
Paper ID #37045

Work-in-Progress: Bridging the Gap Between MATLAB and
Python via ROS to Build Skills in an Introductory
Programming Course
Joshua Fagan

Joshua Fagan received a BS in computer science and mathematics from The University of Richmond and a MS in
computer science from The University of Tennessee, Knoxville (UTK). He is in his final year of a PhD in computer
science at UTK, and will be starting a Lecturer position at UTK in Fall 2022. Joshua is interested in developing and
teaching solutions involving robotics, machine learning, and data science.

Amy Biegalski

Amy Biegalski is a graduate of The Ohio State University (BS) and Case School of Engineering (MS, PhD). Among other
courses, she teaches Computer Solutions of Engineering Problems in the Engineering Fundamentals Program at the
University of Tennessee. She is interested in active and project based learning, and technology based introductory
engineering classes.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Work-in-Progress: Bridging the Gap Between MATLAB and
Python via ROS to Build Skills in an
Introductory Programming Course

Abstract

Robots are prevalent in introductory engineering courses to facilitate kinesthetic learning. This
paper describes a new open-source robotics toolbox and its implementation in an introductory
MATLAB programming course for engineers. The toolbox was designed to allow students to
easily and intuitively program small, low-cost, customizable mobile robots using MATLAB. The
MATLAB algorithms are converted to Python commands via the MATLAB ROS Toolbox. We
describe the motivation for selecting the software and robotics platform, examples of the labs and
projects implementing the robots, the framework of the initial version of the toolbox used in the
course, challenges encountered, and the resulting toolbox developed after receiving data and
feedback from large scale implementation.

1 Introduction

Robots have emerged as a highly popular educational tool to increase engagement and address the
needs of kinesthetic learners [1, 2]. Perceived benefits from robot integration in introductory
programming courses include an increase in programming skills, peer learning, and student
motivation [3]. It has been observed that along with fostering creativity, using robotics in these
courses increases student success [4, 5]. In general, introductory engineering courses have
incorporated robots with a goal to increase problem solving skills [6] and overall program
retention [7]. However, robots are often a source of frustration to students. McGill observed that
to gain benefits in student motivation in an introductory programming course, hardware and
software implementations need to be better investigated and developed to sufficiently reduce the
frustrations of a novice programmer [8]. Thus our goal was to create a new toolbox consisting of
simple commands and house it as a GitHub repository allowing for continual collaborative
development to increase usability while reducing the anxiety caused by implementing the
software and interacting with real-world conditions.

From our experience, we have found that robots serve as an excellent teaching tool to make
programming accessible and are engaging to students of diverse backgrounds. The hands-on,
collaborative environment and live feedback from algorithms can make logic and coding more
approachable to those more hesitant or timid about their programming abilities. The use of robots
can be exciting to students; it can grab the attention of struggling learners. Open-ended problems

allow students to express their creativity, and with robust software and hardware expandability, it
enables highly motivated students to push their boundaries and develop unique, nontrivial
solutions.

Implementation of robotics in this course began in 2015 with iRobot Creates, which were tethered
to control computers with a serial cable using a variation of the Esposito toolbox [9, 10]. This
toolbox is comprised of features appropriate to a beginning programmer. For example, the serial
byte sequence control commands are invisible to the user, instead of drive at a speed, a single line
command is used to drive a set distance and stop, and instead of turning via differential wheel
speeds, users could specify a turning angle. The following year we added an onboard Raspberry
Pi (RPi) for Wi-Fi control and a live camera feed for image processing. With the new platform,
the toolbox had to be extensively modified. As we incorporated the robots into more labs and
projects, charging the robots on their docking stations became a significant challenge as we could
only use a small fraction of the robots at a time. Students expressed frustration with lack of access
to charged robots and the robots weren’t adequately portable for use outside of the classroom.
Other sources of frustration were the inaccuracy of the motor controls and sensors and the
lumbering movement. With new funding available in 2020 we sought a lower-cost, more nimble,
more portable, smaller robot with battery interchangeability, while maintaining a beginner
friendly software platform. We also wanted to more easily accommodate the creative requests of
students as they expressed interest in adding peripherals to the robots and multi-robot
capabilities.

1.1 In-class Activities

The current class teaches 200-350 total students a semester with 30-60 students in each class
session. Students start the semester learning the fundamentals of programming with MATLAB in
a purely software environment. After gaining an understanding of the fundamentals, students gain
an appreciation for how software can be used to affect physical objects through the robot activities
described in this section. In addition to these activities, students continue exploring software
specific problems and solutions such as curve fitting and optimization. The presented toolbox is
used to facilitate the students engaging in the robot activities throughout the semester.

