
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition Copyright 

© 2004, American Society for Engineering Education 

Session 2420 

 

Writing Simulation Programs as a Tool for Understanding Internal Computer 

Processes 
 

Michael D. Filsinger 

University of Cincinnati 

 

 

 

Abstract 

 

The usual approach to a hands-on understanding of process scheduling in a computer operating 

system is to either modify an existing operating system or use a pre-written simulation program.  

In an Engineering Technology program, the first approach can be too difficult for the level of 

programming expertise possessed by the students, while the second approach does not give 

enough of a hands-on feel.   In my Operating Systems class, I have the students write their own 

simulations of process scheduling.  This approach provides many of the same benefits of 

modifying an existing operating system, while keeping the complexity of the task relatively low.  

This approach has the side benefit of providing the students with valuable additional 

programming practice. 

 

 

Introduction 

 

In our Computer Engineering Technology program, we teach two courses – Computer 

Architecture and Operating Systems – with a high theory content which can be difficult for a 

technology student to grasp.  The difficulty lies in the fact that the details are buried deep within 

the relatively inaccessible core of the computer.  Traditional approaches to this problem have 

been to use pre-existing simulation programs or, in the case of Operating Systems, to modify the 

kernel of an existing operating system.  I have found that, given the lack of a strong Computer 

Science background among our students, a better approach to this problem is to have the students 

write simple simulations themselves.  This technique provides a more intimate understanding of 

the processes they model while simultaneously giving the students valuable programming 

practice. 

 

In this paper, I will examine one such problem from my Operating Systems course – modeling 

process scheduling algorithms.  Computers are time-sharing devices:  only one process can 

actually be using the CPU at any given instant.  The procedure for selecting which process to run 

and for how long can have a strong impact on the performance of the system.  Unfortunately, the 

scheduling algorithm is often buried deep within the core of the operating system. Furthermore, 

due to the non-deterministic nature of process introduction and completion, the effects of 

changing the algorithm are extremely difficult to measure under actual operating conditions. 

 

By writing their own simulations of this process, students can filter out all of the distracting 

details and focus on the effects of changing the algorithm.  Instead of actually running processes 
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in the operating system itself, a small set of “processes” is trivially simulated within the program.  

All processes are assumed to be present at the start, and the effects of I/O are ignored.  The 

“processes” themselves are nothing more than numbers representing the required runtimes for 

the simulated processes, with no reference to the “tasks” performed by those processes.  The 

response time and turnaround time of each process under the chosen algorithm can be easily 

measured within this controlled environment. 

 

In later sections, I outline the basic problem of process scheduling, the actual programming 

project assigned to the students, the benefits of this approach, and student feedback. 

 

 

Problem Description 

 

One of the primary roles of an operating system is to manage the limited resources of the 

computer.  Perhaps the most important (and limited) resource is the CPU itself.  A single CPU is 

only able to execute a single instruction at any given time.  Technically, a pipelined CPU 

executes different parts of several instructions at once, but since only a single instruction may be 

started or completed at any given time, this distinction can be ignored for our purposes. 

 

On the other hand, while the CPU can only execute a single instruction (and hence, a single 

program) at a time, modern operating systems perform many tasks (and hence, run many 

programs) “at the same time”.  Each program in execution is called a process, and each process 

may, in turn, be broken into smaller pieces called threads.  However, since threads are effectively 

the same as processes for scheduling purposes, I will restrict the discussion to processes only. 

 

These processes must share the limited CPU resources of the system.  The primary way of 

sharing these resources is through a form of time-sharing.  Essentially, the operating system 

gives control of the CPU to a single process for a time, and then gives control to a different 

process.  The heart of the process scheduling problem lies in the answers to two questions.  First, 

how long should a process be allowed to run before it is interrupted by another process?  Second, 

when a process is suspended, which of the available processes should be chosen to replace it?  

The policies determined by these decisions and the software to implement those policies form the 

scheduling algorithm of the operating system. 

 

The choice of scheduling algorithm can have a profound impact on system performance.  

Performance is measured in terms of three metrics:  turnaround time - the amount of time 

required to complete a single process; response time - the amount of time required to begin 

execution of a single process; and throughput - the amount of “work” completed per unit of time.  

