Work In Progress: Using Current Crowdfunding Projects as Case Studies to Enhance Students’ Understanding of the Design Process

Dr. Derek Breid, Saint Vincent College

Derek Breid is an assistant professor of Engineering Science at Saint Vincent College. His interests include integrating active learning techniques into classic engineering courses, and studying the mechanical behavior of soft materials.
Work In Progress: Using current crowdfunding projects as case studies to enhance students’ understanding of the design process

Abstract:

When teaching an introductory engineering design course, a typical challenge for students lies in grasping the nature of the design thinking mindset and the often scattered nature of the design process. Since design is often taught as a multidisciplinary course (or as a component of one) early in the curriculum, one approach to address this in a discipline-blind manner is to focus on the design of products familiar to students in their everyday lives. However, a drawback to this approach is that it typically can only be used to analyze fully-developed and commercially successful products, which can obscure the messy details and iterations inherent in the design process. It also strongly biases the pool of potential cases toward successful designs, leaving few opportunities for students to dissect poorly-executed design processes.

While companies are not typically very open about developmental products, significant insight can be gained by examining projects seeking financial backing on crowdfunding websites such as Kickstarter or Indiegogo. Such projects often attempt to address a need currently not met by existing products, and as such represent a good way to highlight the importance of good problem definition. Crowdfunding projects are also present in various stages of development, and the designers often provide insight into the evolution of the product as it has progressed from idea to prototype as part of their funding pitch.

This paper reports early results on student attitudes towards a low-stakes course exercise in a sophomore-level introductory engineering design course at a small liberal arts college. Outside of class time, each student researches a current crowdfunding project to briefly present in class. In the presentation and discussion that follows, students practice identifying the underlying needs which they perceive drove the design of the crowdfunded product, as well as important design constraints and the specific decisions made by the designer. At the end of the course, students were asked in a written survey to self-evaluate the effect this exercise had on their understanding of the design process. The results of this survey, combined with observations from the instructor, indicate that the exercise is helpful to students and suggest potential improvements to its implementation in future versions of the course. This paper discusses these results in the context of the multidisciplinary program offered by the college, and provides tips for instructors looking to adopt a similar approach.

Engineering design problems are, by their nature, open-ended and ill-defined. While there may be certain guidelines that help to shape a solution, and requirements that any successful solution must meet, there is no single “right” answer to design problems. The specification of a solution to a design problem is a complex process which is quite different from the solutions that students
are required to find in most other engineering courses. These solutions typically require the determination of some numerical answer, and the quality of these solutions is generally determined by evaluating a student’s work on a spectrum of correctness (Fig 1). Design solutions, on the other hand, must be evaluated by the extent to which they meet the needs of the problem, and therefore fall instead on a spectrum of suitability, which is much more subjective. To further complicate matters, design solutions must take into account many different factors, including technical requirements, aesthetics, human behavior, economics and others, which are often at odds with each other [1]. The challenge becomes not just finding a suitable design solution for a single issue, but finding a solution that is suitable across all of these dimensions simultaneously. The cognitive processes required for effective design are thus quite different from those fostered in students in non-design courses, and much has been written about so-called “design thinking” [2], [3].

This difference in approach poses a challenge for first-time design students, who have been conditioned by their experiences in most STEM courses to seek the most correct version of an answer to the questions these courses pose. To approach design problems requires a different mindset altogether, the development of which is a common learning goal in engineering design courses. Rather than asking “what is the correct answer?”, design students must learn to ask “what is a suitable solution to this problem?”. While it is generally easy to define correctness, “suitability” cannot be stated in any simple manner. Wrapped up in this relatively simple statement are a number of other questions, such as:

- What is the actual problem to be solved?
- What does a suitable solution look like?
- How can we create a suitable solution?

