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WIP: Large-Scale Sampling and Recruitment of  

Doctoral Engineering Programs 
 

Introduction and Background 

 

This work in progress paper proposes a probabilistic multistage sampling protocol for doctoral 

engineering programs. Mathematical and statistical protocols and methodologies are improving 

rapidly, and as such quantitative research in engineering education is primed for substantial 

advances. Methodological considerations need to be made to ensure that data being collected 

lead to valid and reliable results. To date, most sampling methodologies of engineering doctoral 

students have favored simplicity of design and rapid data collection from local populations of 

students.1 However, local sampling can lead to poor representation of engineering doctoral 

students among engineering disciplines and minority groups. Students from programs of 

different sizes and disciplines across the country are often not considered, thus hindering the 

ability to generalize quantitative results and observe the true variability of the doctoral 

engineering student population.  

 

We seek to collect survey data from a minimum of 5,000 engineering doctoral students from 

across the country to examine their identity and motivation profiles within the context of 

previous academic and research experiences in STEM fields. To promote recruitment of a 

nationally-representative sample of students, we discuss development of a sampling technique 

based on geographic location, engineering subdiscipline, and departmental size.  

 

Geography 

 

Geographic differences have been hypothesized to contribute to cultural differences.  Lu 

proposes that “[t]he concept of culture recognizes that individuals from different backgrounds 

are exposed to different traditions, heritages, rituals, customs, and religions.”2 An exploratory 

study conducted by Judith Spain generated results that are consistent with the discussion that 

geographic differences influence values and ethics in school settings3. Spain found evidence that 

the region of the school influenced students’ decision making processes, and since the 

universities were generally within the region in which students previously resided, then the 

culture of a particular region is also a significant variable in shaping students’ values and ethics. 

International students are a notable exception. Engineering by the Numbers 20154 reports that 

54.7 percent of doctoral engineering degrees awarded in 2015 were awarded to international 

students, while international students made up 56.9 percent of the total enrollment in doctoral 

engineering programs. However, consistent with Spain’s findings, international students should 

still be influenced by the regional culture of a program. Consequently, regional differences 

should be considered in a sampling plan.     

 

Sub-disciplines 

 

Evidence exists that different academic disciplines exist as unique cultures. Researchers 

postulate that academic disciplines are not simply different fields of study and knowledge, which 

can be simplified down to differences in subject matter, but rather they can differ on content 

from semantics to social habits. Henry Bauer5 posits that “chemists and historians differ much as 



do Germans and Frenchmen.” Therefore, failure to consider the subgroups within each major 

population can lead to generalizations that ignore the diversity of a population. By treating the 

field of engineering as its own separate entity rather than separately considering the 

subdisciplines, potential cultural differences between engineering subdisciplines are trivialized.  

 

Departmental Size 

 

Considerations are given to the size of the department in which each program is housed. It is 

commonly assumed that institutional size is proportional to influence in policy making; larger 

institutions affect policy more than smaller institutions. However the lack of direct 

measurements and the use of poor proxies to measure institutional influence have limited 

empirical research. Based on responses from 6,000 organizations from 60 countries measuring 

perceived influence over governmental policy making, there is evidence of a positive 

relationship between institutional size and perceived influence.6 Analysis of the same survey 

reveals another story where larger institutions have advantages over small institutions in 

governmental policy-making and strategies. Based on the trend observed, departmental size is 

inferred to have an impact on national policy making in academic fields. Larger doctoral 

engineering programs would then dictate the policies for engineering doctoral programs, which 

in turn are directly related to doctoral level programmatic experiences. 

 

Methods 

 

To begin developing a multistage sampling methodology, an initial list of engineering graduate 

programs was obtained from the American Society for Engineering Education (ASEE) and pared 

down to isolate doctoral degree-awarding programs. The programs were distributed into six 

regions: Northeast, Midwest, West Coast, Southwest, Southeast, and Northwest, which were 

created by consolidating Environmental Protection Agency regions7. Figure 1 illustrates the 

geographic distribution of states into regions. 

 

 
 

Figure 1.  The geographical distribution of doctoral degree-awarding programs. 

