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1. Introduction 
Code comprehension is an important skill for programmers because it helps them understand code 

and develop debugging skills [1]. The process of code comprehension is unlike comprehending 

natural languages because it involves complex cognitive processing. During cognitive processing, 

a programmer is required to develop or use the appropriate mental models of programming 

constructs, which makes code comprehension difficult for novice programmers [2]. Along with 

cognitive processing, it is important to analyze how students feel during code comprehension 

because the literature suggests that emotions influence different aspects of cognition such as 

attention, reasoning, learning, memory, and problem-solving [3]. Novice programmers may 

experience a variety of emotions while comprehending code. These changes in emotions may 

subsequently influence their academic performance and retention in computing and engineering 

[4]. Therefore, in this study, we aim to understand CS1 students’ emotions and cognitive 

processing during code comprehension. Specifically, we ask the following research questions:  

 

1. What type of cognitive processing do CS1 students perform during code comprehension? 

2. What emotions do CS1 students experience during code comprehension?  

3. How do programmers’ emotions and cognitive processing interact during code 

comprehension?  

 

Answers to these research questions would provide us with an in-depth and nuanced understanding 

of the cognitive events that trigger certain emotions and how students process that information, 

and vice versa.   

 

In this study, we will employ multi-modal data, collected through biometric sensors and concurrent 

think-aloud interviews. These data would provide multiple perspectives and a rich understanding 

of the instructional needs of CS1 students by analyzing their emotions and cognitive processing 

during code comprehension. These instructional needs may include demonstrating programming 

concepts with examples, construction of mental models through visualization, debugging 

strategies, and scaffolding [5]. Based on the instructional needs, appropriate instructional strategies 

(pedagogical, technological, or content-based) could be designed that may provide students with 

good learner support [5].  

 

2. Literature Review 

 
2.1. Theoretical Framework 

This research study is grounded in two theoretical frameworks: Cognitive load theory (CLT) and 

Control-value theory of achievement emotions (CVT). In the following sections, we briefly 

explain these theories.  

 

2.1.1. Cognitive Load Theory: According to CLT, cognitive load is a construct that measures 

the load, imposed by a task on the cognitive system of an individual [6]. The load can be 

characterized as task-based (mental load) and learner-based (mental effort). Task-based cognitive 

load is imposed by task demands. These demands could be due to the complexity of the task or the 



instructional design [6]. Learner-based cognitive load indicates the amount of cognitive capacity 

allocated by the person to meet the task demands [6].  

 

Learning to program is a cognitively demanding task because it imposes cognitive requirements 

such as mental load and mental effort [5]. Solving a programming task requires an understanding 

of the program, its syntax, and semantics, understanding the developing environment, checking 

code output, compilation, and debugging. The simultaneous holding of this information in working 

memory imposes the cognitive load and makes the programming task demanding [5].  

2.1.2. Control Value Theory of Achievement Emotions: Control value theory (CVT) provides 

a theoretical framework to study emotions in the academic context. It suggests that academic 

emotions influence academic performance and learning, and they link directly with achievement 

activities and outcomes [4]. According to CVT, achievement emotions are studied in three 

dimensions i.e., object focus, activation, and valence. Object focus refers to the activity students 

engage in or the outcome of the activity. Valance dimension describes emotion as pleasant/positive 

or unpleasant/negative whereas activation refers to the arousal of emotion due to a physiological 

response to a particular emotion. These dimensions categorize the emotions in four categories 

(pleasant/activating, unpleasant/activating pleasant/deactivating, and unpleasant/deactivating) [4]. 

 

2.2. Reasons why Repetition Structures are Hard: There are various reasons that make the 

repetition structures hard to learn. In this section, we define three main reasons. The first reason is 

that novice programmers do not have prior mental models to learn programming constructs [7]. 

The absence of mental models leads to misconceptions caused by inappropriate memory 

transfer [8]. These misconceptions occur when a certain term in programming does not have the 

same meaning as it has in the English language. Various programming languages use words 

like “while” and “for”, to represent loops, which may not have the same meaning for programming 

as they have in the English language or may have multiple meanings in English [8]. For instance, 

“while” in the English language can be used as a noun, conjunction, adverb, and verb. However, 

in programming, it means that the computer will repeat a statement or set of statements while a 

certain condition remains true. This may confuse a novice, who will initially try to use their 

existing mental models from English to understand “while” and “for” in programming.  

 

The second reason is dealing with troublesome cases and skipping certain values. A simple loop 

that displays a list of numbers on the screen may not be very hard for the student to grasp. 