The course’s robotics activities seek to address the course objectives of building programs to
solve engineering-related problems, learning to apply common programming practices,
manipulating data, and presenting solutions in design projects. Prior to the first robotics lab,
students are introduced to basic implementation of functions, conditionals, loops, and
fundamental numerical and graphical analysis techniques.

The first robotics lab requires easily attainable goals to provide motivation and confidence for
subsequent activities. We provide a short drive and turn function, and have students manipulate it
to implement a for loop that will result in a square path traversal. Students utilize their recently
learned skills of loop and function writing, but also observe that the square is imperfect. This
serves as a good teaching moment for real-world ramifications. The second exercise implements
conditionals, where the robot’s motion changes based on a sensor reading. The next activity is a
competition for student teams to test their skills through development of an autonomous control
program. They must either navigate an obstacle course with physical barriers or a “street” with

signs and make use of the robot’s color identification capabilities.

A second pre-defined lab utilizes MATLAB’s image processing capabilities. Students view a live
video feed from the robot and are asked to manipulate a snapshot saved as an image file using
commands explored in the prelab. Next, they are provided with six example algorithms for their
experimentation that rely on MATLAB toolboxes: object recognition, face recognition, text
recognition, shape detection and measurement, and advanced image feature comparisons. Student
teams select at least two to implement and are asked to make meaningful modifications to the
programs. After this two lab series, students begin to observe the parallels between their robots
and autonomous car technology.

Equipped with the experiences of basic robot algorithm writing and image processing, students
begin open-ended design projects. Projects are centered around a theme, such as an astronaut
assistant on Mars. Individuals or pairs of students develop functions to serve as “features” for
their assistant. Then, larger teams incorporate the multiple individual pieces into one cohesive
project and program. Throughout the design project phase, practical labs continue where students
learn additional MATLAB capabilities that can be implemented into their project, including
sound processing, custom user interfaces, input validation, and more advanced numerical analysis
tools. At the end of the semester, students showcase their projects in personal e-portfolios.

2 Methods

We selected Sphero’s RVR robot as the new robotic platform for the course. Our RVR’s have an
onboard RPi that can be controlled using Python or C++ code. Because the introductory
programming course is MATLAB-based, we needed a bridge to allow the students to use
MATLAB to control the RPi running Python. For that bridge, we use Robot Operating System
(ROS) [11]. Figure 1 gives an overview of how students communicate with and control the
robots.

Figure 1: Overview of system design.

2.1 MATLAB

MATLAB has been identified as the language of choice for our students based on its ability to
solve and visualize a wide range of problems, its robust and helpful IDE, it is self-contained with
an extensive number of built-in toolboxes and functions (e.g, for our labs we use the computer
vision, deep learning, and image processing toolboxes), and it offers potential career benefits with

its widespread usage in industry and academia. For our beginning programmers, MATLAB offers
a low-barrier environment but still translates well as a gateway to other languages. Although we
are implementing ROS communication through MATLAB’s ROS Toolbox, its use is concealed to
the students, they are only working with very basic and descriptively titled commands for control
and sensor data acquisition. Based on our experience, this toolbox is of significant value because
it allows students to directly or autonomously control the mobile robots through simple MATLAB
commands and a more user friendly interface as compared to implementing Python, JavaScript, or
the MATLAB ROS toolbox directly with the Sphero Robots.

2.2 Sphero RVR

A small, relatively low-cost robot was essential for our course that serves 200-350 students per
semester. We found the Sphero RVR to be satisfactorily nimble for maneuvering through tightly
spaced barriers and over obstacles, robust enough to endure overturning and moderate impact, and
enticing with a look similar to a smart car. Each robot is stored inside a portable case that allows
for project work outside of the classroom hours.

The Sphero RVR has on-board sensors that include a gyroscope, accelerometer, ambient light
sensor, and a floor-facing color sensor to determine riding surface RGB color. Like our previous
robots, our basic build includes an on-board RPi with a Wi-Fi adapter for wireless control. The
RPi is outfitted with a camera for image processing and analysis. The RVR does not have a
built-in sensor for obstacle avoidance, so similar to the commercially available SparkFun Kit for
the RVR[12], our build includes a time of flight distance sensor and servos for pan/tilt camera
capability. To complete the build, as seen in Figure 2, we added a mini-LCD screen for displaying
graphics or text, and custom 3D printed mounting plates and rollbars. Our unit cost was $280 but
could be scaled down or expanded. With the flexible platform, students can design and 3D print
accessories and the multi-channel development board allows opportunity for adding other sensors
and components for control and output.