Students attempting a design-type problem for the first time are unlikely to possess the skills necessary to take the above considerations into account, and, moreover, may have difficulty even developing an awareness of the scope of the task before them, due primarily to inexperience. Therefore design instructors must devise ways for their students to acquire this knowledge through course activities. The most sure and most common way to achieve this is through direct experience in the form of a long-term design project or challenge. However, without proper context and guidance, the importance of these skills may not be realized by the students until it is
too late and their project has failed. Thus, it can be useful to incorporate lower-stakes activities which help to illustrate these concepts before they are needed by the students in their ongoing projects. Case studies are one common approach. Broadly speaking, case studies involve the examination of real-world scenarios in order to glean observations and draw conclusions, and thus represent a way by which abstract concepts in fields such as engineering and business are actualized in the industry [4]. Often case studies are carefully prepared narratives [5], [6], designed to summarize a particular scenario from a distant, outside perspective. However, the term may also include less formal, smaller examples that are used in a similar manner to stimulate discussion and illustrate course concepts. Both variations (among others) are used heavily in design courses, and the ability to examine design successes and failures contained in these cases can help students to pinpoint critical aspects of the design process.

For design classes aimed at multidisciplinary or underclass student bodies, consumer products (rather than industry-specific engineering projects) can be an attractive source for case studies, due to students’ prior familiarity with everyday objects. However, one drawback of most consumer products is that consumers only see the final product which is put up for sale, and any details of the process which led to the development of a given product can in most cases only be speculated at. It is unusual to find easily accessible information on early prototypes of current consumer products, or on the market research which led a company to pursue a particular product. An alternative to studying consumer-ready products is to study products that are still in the development stage, and that have not yet proven to be successful on the market. Thousands of such products can be found by examining projects on popular crowdfunding sites such as Kickstarter or IndieGoGo. Crowdfunding is an online fundraising mechanism by which money is raised through small donations from large number of people [7]. It rose to popularity in the early 2010s, and has been used to fund projects such as art installations, technology startups, healthcare expenses, and even academic research. The terms and conditions vary by crowdfunding platform and by project, but generally speaking contributions are considered either as donations or investments; to reflect this, contributors are referred to as “backers”.

Crowdfunding campaigns for consumer products are quite common. Often these products represent innovative but unproven designs, emerging technologies, or niche products with a limited but passionate consumer base, such as hobbyists or fans of a particular franchise. Some campaigns represent products in the early stages of development seeking funding to enable further testing and refinement of the design. Others are more complete, soliciting funds to enable a production run. Because these projects are seeking investors, designers running crowdfunding campaigns are much more open about the problem which inspired their design, their target customer base, and an overview of the design process they have completed thus far. Furthermore, they are required to lay out the risks and challenges associated with bringing the project to completion. Because of the increased visibility of the design process, and because they often involve innovative design ideas and novel technologies, crowdfunded products show great potential for use as case studies in engineering design courses.
This paper describes an attempt to leverage the advantages of using crowdfunded projects as case studies in a sophomore-level engineering design course at a small liberal arts college. The course is part of the required curriculum for Engineering Science majors, and is therefore taken by students with a variety of career interests within the broad umbrella of engineering. In the spring of 2017, when the data for this paper was collected, the class enrollment was 13 students. The class met twice weekly using a regular classroom format, with an additional weekly 3-hour lab session, where students worked on a semester-long design project.

As part of the course requirements, each student was individually required to research a crowdfunding project and give a brief (5-10 min) presentation to the class, during which they were to provide some insight into the design process itself. Specifically, students were asked to focus on the following aspects of their chosen project in their presentation:

- Explaining the product itself
- Identifying the problem the product is attempting to solve
- Identifying the intended customer for the product
- Explaining how the product solves the problem
- Discussing 2-3 specific design choices that were made

(Full instructions are provided in Appendix I). These presentations took place throughout the semester, at the beginning of one of the class sessions – on average one presentation per week was given. Thus, in the course of the semester, students would not only research one crowdfunding project in some depth, but also be exposed to up to 12 other projects chosen and presented by their classmates. Students were encouraged to ask questions during and after each presentation, and often discussion continued well after the presentation was completed. The projects chosen by the students spanned a wide variety of products, including handheld fidget toys [8], a universal adapter for charging wireless devices [9], and a device to prevent microfiber pollution in washing machine effluent [10]. The students were directed towards the crowdfunding sites with the directive to find a product that represented a new or innovative application of technology (as opposed to products like films or books, which are also present on these sites). The students were free to choose any such project that piqued their interest, and which were documented in sufficient detail to provide enough insight for the student to address the above aspects. Students were encouraged to choose projects whose creators documented the backstory or the evolution of their products as part of their campaigns.

