

Workshop: Let’s Talk to Our Rubber Ducks: Scavenger Hunt for
Computational Thinking, Analyzing Code, & Debugging

Introduction

A rubber duck can act as a sounding board for programmers to work through difficult concepts
or complicated logic sequences. Speaking or explaining code logic out loud is known to be
highly beneficial when “stuck” by an error. Andrew Errington created the concept of “rubber
duck debugging”. A good programmer needs to develop several essential skills including
debugging, computational thinking, and code analysis. How do we instill these concepts into
first-year programming students? Introductory programming students are often reluctant to try
debugging their code independently. Introductory programming instructors watch their students
write lines and lines of code without compiling the code or testing the code.

Workshop Contents

During this workshop attendees will learn how to add fun to their courses by using a code-based
scavenger hunt. Each scavenger hunt clue is a small (less than one page) C++ program provided
to the students via a hard copy. The students, work in teams of 2-4, are forced to “think like the
computer” and analyze the code (further developing their computational thinking skills). By
stepping away from the compiler and unable to just run the program, students must work on
understanding the specifics of the material. The output statements within the code provide the
location of the next clue, with the final clue leading to the students selecting the rubber duck that
“quacks” to them. The scavenger hunt gets the students out from behind their computers,
introduces the students to an industry practice, and opens the door to future assignments on
debugging techniques. The scavenger hunt covers a wide variety of topics, including (1)
mathematical expressions, (2) mod operator, (3) integer math, (4) switch statements, (5) if
statements, (6) increment/decrement, (7) for loops, (8) while loops, and (9) do-while loops.
Typically, the scavenger hunt beings in the classroom. The instructor ensures all teams have
started the scavenger hunt and then “disappears” to the final location. The scavenger hunt could
take students on a journey of their college/university to become more familiar with important
locations (e.g., where office hours are held, department office, computer lab, etc.).

Learning Objectives for the Workshop

By the end of this workshop, attendees should be able to:

1. Explain what rubber duck debugging is and how it is used
2. Understand the importance of computational thinking in programming
3. Explain how the scavenger hunt allows for graceful failure
4. Create their own scavenger hunt for a course they teach

Topics Covered

This workshop will cover background on key concepts discussed (rubber duck debugging,
computational thinking, and code analysis), the importance of learning debugging techniques, the

specifics of the Computer Science 1 (CS1) scavenger hunt, hints and tips for adapting this for
other programming languages, adapting this to courses outside of the computing field, and hints
and tips for creating an online version [1] or a version for a course with large enrollment. The
workshop session facilitators believe in active learning techniques. Therefore, attendees will
have the opportunity to try out a code-based scavenger hunt during the workshop.

Workshop Schedule

1. Introduction, Purpose, and Agenda
2. Talk to your Rubber Duck! Rubber Duck Debugging Explained
3. Let’s Go on a Scavenger Hunt!
4. Adaption to other courses or larger class sizes
5. Online Resources, Q & A, Wrap-up

Example Clue from ECCS1611 Programming 1 at Ohio Northern University

Figure 1. Example Starting Scavenger Hunt Clue.

References

[1] S. Coffman-Wolph and K. Gray, “Computer coding scavenger hunt using quick response codes

(resource exchange),” in 2020 ASEE Virtual Annual Conference Content Access Proceedings,
2020.