Often, improving one of these performance characteristics has a negative impact on the others, 

and the exact usage of the computer system determines the relative importance of these three 

metrics.  In interactive systems (such as the PCs we use every day), response time and 

turnaround time are considered most important. 

 

A batch scheduling algorithm, such as the first-come first-served (FCFS) algorithm, which 

allows each process to run to completion before starting the next process, provides excellent 

throughput, but potentially at the cost of the other performance metrics.  Suppose two or three 
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very long processes are at the front of the queue.  All of the other (presumably shorter) processes 

must wait for these long processes to complete.  As a result, the response times and turnaround 

times of these processes may be unnecessarily extended.  This dramatically increases the average 

response time and average turnaround time of the system. 

 

A simple time-sharing scheme, such as the round-robin algorithm, which allows a process to run 

for a predetermined time (time quantum) and then suspends that process in favor of another, 

dramatically improves response time, but as each process switch has an associated time 

overhead, throughput can be negatively affected.  A small time quantum strongly favors response 

time over throughput, while a large time quantum begins to resemble a FCFS implementation.  

The effect on turnaround time is less clear, though low time quanta tend to have a negative 

impact on turnaround time as well. 

 

For example, given ten processes with the runtimes specified as below (in arbitrary time units), 

and assuming an overhead of 50 time units for each process switch, we will examine the effect of 

the following algorithms on response time and turnaround time. 

 

• Batch Algorithms 

1. First Come First Served 

2. Shortest Process First  (run to completion) 

3. Longest Process First  (run to completion) 

 

• Interactive Algorithms 

1. Round Robin, Q=1000 

2. Round Robin, Q=10000 

3. Round Robin, Q=10 

 

 

 

Table 1 – Processes and Required Runtimes 

 

Process 

Number 
1 2 3 4 5 6 7 8 9 10 

Run 

Time 
1000 1300 600 800 1500 500 5000 3000 1000 500 

 

 

 

Note that, for the sake of simplicity, I make two unrealistic assumptions: 

 

1. Each process is assumed to have been initiated (in numeric order) at time t=0. 

 

2. The effects of process I/O are ignored. 

 

 

 

P
age 9.1432.3



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition Copyright 

© 2004, American Society for Engineering Education 

Table 2 – Response Times for Given Algorithms 

 

 
FCFS SPF LPF 

RR 

Q=1000 

RR 

Q=10000 

RR 

Q=10 

1 50 2650 11050 50 50 50 

2 1100 4750 9700 1100 1100 110 

3 2450 1150 14000 2150 2450 170 

4 3100 1800 13150 2800 3100 230 

5 3950 6100 8150 3650 3950 290 

6 5500 50 14650 4700 5500 350 

7 6050 10700 50 5250 6050 410 

8 11100 7650 5100 6300 11100 470 

9 14150 3700 12100 7350 14150 530 

10 15200 600 15200 8400 15200 590 

Avg. 6265 3915 10315 4175 6265 320 

 

 

Table 3 – Turnaround Times for Given Algorithms 

 

 
FCFS SPF LPF 

RR 

Q=1000 

RR 

Q=10000 

RR 

Q=10 

1 1050 3650 12050 1050 1050 50100 

2 2400 6050 11000 9250 2400 57420 

3 3050 1750 14600 2750 3050 34500 

4 3900 2600 13950 3600 3900 42960 

5 5450 7600 9650 9800 5450 61080 

6 6000 550 15150 5200 6000 29760 

7 11050 15700 5050 16100 11050 91200 

8 14100 10650 8100 14000 14100 79200 

9 15150 4700 13100 8350 15150 50400 

10 15700 1100 15700 8900 15700 30000 

Avg. 7785 5435 11835 7900 7785 52662 

 

 

As can be seen, among the batch algorithms, shortest process first is best for both metrics, while 

longest process first (an impractical algorithm provided for comparison only) is the worst for 

both metrics.  The round robin algorithm is more frequently used on interactive systems.  The 

extremely low value of Q produces outstanding response time, but at the cost of an 

extraordinarily bad turnaround time.  A value between 100 and 1000 provides a more typical 

behavior. 

 

The difficulty with studying the effects of the choice of scheduling algorithm lies in the fact that 

the scheduling algorithm is generally buried deep within the core of the operating system. It is 

one of the lowest-level functions performed by the system.  Furthermore, due to the non-
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deterministic nature of process introduction and completion, the effects of changing the 

algorithm are extremely difficult to measure under actual operating conditions. 