At the end of the semester, a survey was administered to the students, soliciting their opinions on the effectiveness of the project in meeting its goal of providing insight into the design process, and also attempting to gauge their enjoyment of the project. The survey consisted of 8 Likert-style questions and 2 open-ended response questions, reproduced in Appendix II. The results of the survey are discussed below, followed by additional insight from the instructor’s perspective, and suggestions for other instructors wishing to incorporate similar activities into their course.
Survey results and discussion

The results of the Likert-style survey questions are presented in Figure 2. Students were asked to indicate the extent they agreed with the statements on a scale from 1 (Strongly disagree) to 5 (Strongly agree). The averages were calculated based on 12 student responses, and uncertainty is given using one standard deviation. Examining the responses, it is quite clear that the students found the project both helpful and worthwhile, as a large majority of responses (79%) were positive (4 or 5), while only 3% were negative (2 or 1).

Student understanding of the design process

Questions 1-4 asked students to self-evaluate the extent to which they felt that crowdfunding project increased their understanding of the design process. The first three of these questions sought to determine which parts of the project helped students the most:

- Researching and presenting their particular crowdfunded product
- Seeing the results of other students’ research, or,
- Taking part in the discussions that followed each presentation.

Interestingly, each of these three activities was rated equally helpful by the class as a whole, although only one-third of respondents actually rated all three activities the same. Thus two-thirds of the students preferred one or more of these activities to the others, but there was no overall agreement on which activity was the most (or least) useful. This suggests that insight into the design process was gained in all three of these activities, with some students learning more effectively through practice (researching and critiquing their own project), while some learned better through being exposed to the results of other students’ research.

These results are in agreement with the observations of the instructor. It was noted that the overall quality of the presentations varied from student to student, with some students exhibiting careful (though relatively basic) critical analysis of the design process underlying their product, while others gave much more limited information – essentially presenting a list of specifications for the product, without attempting to dig deeper. It stands to reason, therefore, that the students who put more into their research ended up getting more out of that aspect of it, although the survey was anonymized, so this correlation cannot be proven at this time. For the students who did minimal preparation for their presentation, the instructor made a point to begin the discussion by asking direct questions about one or more aspects of the design process relevant to that student’s chosen product. This served to foster direct discussion of the design process among the entire class, and may have contributed towards some students naming the discussion as the most effective aspect. A number of comments (n=5) included language indicating that it was “interesting to hear about the different projects”. However, these students’ answers to questions 1-3 did not correlate with any significant preference for one aspect of the project over the other as being most helpful.
Interestingly, when the question is rephrased to inquire about students’ learning in regards to specific challenges experienced by the designers of their chosen product (Question 4), their ratings increased significantly (3.92 to 4.33 average response). This trend suggests that students are able gain useful insights through examination of a particular example, which is one of the primary goals of case studies in engineering education. However, when it comes to abstracting that knowledge to draw conclusions about “the design process”, students did not find this project as helpful. There are a number of possible explanations for this observation. First, it may be that students are failing to make the realization that “gaining insight into specific challenges faced by