However, the literature suggests that in some cases, loops become extremely difficult for novices, 

and sometimes even for expert programmers. A classic scenario in which loops are difficult for 

students to learn is the rainfall problem [9, 10]. This problem uses the while loop to read the 

integers(rainfall) as input and output the average of these integers. While computing the average, 

the program excludes negative numbers and stops when the input is 99999. These types 

of loops are hard because students must accurately convert the problem into code while taking into 

consideration special cases, which may not be apparent to them initially. This is more a challenge 

of proper problem understanding than a matter of correct syntax. 

 

 The third reason is the manipulation of the control variable of the loop, especially in the “for” 

loop. In the “for” loop, the value of the control variable changes on each iteration of the loop. This 

change in value could be sequential (increment or decrement by a constant number) or may involve 



an expression. Since the value of the control variable is hidden, the programmer may fail to see 

the internal changes to the value [11, 12].  

 

2.3. Emotions and Cognition: Emotional experiences play an important role in an academic 

setting because they modulate different aspects of cognition such as attention, reasoning, learning, 

memory, and problem-solving [13-17]. During exams, tests, and projects, students engage in 

cognitive processing tasks, and these activities are associated with emotional states of anxiety, 

frustration, and boredom [3]. Moreover, the subject of study also influences emotions that affect 

the ability of a person to learn and remember. For instance, in introductory programming courses, 

students face many difficulties like understanding programming concepts, the syntax of the 

language, and debugging [7]. Students may feel many different emotions because of these 

difficulties, subsequently influencing their learning and academic performance [4]. Therefore, it is 

important to design courses by considering the influence of emotions and maximizing the learning 

and retention of subject knowledge [18]. 

 

2.4. Code Comprehension: Programming is not a single task, it involves multiple processes such 

as reading, comprehending, tracing, summarizing, writing, and debugging the code [19]. In this 

study, we will focus on one such aspect of programming, which is code comprehension. 

Comprehension is usually described as a process in which an individual constructs his or her 

mental representation of the program [20]. During code comprehension, students deal with many 

concepts and integrate them to form a mental model of the dynamic aspects of the program 

execution [21]. 

 

2.4.1. Data Collection Methods for Code Comprehension: Research studies in programming 

for code comprehension have used different methods for data collection such as questionnaires, 

interview-based methods, and eye-tracking [22, 23]. In a study by the Leeds group, the authors 

created a questionnaire of code comprehension tasks to investigate why students find programming 

hard [24]. They found that many students performed poorly in code comprehension problems, 

"suggesting that such students have a fragile grasp of skills that are a pre-requisite for problem-

solving". Later, Whalley, J.L et al., claimed that the choice of code comprehension tasks by the 

Leeds group was not informed by the theoretical model [25]. Therefore, they extended the work 

of the Leeds group by developing a set of code comprehension tasks based on SOLO and Bloom 

taxonomies. From the analysis of their framework, they found a relation between the cognitive 

level of questions with the performance of students.  

 

Adelson prepared a set of eight code comprehension questions in pascal to compare the 

performance of novice and expert computing students [26]. The author found that experts always 

outperformed on well-written tasks while on unstructured (poorly written) tasks, sometimes 

novices outperformed experts. Cynthia and Susan created six short programming segments to 

identify what kind of information novice students used to comprehend the program and how they 

connected different parts of information [27]. Their findings suggest that novice students create 

concrete and detailed mental representations of code during comprehension. In recent years, eye-

tracking technology has gained attention as a method for data collection for code comprehension 

studies [23]. The rationale is that eye-tracking provides near real-time and in-depth insights into 

the cognitive processes that the programmer engages in while comprehending the code [1].  



2.4.1.1. Eye Movement: Eye movement helps to understand the person’s cognitive processing 

by observing the viewing pattern of a person on the stimulus [23]. The most important and 

frequently used eye movement metrics are fixation duration, fixation count, saccades, and scan 

path [28]. Fixation tells us where the person is looking at a particular time [23]. Fixation can last 

for milliseconds or up to several seconds, the total time of fixation is called fixation duration. 

Fixation duration is associated with the attention being paid to the stimulus. The longer the 

duration, the more interesting or complex is the stimulus [28]. A saccade is a rapid movement of 

the eye between fixations, it helps to understand the viewing pattern of the person on the screen 

[23]. A scan path is a combination of saccades and fixations. It is described as a path formed by 

the directed sequence of saccades between fixations [28]. The eye movement metrics are usually 

measured for part(s) of the screen (such as a section of code) where the researcher wants to observe 

a person’s behavior. The selected part of the screen is known as the area of interest (AOI) [23].  