 



Departments received codes for academic programs based on the different engineering 

disciplines considered in Engineering by the Numbers 2015 with the exceptions of 

computer/electrical engineering and environmental/civil engineering4. In these instances, 

engineering disciplines were separated into two distinct academic program types. To account for 

potential crossover in academic programs within a department, each department could be coded 

for no more than three academic program types. The academic disciplines considered were 

aerospace, biological and agricultural, biomedical, computer, chemical, civil, electrical, 

environmental, general, industrial, mechanical, mining, materials, nuclear, petroleum, and other 

engineering fields. Engineering management and computer science were also considered as 

distinct disciplines and were given their own appropriate codes. 

 

Department size was imputed using the number of doctoral degrees awarded in the 2014 calendar 

year to each program using information gathered from Doctorate Recipients from U.S. 

Universities8 as a proxy. If no information was available, the number of degrees awarded was 

assumed to be one. Eleven programs (n=11) did not provide information and had data imputed. 

Imputing a value of one for missing observations can lead to an oversampling of medium and 

large programs. By oversampling large and medium programs, we may increase sampling 

variance leading to weaker estimates of population parameters. Departments were reclassified as 

small (< 3 degrees), medium (3 < degrees < 9), or large (≥ 9 degrees) using quantiles as 

determinants for allocation. Quantiles were chosen such that each classification for size had a 

theoretical probability of one-third (ps=0.3333).  

 

While previous research considers region, departmental size, and academic program type 

separately in analysis, little consideration was given to all three qualities simultaneously in a 

multi-stage stratified sample design. Region and department size were employed as stratum. The 

initial population of degree programs was divided into six distinct groups based on geographic 

location, serving as the primary sampling units (PSUs).  Sequentially, secondary sampling units 

(SSUs) were created by stratifying the PSUs with regard to size of the degree granting program. 

Finally, academic programs were sampled from the SSUs as the ultimate sampling units (USUs) 

using probability proportional to size (PPS). PPS is a sampling technique in which the 

probability of being included in a sample is proportional to a size measurement. Size was defined 

as frequency of the academic program type within the SSU. For departments that offer multiple 

academic tracks such as a department of civil and environmental engineering, if one academic 

program was selected in the sample, all other academic programs were automatically considered 

as sampling units and counted against the expected counts for each program based on size and 

location.  This was done to ease the program recruitment process.   

 

Results 

 

Two hundred fifty-three academic programs have been selected from the initial pool of 1,382 

programs representing 18.31% of all doctoral engineering programs that participated in 

Engineering by the Numbers. The average graduating cohort is 8.9 students8 after accounting for 

missing data. Assuming a five-year commitment, then the expected number of students per 

program is 44.5. Based on response rates of optional surveys conducted at the University of 

Nevada Reno and Clemson University9, we assume a 50% response rate to our survey once 

academic programs have been recruited. Based on these assumptions, 250 academic programs 



needed to be sampled to reach our target of at least 5,000 responses to our survey. Due to 

rounding error in determining how many programs should sampled from each SSU, 253 degree 

granting programs were selected.  The distribution of these 253 programs can be seen in Tables 

1-3. The theoretical proportions of departmental size are uniformly 0.3333 because departmental 

size was determined by the thirty-third and sixty-sixth percentile. The sample proportions were 

defined as the percentages of degree granting programs in the sample of 253 programs that 

matched a specific criterion.  

 

Table 1. Compares the population proportion to sample proportion for departmental size. 

 
 
 
 
 
 
 
 
 

Table 2. Compares the population proportion to sample proportion for geographic region. 

Geographical Region Population Proportion Sample Proportion 

Midwest 0.2258 0.2213 

Northeast 0.2605 0.2411 

Northwest 0.0456 0.0751 

Southeast 0.1744 0.17 

Southwest 0.1295 0.1304 

West Coast 0.1643 0.1621 

 

Table 3. Compares the population proportion to sample proportion for academic program. 

Academic Program Population Proportion Sample Proportion 

Aerospace 0.0355 0.0395 

Biological and agricultural 0.0195 0.0277 

Biomedical 0.0825 0.0791 

Computer 0.0355 0.0356 

Chemical 0.0876 0.0830 

Computer Science 0.1093 0.0988 

Civil 0.1020 0.0949 

Departmental Size Population Proportion Sample Proportion 

Small 0.3333 0.336 

Medium 0.3333 0.336 

Large 0.3333 0.3281 



Electrical 0.1302 0.1186 

Environmental 0.0304 0.0237 

General 0.0166 0.0277 

Industrial/Manufacturing/Systems 0.0666 0.0672 

Management 0.0065 0.0237 

Mechanical 0.1165 0.1067 

Mining 0.0051 0.0119 

Materials 0.0796 0.0751 

Nuclear 0.0174 0.0277 

Other 0.0492 0.0435 

Petroleum 0.0101 0.0158 

 

The distributions for size, geographic allocation, and academic discipline are all non-normal as 

seen in Figure 2.  