The Sphero API allows for external raw motor control, LED control, sending/receiving IR signals
for robot following, and sampling from the 9-axis IMU, accelerometer, and gyroscope. Sphero
has made available a Python and node.js SDK for using the RVRs with RPi’s and a C++ SDK for
Arduinos.

Figure 2: Sphero RVR with custom full build.

2.3 ROS Communication Bridge

ROS is an open source software platform that allows for communication on heterogeneous
distributed systems. ROS acts as a bridge between the RVR’s RPi and MATLAB running on a
single student’s computer. Commands can be sent from MATLAB via ROS to the RVR to move
the robot and sensor data can be sent from the RVR via ROS to the student’s MATLAB for
processing and analysis. This toolbox allows students to interact with robots to increase their
skills in programming with real world constraints. Further, the toolbox can accommodate any
future student-driven sensor expansions.

ROS is structured as a set of nodes that pass messages to each other via topics and services. Each
machine can have multiple nodes in use, depending on what processes are running. MATLAB has
a built-in ROS toolbox, which allows the developer to create any number of ROS nodes within
MATLAB. Similarly, Python has the functionality to develop any number of nodes on the
RPi.

2.3.1 Topics

Topics, as shown in Figure 3, are named, typed message streams that facilitate a “many-to-many”
communication paradigm. Any node can send data to a topic by creating a ROS publisher that is
supplied with the name and datatype of the desired topic. Any node can receive data that is being
published to a topic by creating a ROS subscriber that is supplied with the topic’s name and
datatype. A single topic can have any number of publishers and subscribers linked to it. In this
way, any number of nodes can publish information to any number of other nodes in an
asynchronous fashion. This method of message sharing is desirable for sharing robot state
information or passing data streams from sensors, especially when working with teams
combining multiple people and/or robots.

Figure 3: Visualization of a topic with one publishing node and two subscribing nodes.

2.3.2 Services

Services, as demonstrated in Figure 4, implement a request/response message-passing paradigm.
Request and response expectations are created with a set of custom ROS messages, which
explicitly set what information is sent to and from a service. A server node hosts a service and a

client node can send request messages to the service, whereupon the server node will perform a
prescribed action and send back a response message to the client. The client’s request message
may contain no information other than the desire for a response from the server, or it may contain
information pertinent to the request being made. The action performed by the server may be
anything (e.g. sampling a sensor, performing a mathematical operation, or driving a motor). An
important characteristic of services is that they will block further requests until the prescribed
action is performed and a response is sent. This is an ideal form of sharing data from sensors with
more control over bandwidth usage than basic topics allow. For example, if the client wants an
image from the robot relatively infrequently, they can request an image from a service, the service
can snap a picture with the camera, and then the service would send a response to the client with
the picture.

Figure 4: Visualization of a service server receiving service client requests and responses.

2.3.3 Actions

ROS actions, visualized in Figure 5, allow for a similar message-passing structure as services, but
with some added features that make them ideal for handling messages that result in robot
movements. Actions and services are structured similarly as far as there is a server node that hosts
an action that accepts messages from a client node. Instead of the client sending a request and
getting a response from the server, as in services, actions have three main forms of
communication: the action client sends a goal to the action server, the action server sends back
periodic feedback on how the action is going, and finally the action server sends back a final
result from performing the action. Similar to services, each communication back and forth is done
with ROS generated custom messages. For example, if the client wants the robot to drive for five
seconds, a goal message may be sent to the server specifying the desired speed and time. The
action server would execute the appropriate commands to move the robot motors and may send
feedback messages to the action client indicating relevant information such as time spent moving,
current location, and current speed. Once the robot has moved for the appropriate duration, a
success message may be sent to the action client. One important characteristic that distinguishes
actions from services is that actions are non-blocking. This allows for the client to “preempt”
goals (i.e. send a goal, which takes over control of the robot before another goal’s completion).
This allows for functionality, such as allowing the robot to drive indefinitely in one direction, but
if it sees an obstacle, it will stop.

Figure 5: Visualization of an action server receiving action client goals and giving responses.

3 Implementation Results

In this toolbox, one node, the master node, is hosted from each student’s MATLAB, and each
Sphero RVR hosts four nodes: a drive control node, a Sphero sensor control node, a RPi distance
sensor control node, and a RPi Camera control node.