Another metric that is measured through eye trackers is pupil dilation which refers to the change 

in pupil size due to the autonomic nervous system (ANS) activity [29]. Change in pupil size is 

associated with emotional arousal in the human body [30-32]. 

 

2.4.1.2. Understanding Cognitive Processing using Eye Movements: A range of studies have 

used eye-movement metrics (fixation duration, fixation count, saccades, and scan path) to analyze 

the cognitive processing [23]. Christoph and Crosby used eye-tracking to study the code 

comprehension patterns of novice programmers and expert programmers [33]. They used eye 

fixation as a measure of attention and found that highly experienced developers use less time on 

comments and more time on complex statements compared to novice developers.   

 

Just and Carpenter identified the relation between fixation of the eye and cognitive processing of 

students during comprehension of scientific passages [34]. They measured the level of cognitive 

processing of a text by calculating fixation duration on each word of text [34]. Chen et al., used 

eye blinks, fixation, and saccades to measure the cognitive load. They found that eye blinks got 

stuck during attention-demanding tasks to maximize the stimulus perception. Whereas fixation and 

saccades metrics were controlled by the effort required to spread attention on the task-related 

objects [35]. Recently, Philipp et al., used fixation time on areas of interest (AOI) to identify the 

effect of code composition style and familiarity of code on the complexity of code comprehension 

[21]. 

 

2.5. Understanding Emotions through Biometric Data: Besides eye-tracking for identifying the 

cognitive processing of programmers, biometric data such as electroencephalography (EEG), 

electrodermal activity (EDA), blood volume pulse (BVP), and heart rate (HR) could be used to 

analyze the programmers’ emotions [30-32]. Biometric data represent the activity of the human 

body’s automatic nervous system and central nervous system. Some forms of these data may 

represent changes in emotions along with other nervous system activities [36, 37]. For instance, 

signals from electrodermal activity (EDA) represent the changes in levels of sweat produced by 

the human body. EDA signal has two components i.e., tonic, and phasic. Tonic signals show the 

basic level of skin conductance in the human body whereas phasic signals show the changes in 

skin conductance due to external stimuli like noises, sound, and lighting [38]. The phasic signal 

also reflects changes in emotional intensity like high arousal [38].  

 



In literature, a few studies have used biometric data to analyze the programmers’ emotions. Girardi 

et al., used EEG, EDA, BVP, and HR to identify emotions experienced by the developers and the 

events that trigger those emotions [39]. They found that although developers experience a wide 

range of emotions during programming tasks, emotions related to negative valence and high 

arousal were most common. These emotions were triggered by unexpected code behavior, missing 

documentation, time pressure, and self-perceived low productivity. Fritz and Muller conducted 

multiple studies to analyze the perceived progress of a developer, task difficulty, and boosting the 

developer’s productivity by using biometric data [30-32].  They found that developers experience 

many emotions which affect their perceived progress. Further, they suggested that identifying the 

emotions of developers may help to improve their productivity. For instance, by providing 

suggestions and resources when developers are found stuck and make no progress.  

 

2.6. Gaps in Literature: From the literature review, it is evident that eye-tracking metrics are 

useful to understand cognitive processing but measuring cognitive load is not a simple task. It is a 

multidimensional construct and needs multiple sources to confirm the accuracy of the measure [6]. 

Therefore, in this study, we will use eye movement metrics along with concurrent think-aloud 

interviews with participants to understand the cognitive processing of students as they comprehend 

code. Along with cognitive processing, it is important to analyze how students feel during code 

comprehension because the literature suggests that emotions influence different aspects of 

cognition such as attention, reasoning, learning, memory, and problem-solving. Therefore, in this 

study, we aim to understand CS1 students’ cognitive processing as well as emotions during code 

comprehension by using multi-modal data to get multiple perspectives and a rich understanding of 

emotions and cognitive processing that students experience while comprehending code. 

 

3. Research Methodology 

 
3.1. Context and Participants: The Ohio State University (OSU) is a large university in the 

midwestern United States. It is well-known for engineering and has traditional-aged undergraduate 

students. The Computer Science and Engineering department offers a suite of introductory 

programming courses in different languages (e.g., C++, Python, and Java). The context for this 

study is the introductory programming course in Java (CSE-1223). CSE-1223 is offered year-

round at OSU and the student population in each semester is different. This course is offered to 

students from all majors including students who wish to pursue CS as a major. CSE-1223 is taught 

using active, blended, and project-based learning methodologies.  