Figure 2: Results of the Likert-style survey questions. The average of the 12 student responses to each question is shown, along with one standard deviation.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Neutral</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1) The process of researching and presenting a crowdfunding project helped me better understand the design process</td>
<td>3.92 ± 0.51</td>
<td>2</td>
</tr>
<tr>
<td>2) Listening to others present the results of their research helped me to better understand the design process</td>
<td>3.92 ± 0.67</td>
<td>2</td>
</tr>
<tr>
<td>3) The discussion that followed each presentation helped me better understand the design process</td>
<td>3.92 ± 0.67</td>
<td>2</td>
</tr>
<tr>
<td>4) Working on this project helped me gain insight into specific challenges faced by the designers of the product I chose to analyze</td>
<td>4.33 ± 0.49</td>
<td>2</td>
</tr>
<tr>
<td>5) On the whole, presenters gave a fair, unbiased assessment of the products they presented</td>
<td>4.08 ± 1.00</td>
<td>2</td>
</tr>
<tr>
<td>6) Working on this project was a good use of my time outside of class</td>
<td>3.67 ± 0.89</td>
<td>2</td>
</tr>
<tr>
<td>7) Viewing and discussing others' presentations was a good use of class time</td>
<td>4.17 ± 0.94</td>
<td>2</td>
</tr>
<tr>
<td>8) I would recommend including the crowdfunding presentations as part of this course in the future</td>
<td>4.42 ± 0.79</td>
<td>2</td>
</tr>
</tbody>
</table>
the designers” is in fact helping them understand the design process. Perhaps they perceive a particular project as being too focused on one problem to be able to draw any general insights. Second, it may be that because the presentations were spread throughout the semester, it became difficult to identify recurrent themes across different crowdfunded products, particularly when the products exhibited so much variety, and were not being pre-selected by the instructor to maximize learning potential. Finally, with respect to “the design process”, students may be internally comparing the effectiveness of this project to that of the other aspects of the course which addressed the design process, including lectures, in-class activities, and participation in their own semester-long design project. Compared to these activities (particularly the latter), the amount of insight gained by the crowdfunding project may not be as extensive.

Students’ ability to provide unbiased assessments

One challenge with using crowdfunding projects is that the primary source of information comes from the crowdfunding page itself. The primary purpose of these pages is to encourage contributions to the campaign, and accordingly much of the information is presented to frame the product in the most positive light possible. This positive bias can carry over into students’ presentations, and the instructor of this course observed that most students adopted an overly favorable stance towards their chosen product, with two or three of the presentations bordering on becoming sales pitches. While it is certainly a good thing that students show some excitement in their presentation, a lack of objectivity can prevent critical examination of the challenges experienced during the design of the product. In general it was observed that the practice of identifying potential weaknesses in a design generated more fervent discussion, and led students to consider what the designers could have done differently, which aims directly at the nature of the design process. In one particularly egregious example, a student presented a list of reasons why their classmates all should become backers of the project they chose to present. In these extreme cases, the instructor would guide discussion towards identifying some possible criticisms of the product, and ultimately this student did acknowledge that there were some valid concerns. As a whole, students perceived their peers as presenting the projects in an unbiased manner (Question 5), but there was a large variance in the responses to this question. This is at odds with the opinion of the instructor, and suggests that students may require more instruction in critically analyzing the claims of the crowdfunding projects.

Student attitudes towards the crowdfunding project

The vast majority of comments submitted in response to the open-ended survey questions dealt with the students’ personal opinions about the enjoyability and usefulness of the project. A summary of these comments is provided in Table 1. From these responses, we can see that every single student had at least one positive thing to say about the project, and that only one negative comment was received (and even this was couched within a broader statement maintaining that the project was useful). The most common positive theme (8 students) was that the students found the project fun or enjoyable. Some students mentioned specifically researching their own
project, while others mentioned hearing about all of the various projects presented by other students. Many students also indicated that they found the project helpful in their understanding, citing specific skills or aspects of the course, such as analyzing real products, understanding what makes products successful, as well as communication skills. However, some students (3) reported that they didn’t feel the project helped them understand the design process any better. Because each of these specific comments was preceded by a qualifier indicating that the student enjoyed the project despite not learning, these comments were classified as neutral. The only negative comment received indicated that the student felt that although the outcome was

<table>
<thead>
<tr>
<th>Nature of comments</th>
<th>Number of students making comments</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Enjoyed project | 8 | “Very cool and fun project”
| | | “It was interesting and fun”
| | | “I actually enjoyed looking this project up and presenting my product” |
| Helpful (general) | 3 | “They helped everybody understand the process”
| | | “Interesting to hear about different products” |
| Aided learning (specific skills or information) | 5 | “we as a class better understand aspects as to why they are or might be successful and different from other products.”
| | | “helped with communication skills”
| | | “gave us a chance to look at real life examples” |
| Worthwhile | 5 | “should be included in next year’s class”
| | | “good use of time” |
| Limited insight into design process | 3 | “I thought it was cool to see the different products, but didn’t give much insight into the process the designers went through” |
| Too much work | 1 | “sometimes I felt like it was a hassle to do the project itself” |