The drive control node hosts an action server that uses custom ROS messages to receive goal
messages, call Sphero API commands, and send feedback and result messages back to the action
client on the MATLAB master node. The Sphero API commands currently called will perform
one of the following operations: set wheel speeds independently, turn robot in place for a
specified amount, drive the robot backwards at a specified speed for a specified time, reset the
heading to be the current facing direction, stop the robot’s motion. The goal messages contain
data fields that supply the action server with all the information needed to call the appropriate
commands with the Sphero RVR API: a string indicating which command to run, two integers
indicating left and right wheel speeds, an integer indicating turn angle, an integer for specifying
the desired heading, and an integer for specifying drive time. Not all information is pertinent for
each command (e.g. time is not used when calling the stop command) and the unneeded data
fields are set to zero.

The Sphero sensor control node, RPi distance sensor control node, and RPi Camera control node
each stream all of the data the sensors generate in real time to topics that the MATLAB master
node subscribes to.

As shown in Table 1, two problems arose with the initial implementation. Firstly, MATLAB
changed how custom ROS messages were supported in MATLAB, with the shift from R2020 to
R2021. If a node connecting to MATLAB via ROS uses custom messages, such as the drive
action server node, MATLAB generates a set of files that lets MATLAB interface and
communicate with those custom ROS messages. In R2020 the custom ROS messages could be
generated on one computer running MATLAB, shared with another computer running MATLAB,
and the shared files would work with the new computer with some simple MATLAB path
updates. This was ideal for the purposes of developing and sharing the toolbox. ROS custom
messages for MATLAB are generated and stored in the toolbox, the students would simply
download the toolbox, run a configuration script which would update their MATLAB path, and
they would be setup to start working with the Sphero RVRs from their MATLAB. In R2021, the
process to generate MATLAB custom ROS messages was modified so that messages generated on
one machine could not be copied and used on a different machine. Each computer would have to

use MATLAB to generate their own set of MATLAB custom ROS messages. This is not
something that can be done by each student running a simple script as it has the prerequisite that
each student download and install three separate software: Python 2.7, CMake, and a C++
compiler. We found this to be an extremely time consuming in-class process as we encountered a
multitude of student computer configuration issues. In addition to each operating system
(Windows, Mac OS, Linux) having unique instructions to follow, other configuration differences
such as age of computer and OS, Firewalls, and student computer user names with symbols or
spaces all required special mitigation. All of these issues relating to MATLAB generating files for
the custom ROS messages resulted in significant class time being taken from working on the
projects and put toward just allowing the students to setup the toolbox.

To address these issues we developed a MATLAB-to-action-server interface node. Instead of
custom messages being sent from MATLAB directly to the action server, a standard string
message, that is built into MATLAB, is sent to a topic. The string messages contain all of the
information needed to construct an action server custom message. The MATLAB-to-action-server
interface node subscribes to this topic. Whenever a message is sent from MATLAB to the topic,
the interface node receives the message, parses out the relevant pieces of data, constructs an
action server custom message, and sends the message to the action server.

The second problem that arose was due to our Wi-Fi not being able to handle the continuous
streaming of all the data from over thirty robots simultaneously. Having this multitude of robots
streaming such large amounts of data resulted in students’ robots not responding to some or all
commands, and in some cases, the overload resulted in students’ robots becoming disconnected
from their MATLAB session entirely.

The clear fix for this was to structure data broadcasting with a request/response instead of a
constant stream of data. We considered using a service for this process, but that, again, would
result in MATLAB needing to generate files for custom ROS messages. Using an interface with a
service would not be ideal as it would result in large amounts of data being transferred through
the interface. This extra transfer of data could slow down the student laptop to robot
communication. Instead, we implemented a node that emulated a service with a pair of topics that
act as a request and response. MATLAB sends a standard, built-in string message to the request
topic specifying what data the student wants, the node samples the sensor, and sends the
information to MATLAB via the response topic.

Motor Control Development
Approach Problem Solution

Action server with custom
ROS messages

R2021a disallowed pre-
generated MATLAB custom
ROS messages

Create interface on RPi

Sensor Control Development
Approach Problem Solution

Sensors live stream on topics
Wi-Fi cannot support data
streams

Implement request/response
data services

Implement request/response
data services

Need custom ROS messages
Emulate service with request
and response topics

Table 1: Evolution of implementation challenges and solutions.