 

 
Figure 2. Illustrates the distribution for the observed proportions of degree granting programs, 

geographical regions, and departmental size. 

 

To compare the population proportions to the sample proportions, we conducted three separate 

Wilcoxon signed-rank tests. We used the Wilcoxon signed-rank test because the distributions for 

size, geographical allocation, and academic disciplines were non-normal and had less than thirty 

observations for each variable; having non-normal data and fewer than thirty observations would 

violate the necessary assumptions of normality for a paired Student’s t-test. We defined our null 

hypothesis as the true location shift parameter is zero (∆=0). The alternative hypothesis was the 

true location shift parameter is not zero (∆≠0). We defined our significance level to be α=0.05 

for all tests. Applying the Wilcoxon signed-rank test to size, we observed the test statistic W=6 



with a p-value of 0.6579.  Repeating the test for region and academic program, we obtained test 

statistics W=19 and W=155 with p-values 0.9372 and 0.837 respectively. We failed to reject the 

null hypotheses on all counts.  Independently all strata appeared to follow the expected 

distributions. 

 

Discussion 

 

Advantages of Multistage Sampling  

 

Employing a multistage sampling methodology has comparative advantages over using simpler 

methodology. Principally, sampling frames are often available for PSUs or USUs. Stratum can 

easily be developed and employed with minimum input allowing a researcher to consider or 

mitigate secondary variables. Consequently, if a researcher decides that additional or fewer strata 

are needed, the methodology proposed can be easily generalized to increase or limit the 

probability of a person or institution being included as an USU.  

 

Multistage Sampling has both economic and statistical benefits. Simple random sampling is both 

costly when implemented on a national scale and does not guarantee an accurate representation 

of the population. Comparatively, multistage sampling designs are considered more cost 

effective without sacrificing size because multistage sampling plans are designed to capture 

subpopulations that exist within a sampling frame. This eliminates the need to continuously 

conduct random sampling until all the subpopulations of interest are adequately represented. 

Equally as important, multistage sampling plans also retain randomness while controlling for 

subpopulations that need to be included in the sampling frame. Many multistage sampling plans 

allow contributions from different stages toward sampling variance to be estimated separately. 

The methodology we propose is a probabilistic sampling methodology guaranteeing that we can 

effectively calculate variance for our results, and it allows us to identify engineering doctoral 

programs for recruitment. 

 

Disadvantages of Multistage Sampling 

 

Although a multistage sample can afford greater control over elements of the population, it 

sacrifices variance compared to simple random samples. Due to the complexity of variance 

calculations and by ensuring a more diverse sample, multistage sampling tends to have greater 

estimates of variance. Without prior information about variances of subpopulations, this error 

can be exacerbated as highly variable groups that are included contribute significantly toward 

increased variance estimates.  Consequently, this reduces our ability to make specific predictions 

about individual outcomes.  Additionally, the rationale behind stratum may be fundamentally 

flawed. Strata potentially could be found unnecessary and can complicate the sampling process. 

The use of proxies to estimate elements can lead to faulty conclusions about the distributions of 

data and thus alter variance estimates. In the case of the sampling methodology we propose, the 

use of doctoral degrees awarded by each department demonstrates this possibility. Due to the 

lack of available data, we imputed one for the number of degrees awarded four times. By 

underestimating departmental size, we now face the possibility of over representing medium and 

large sized engineering doctoral programs by misclassifying those programs as small. This can 

lead to poor estimations of variances. 



Future Work 

 

The sampling methodology has generated a nationally-representative sample of engineering 

doctoral programs by stratifying by location, degree type, and departmental size. We will 

proceed by contacting department heads and graduate program administrators of selected 

engineering doctoral programs to assist with survey promotion and distribution. The large 

number of responses will provide our analysis with the statistical power to identify and measure 

the significance of identity and motivational profiles of doctoral engineering students.   
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