Table 1: Summary of responses to the open-ended survey questions.
useful, the project itself was “a hassle” – likely referring to the time spent outside of class preparing to give their presentation. However, this is contrasted by 5 students who responded that they felt it was a good use of time, or that the project should continue in future years.

The comments received correlate closely with the responses to survey questions 6-8. Question 6 asked students if they felt their time spent researching and preparing the presentation was worthwhile. This question had the lowest average response (3.67), although it was still on the positive side of the scale. In contrast, when asked about the time spent listening to other presentations and discussing those products, the average score was much higher (4.17), and their opinions on whether to include the project in future versions of the course was even more positive (4.42). Taken together, these results mirror the themes gleaned from the open-ended responses, and tell a story that anyone familiar with human nature is likely to recognize. Namely, it appears that these students recognize the value of the knowledge gained by participating in this exercise, but given the preference would rather not have to go through the work themselves (though presumably would still want the benefits of doing so). But most importantly, they feel that others ought not to be deprived of the opportunity to undergo the same experience (despite the perceived “hassle”).

Instructor observations and lessons learned

Although Spring 2017 was the first time collecting survey data regarding student-led crowdfunding presentations, the concept has been part of the course in some form since Spring 2015. During that first term, the instructor was the one researching the products and presenting them to the class, much like the arrangement of a more typical case study. The following year (Spring 2016), the responsibility of preparing the studies was shifted to the students, though in a less formalized manner than the present project and no data collection. These experiences led to the current format of the project.

The tendency of students to incorporate persuasive bias into their presentations was observed early on. Students are understandably drawn to products that appeal to their interests, and being able to talk about a cool new product is likely a key motivator for students when selecting a topic. However, case studies require a more neutral, analytical tone, in order that both strengths and weaknesses may be identified and analyzed. Therefore in Spring 2017, language was added to the project description to encourage students to remain impartial, and specifically to avoid showing promotional videos for the crowdfunding projects (which are essentially advertisements and often contain very little specific details on the products themselves). This also helps to avoid situations in which a student invests themselves so heavily into the idea of a product, only to have their excitement sharply diminished when subsequent discussion brings up glaring flaws or criticisms. Despite the changes, the tendency still remains in some students. In response, the current iteration of this project, the instructor has emphasized a more critical approach when introducing the project to the class, which anecdotally seems to have helped.
Also for Spring 2017, the project goals and requirements were made more formal than in previous years, and students were given a set of guidelines to follow for their presentation (Appendix I). In addition, near the beginning of the term, the instructor gave an example of such a presentation using a successful (but slightly dated) crowdfunding initiative [11]. For the students, this helped to solidify the instructor’s expectations, and provided a model to follow. These steps helped to improve the overall quality of the presentations and the consistency of content from student to student.

The benefits of crowdfunding case studies extended beyond the presentations themselves. As the class engaged with new ideas and concepts related to design, the case studies served as examples that could be referred back to during lectures and discussions. These cases are particularly relevant when it comes to discussing aesthetic considerations and human factors, and certain products can be relevant to understanding the life-cycle of a product, and challenges faced when trying to scale up production. However, at present this aspect of these cases is underutilized in the course, and one of the future goals of this course project is to build more continuity between the student presentations and the rest of the course. Part of this effort will include a discussion after all students have presented to identify common themes present in many crowdfunding efforts, and to tie these themes back to what students have learned about the design process.

For design instructors considering implementing a similar project, here is a list of suggestions to maximize its effectiveness:

- Follow best practices for any classroom activity involving case studies [4], [12]. Some of these practices are inherent to the subject – for example letting students select their own crowdfunded project fosters active engagement, proper motivation, and ensures that at least one student will find each topic interesting. Another important practice is to spread the presentations throughout the entire term (rather than having them all in one class). This allows students to become more comfortable in their role of discussing and critiquing the projects. It also helps to ensure that the discussions evolve along with students’ understanding of course principles. For example, early presenters can focus more on problem definition while later presenters may address prototyping and testing.