4 Discussion

In this new toolbox combining MATLAB with the Sphero API, student teams practice
programming fundamentals in a powerful, all-in-one but approachable platform. The RPi control
system allows limitless expansion for students to get creative with additional software, sensors,
and components. Coupled with MATLAB, students can readily perform speech and command
recognition, as well as image processing for object, text, and human recognition. Further,
MATLAB’s visualization and computational tools allow for practice and implementation of other
course learning objectives, including technical communication and numerical analysis. ROS also
opens up many creative possibilities since, by design, it accommodates communication between
multiple robots per student and multiple students per robot.

It is significant that we discovered the unanticipated hurdles that came from Mathworks
substantially changing its ROS capabilities between releases. Successful implementation of
custom ROS messages is not trivial when accommodating a wide variety of user machines. By
implementing the toolbox in our course with hundreds of students, we had tremendous testing
capability for our beta version as we discovered we needed many workarounds for user computers
of different OS, manufacturers, partitions, and security settings that were not discovered when
first testing the beta version in our initial set of eight different instructor computers. Further, we
gained a good sense of the robustness required of the hardware peripherals after numerous,
unintentional impact and drop tests.

Further toolbox development is planned for easier implementation of additional I2C sensors,
sending data to the LCD screen, obtaining pos-vel-acc data to add further context to numerical
methods labs, and utilization of the IR send/detect capabilities for robot-to-robot interaction. The
software will also be continually refined to mitigate observed sources of frustration encountered
by students implementing the toolbox. We are eager to observe the results of our most recent
efforts to mitigate installation anxiety and network traffic. Once all initial toolbox development
goals are achieved and the robots are fully implemented in the course, student feedback and
assessment data will be collected and analyzed. All code and documentation are freely available
to the public via GitHub.

References

[1] R. M. Felder, L. K. Silverman, et al., “Learning and teaching styles in engineering education,” Engineering
Education, vol. 78, no. 7, pp. 674–681, 1988.

[2] M. Lumsdaine and E. Lumsdaine, “Thinking preferences of engineering students: Implications for curriculum
restructuring,” Journal of Engineering Education (Washington, D.C.), vol. 84, no. 2, pp. 193–204, 1995.

[3] A. Behrens, L. Atorf, R. Schwann, B. Neumann, R. Schnitzler, J. Balle, T. Herold, A. Telle, T. G. Noll,
K. Hameyer, and T. Aach, “MATLAB meets LEGO mindstorms—a freshman introduction course into practical
engineering,” IEEE Transactions on Education, vol. 53, no. 2, pp. 306–317, 2010.

[4] J. Summet, D. Kumar, K. O’Hara, D. Walker, L. Ni, D. Blank, and T. Balch, “Personalizing CS1 with robots,”
SIGCSE Bulletin, vol. 41, no. 1, pp. 433–437, 2009.

[5] T. R. Hamrick and R. A. Hensel, “Putting the fun in programming fundamentals-robots make programs
tangible,” in 2013 ASEE Annual Conference & Exposition, pp. 23–1012, 2013.

[6] R. V. Aroca, F. Y. Watanabe, M. T. De Avila, and A. C. Hernandes, “Mobile robotics integration in introductory
undergraduate engineering courses,” in 2016 XIII Latin American Robotics Symposium and IV Brazilian
Robotics Symposium (LARS/SBR), pp. 139–144, IEEE, 2016.

[7] C. Pomalaza-Raez and B. H. Groff, “Retention 101: Where robots go...students follow,” Journal of Engineering
Education (Washington, D.C.), vol. 92, no. 1, pp. 85–, 2003.

[8] M. M. McGill, “Learning to program with personal robots: Influences on student motivation,” ACM
Transactions on Computing Education, vol. 12, no. 1, pp. 1–32, 2012.

[9] J. M. Esposito, O. Barton, and J. Kohler, “Matlab toolbox for the irobot create.”
www.usna.edu/Users/weapsys/esposito/ files/roomba.matlab/, 2011.

[10] W. Schleter and A. Biegalski, “Implementing a robotic programming project in a first semester “programming
for engineers” course.,” in Proceeding of the 7th Annual First Year Engineering Experience Conference, 2015.

[11] Stanford Artificial Intelligence Laboratory et al., “Robotic operating system.” https://www.ros.org, 2021.

[12] E. C. Pearce, “Advanced autonomous kit for sphero rvr assembly guide.”
https://learn.sparkfun.com/tutorials/advanced-autonomous-kit-for-sphero-rvr-assembly-guide, 2021.