 

3.2. Selection Criteria: For this study, novice programming students who would be taking CSE-

1223 for the first time during the summer or autumn 2022 semesters would be considered. In the 

context of this study, novices are students who have not had any programming experience before 

taking CSE-1223, and they may or may not be taking another programming course in 

parallel. Since this is a small-scale exploratory study, we will perform purposive sampling from 

the selected novice students. Through sampling, we will recruit 20 students that ensure diversity 

and multiple perspectives [40]. Students’ emotions may be influenced by the background factors, 

which as result may impact their academic performance and retention in computing [41]. 

Therefore, we will consider diversity regarding gender, major field of study, and ethnicity during 

sampling. 



3.3. Research Design: For this study, we will present two short programs written in java to the 

participants. These programs will be based on loops because loops are hard to understand for 

various reasons. Some of the reasons include handling the loop variable, dealing with troublesome 

cases, skipping certain values, and different contextual meaning of loop keywords “for” and 

“while” in the English language. The primary task for the participants is to comprehend these 

programs. While comprehending code, participants will concurrently talk about their thought 

process, which will be audio recorded. Additionally, we will collect participants’ biometric data 

(eye movements, pupil dilation, and EDA). Figure 1 describes the research design. 

 

 
Figure 1: Research Design of Study 

 

3.3.1. Programming Tasks: The two short programs that we are planning to use in this study are 

the minimum sun and the rainfall problem. The minimum sum problem provides the program with 

an array of integers as input and adds the sum of all elements of the array and the minimum value 

of the array. The rainfall program uses a sentinel-controlled while loop to read the integers 

(rainfall) as input and output the average of these integers. The sentinel condition stops taking 

input when the user enters 99999. Additionally, the program excludes negative numbers while 

calculating the average. These programs are appropriate for this study as they test students’ 

conceptual understanding of loops and other basic programming concepts such as reading input 

from users, conditional statements, and operators [21, 42, 43]. Furthermore, these programs have 

been extensively used in research studies related to code comprehension and hence these problems 

have been tested for their complexity and appropriateness [21].   

 

3.3.2. Data Collection Methods: To answer our research questions, we will collect multiple 

forms of data. First, we will audio record the participants’ verbal think-aloud responses as they 

comprehend parts of the code. This technique is called a concurrent think-aloud interview [44]. 

Concurrent think-aloud interview enables students to think aloud about their cognitive and 

emotional processes as they are in the process of comprehension instead of after the task to avoid 

the loss of information [44]. Second, we will collect multiple forms of biometric data (eye-gaze, 

EDA, and pupil dilation). These data provide near real-time information about participants’ 

cognitive functioning, and emotional arousal. For biometric data, we will use iMotions [45] with 



non-invasive devices such as Shimmer [46] to capture electrodermal activity (EDA) for emotion 

arousal, and Smart Eye eye-tracker [47] for cognitive processes.  

 

3.3.3. Data Analysis Methods: For the data analysis of this study, we plan to perform both 

qualitative and quantitative analysis.  

 

3.3.3.1. Quantitative Data Analysis: Biometric data will be used to perform quantitative data 

analysis. We will identify areas of interest (AOI) on the tasks and calculate the fixation duration 

and saccades on those areas from the eye tracker. These metrics will help to understand the 

students’ cognitive processing. For emotion analysis, we will use EDA signals and pupil dilations 

as quantitative measurements because previous research studies have identified them as a measure 

of emotional arousal [30-32]. 

 

3.3.3.2. Qualitative Data Analysis: We will use thematic analysis to analyze data from the 

concurrent-think-aloud interview [44]. The goal of qualitative data analysis is to supplement the 

findings of biometric data and provide more insights into students’ emotions and cognitive 

processes during programming.  

 

3.3.3.3. Triangulation of Quantitative and Qualitative Findings: Once we have conducted 

both qualitative and quantitative data analysis, we will triangulate the findings of both types of 

analyses. Our team has developed a qualitative protocol to triangulate biometric data with 

qualitative excerpts [48]. This protocol temporally aligns graphic visualizations of biometrics with 

qualitative excerpts and then analyzes data simultaneously to assess for convergence and 

divergence. Since the context in this study has changed, the triangulation protocol will be adapted 

to help answer the current research questions. 

 

4. Future Direction 
The immediate future directions for this study include data collection during the summer and fall 

of 2022 and data analysis during spring 2023. 
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