- Ensure that the students understand their role as observer and critic. Their goal is not to sell the class on the product, but to use the product as an example of both good and bad design practices.

- Monitor and guide the discussion, as students can easily become sidetracked into focusing on the technology, the pricing scheme, or other aspects of the product or campaign that are non-productive with respect to the goals of the project.

- At the end of each discussion, briefly summarize the insights gained into the design process, to help students see what they have learned. A summative discussion after all presentations have been given may also help to draw broader conclusions about the challenges faced by designers, and the processes by which they deal with those challenges.
In this implementation, the instructor was privileged to be able to work with a small class size, using a class format that was already highly discussion-based. However, the idea ought to be adaptable to other class sizes and formats. Obviously, a larger number of presentations will increase the amount of class time devoted towards studying these products. For medium-sized classes, the project can be assigned to a group, rather than to individual students, with few other alterations needed. However, for very large classes, such as a freshman design course common to all engineering majors at a large school, alternate strategies may need to be adopted. These might include utilizing existing course frameworks for segmenting the class population, such as discussion sections or peer workgroups. Alternatively, students could prepare reports instead of presentations. Here, the professor could select the most useful examples from these submissions to jumpstart further discussion, or students could be assigned to perform peer review on each other’s reports.

Conclusion

Case studies have long been used in Engineering Design courses, but the recent emergence of crowdfunding has allowed for the study of products that are still in the design process, and have not yet been proven successful or unsuccessful. The ease of access to information about crowdfunded products enables design students to select a product that aligns with their interests to act as a jumping off point for discussion about design. This student project was thus formulated as a brief presentation, followed by questions and discussion of the crowdfunded project in question. Students indicated a clear affinity for these presentations, and found that the class time devoted to presentations and discussions was worthwhile. In general, students reported that the project helped them to better understand the challenges that designers go through, though not all agreed that this knowledge provided broader insights into the design process.

Bibliography

Appendix I: Project description distributed to students

ENGR 240
Engineering Design

Crowdfund Project Presentation Guidelines

Each student will present once during the semester. To prepare for your presentation, peruse crowdfunding sites such as Kickstarter, Indiegogo, etc., until you find a new, innovative product which aims to meet a particular need. You are to discuss this product with the class in a presentation.

Your presentation should be between 5-10 minutes, and should address the following questions:

1. What is the product, and how does it work? (Be sure to include any necessary background knowledge)
2. What actual problem is this product trying to solve?
3. Who is the “customer” for this product?
4. In what unique or creative ways does this product attempt to solve said problem? How does the product differ from others on the market?
5. Choose 2-3 aspects about the product where the designers had to make a specific choice regarding the product design. These could be things like cost, size, ergonomics, aesthetics, materials, etc. Table 7.1 in Niku has a list of common design considerations to help you get started. Point these out and discuss why you think the designers made the choices they did.
6. Do you agree with the choices they made? Do you think this is a good design? Why/why not?

NOTE: Do not show any videos about the product from the project page – they are usually just sales pitches without a lot of actual info about the design. However, you can (and probably should) include images taken from the project page.
Appendix II: Survey administered to students

Please rate the extent to which you agree with the following:

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree or Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process of researching and presenting a crowdfunding project helped me to better understand the design process</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Listening to others present the results of their research helped me to better understand the design process</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>The discussion that followed each presentation helped me better understand the design process</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Working on this project helped me gain insight into specific challenges faced by the designers of the product I chose to analyze</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>On the whole, the presenters gave a fair, unbiased assessment of the products they presented</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Working on this project was a good use of my time outside of class</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Viewing and discussing others’ presentations was a good use of class time</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>I would recommend including the crowdfunding presentations as part of this course in the future</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Please summarize your opinion of the crowdfunding presentations.

Please list any additional thoughts or comments.