = PosNegGraph((300,100))

R, C= 2e3 , 500e-6 # Ohms, Farads

V = 100.0 # Initial value

I = V/R # Initial value

dt = 10e-3 # Time step size

for x in range (0, img.width)
img.setRGB((x,1000*I),white) # Current in mA
img.setRGB((x,V),green)
dv=-(I/C)*dt # Voltage step
V=V + dv # New voltage
I=V / R # New current

| 5| None

Figure 2, RC example

img = PosNegGraph ((300,100))
V, I= 0 , 50.0e-3 # initial conditions
C,L 10e-9, le-3 # Farad, Henry
dt = le-7 # Time step size
for x in range (0, img.width)
img.setRGB((x,1000*I),white)# scale mA
img.setRGB((x,V),green)
dv=(I/C)*dt
di=-(V/L) *dt
V=V+dv
I=T+di

Figure 3, LC example

9'28€T'ST abed

Evaluation and results
The course is being offered for the first time in the spring semester 2010. There are two sections
offered in the semester, therefore we plan to use one as a control because the instructor will

follow the original approach and in the other section we will introduce our modifications.

The pre-survey focused on the students’ background experience and self-perception on their
expertise level.

Pre-survey questions:

1. Classification
What is your current classification?
a) Senior
b) Junior
c) Sophomore
d) Freshmen

2. Previous Experience

Did you have any programming experience before graduating from High School (such as Basic, Logo,
C , robotics, etc)?

1. YES 2. NO

3. High school training
Did your High school offer formal programming training?

1. YES 2. NO

For all the remaining questions the responses range from 1 through 5, where 1 is no knowledge
at all and 5 being an expert.

4. Arithmeticl
BEFORE taking this class, what was your knowledge level about computer arithmetic expressions?

5. Variables 1
BEFORE taking this class, what was your knowledge level about computer variables?

6. Compilationl
BEFORE taking this class, what was your knowledge level about program compilation, environment
and execution?

7. I/0 1
BEFORE taking this class, what was your knowledge level about instructions related to display,
graphics and data capture ?

8. Functions 1
BEFORE taking this class, what was your knowledge level about computer function definition and
use?

9. Pointersl
BEFORE taking this class, what was your knowledge level about computer pointers?

10. Structure 1
BEFORE taking this class, what was your knowledge level about computer programming structure and
techniques?

11. Generall
BEFORE taking this class, what was your general knowledge level about computer programming?

/28T °GT obed

The degree plan requires the students to take 128 credits in total and every academic year they
need an average of 32 to move to the next level. 52% of the students reported they were
classified as sophomores, 30% as juniors, 13% as seniors, and only 5% as freshmen. However
most of the students already covered most of their Liberal Arts core and non-major courses
before changing into Electrical Engineering. Additionally, only 22% reported previous
programming exposure and for 78% this was the first time they have received formal training.

The students were asked about the previous knowledge about the different outcome areas for the
class, including the use of variables, compilation, pointers, etc. Their responses are illustrated in

Figure 4. As expected, most of them had just heard about the topics but did not know what they
meant.

Overall
Program Structure
M Pointers
M Functions
m1/0
B Compilation

M Variables

! ! H Arithmetic
1.00 2.00 3.00 4.00 5.00

Figure 4, Level of knowledge about programming topics before taking the calass (1 min - 5
max)

We expect to have the post-survey graph at the end of the course showing the change during this
intervention. It will be reported during the conference.

Conclusions

This work-in-progress project report describes a modified course designed to introduce students
to computer programming including an intense hands-on introduction to Python, C and electric
circuits. Continuing evaluation of introductory programming offerings at UTEP has motivated
evolutions in curriculum, course objectives, and evaluation strategies. Interestingly, the resulting
course, which engages students in “computational reasoning,” integrates both programming and
mathematics, and is engaging students with weak math skills. Results from early evaluation

8'28E€T'ST abed

efforts are encouraging and have lead to adoptions into other areas. We anticipate that students
who attend the Electrical Engineering Software Design I course will have a better understanding
of the programming techniques and the possible applications. This complements the
University’s efforts to improve the learning of our students.

Acknowledgements

This report is based on work supported by the National Science Foundation through grants CNS-
0540592, 11S-0829683, and DUE-0717877. Any opinions, findings, and conclusions or
recommendations expressed in the paper are those of the authors and do not necessarily reflect
the views of the NSF.

Bibliography

1. Guzdial, Computing and Programming with Python, a Multimedia Approach, Prentice Hall, 2006.

Guzdial, Design Process for a Non-Majors Computing Course, Proc.36th ACM Technical Symposium on
Computer Science Education (SIGCSE), ACM, 2005.

3. Guzdial, Narrating Data Structures: The Role of Context in CS2, The Journal of Educational Resources in
Computing (JERIC), ACM, 2008.

4. Eric Freudenthal, Mary K. Roy and Ann Q. Gates, Work in Progress — The Synergistic Integration of an
Entering Students Program with an Engaging Introductory Course in Programming, Proc, Frontiers in
Education, Fall, 2009..

5. Eric Freudenthal, Mary K. Roy, Alexandria Ogrey, Tanja Magoc, and Alan Siegel, A Computational
Introduction to Computer Science, Proc. Annual Symposium of the Special Interest Group on Computer
Science Education (ACM SIGCSE), 2010.

6. Hestenes, Wells, and Swackhamer, Force Concept Inventory, The Physics Teacher, Vol. 30, March 1992, pp

141-158.

Kalman, Elementary Mathematical Models, Mathematical Association of America (Press), 1997.

8. Siegel and Freudenthal, Experiments in teaching an engaging and demystifying introduction to algorithms:
Installment 1: Huffman Codes, UTEP Computer Science Technical Report UTEP-CS-09-12, April 2009.

9. Thiry, Barker, and Hug, CAHSI Evaluation Progress Report, The Computing Alliance for Hispanic Serving
Institutions, 2009, http://cahsi.cs.utep.edu/Portals/0/2008InterimEvaluationReport.pdf

10. Suskavcevic, Kosheleva, Gates, and Freudenthal, Preliminary Assessment of Attitudes towards Mathematics for
a Non-STEM Section of Computational Computer Science Zero, UTEP CS Technical Report UTEP-CS-09-13,
May 2009

11. Herniter, M.E., D.R. Scott, and R. Pangasa. Teaching programming skills with MATLAB. 2001. Albuquerque,
NM, United states: American Society for Engineering Education.

12. Huet, L., et al. New challenges in teaching introductory programming courses: a case study. in Frontiers in
Education, 2004. FIE 2004. 34th Annual. 2004.

13. Attia, J.O. Increasing electrical and computer engineering enrollment: A multi-faceted approach. 2007.
Milwaukee, WI, United states: Institute of Electrical and Electronics Engineers Inc.

14. he Infinity Project: Engineering education for today's classroom. 2010 [cited 2010; Available from:
http://www.infinity-project.org/.

15. Fish, S. Thoughts about the Best Introductory Language. 2006 [cited 2010 1/08/2010]; Available from:
http://www.shlomifish.org/philosophy/computers/education/introductory-language/.

~

6'28ST ST obed