 

 

Project Description 

 

The usual way of dealing with the difficulties of measuring the effects of different choices of 

scheduling algorithms is to run simulations of process execution.  Instead of running a sequence 

of actual processes on a system and measuring the desired times, a sequence of processes is 

instead modeled in a tightly controlled simulation environment.  A number of existing simulators 

exist, but I find that many students still fail to grasp the concepts when using such pre-built 

software.  They lack the hands-on feel of building the scheduling routines for themselves. 

 

My solution is to find a middle ground.  Modifying the scheduling parameters of an actual 

operating system is too difficult, and the effects are too difficult to measure anyway, while using 

an existing simulator package does not provide the nuts and bolts understanding of the algorithm 

itself.  Therefore, I have students construct a simple simulator environment of their own.  In this 

way, the distracting details can be filtered out, while still involving the students intimately with 

the algorithms they are measuring. 

 

In the environment constructed by the students, a small set of “processes” is trivially simulated. 

All processes are assumed to be present at the start, and the effects of I/O are ignored.  The 

“processes” themselves are nothing more than numbers representing the required runtimes for 

the simulated processes, with no reference to the “tasks” performed by those processes. 

 

 

Pseudocode of Simulation Program 

 

Data: 

 

startTime[]  // Keeps track of start time for each process 

endTime[]  // Keeps track of completion time for each process 

remainingTime[] // Keeps track of time remaining for each process 

   // Initialized to process required runtime 

systemClock  // Keeps track of total “elapsed time” 

 

 

Procedures: 

 

main() 

{ 

while (at least one unfinished process exists) 

{ 

nextProcess = schedule() 

run(nextProcess) 

} 
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output results 

} 

 

int schedule() 

{ 

update systemClock to reflect “overhead” in the scheduling algorithm 

 

choose process according to the rules associated with the chosen scheduling 

algorithm 

 

return process 

} 

 

void run(process) 

{ 

if (startTime[process] == 0) 

update startTime[process] to record process start time 

 

update remainingTime[process] according to the rules associated with the chosen 

scheduling algorithm 

 

update systemClock to reflect “elapsed time” from the previous step 

 

if (remainingTime[process] == 0) 

update endTime[process] to record process completion time 

} 

  

 

 

I usually have students model three different batch algorithms (first-come first-served [FCFS], 

shortest process first [SPF], and longest process first [LPF]) as well as the round robin algorithm 

with various time quanta.  The core operation of these programs is the same, with only the 

bolded parts of the schedule() and run() procedures requiring change. 

 

As mentioned in the previous section, I make two unrealistic assumptions for the sake of 

simplicity with this assignment.  First, I assume that all processes are introduced at time t=0.  

This is not an unreasonable assumption for batch systems, but it is not at all the norm for 

interactive systems.  However, for the sake of understanding the effects of different scheduling 

algorithms, allowing processes to be introduced at arbitrary times is not really necessary.  On the 

other hand, removing this assumption would not add too much complication to the resulting 

programs, so this assumption can be easily removed if desired. 

 

Second, I ignore the effects of I/O within the processes.  Given that the need for processes to 

wait for I/O operations is one of the primary motivations for multiprogramming, this is a serious P
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limitation.  However, modeling process I/O would add an extraordinary amount of complexity to 

the programs, so I sacrifice this aspect for the sake of ease of programming. 

 

 

Benefits 

 

This approach to studying process scheduling has two major benefits over more traditional 

approaches.  First, it allows the student to focus on the algorithm itself and its effects, without 

dealing with the distracting details of the actual implementation.  Furthermore, many of the 

activities in the operating system are (at least, to outside observation) nondeterministic in nature.  

These activities can mask the effects of changing the scheduling algorithm.  Simulator 

environments remove these distractions and make the concepts much more accessible. 

 

The second benefit is that this approach provides students with valuable programming 

experience, while not presenting them with challenges beyond their current level of ability.  One 

of the major problems I encounter as a professor of Computer Engineering Technology is that 

many of the students have only had one course in C programming, and these students generally 

do not understand even the most basic programming concepts yet.  This single, quarter-long 

course struggles to cover all of the basic ideas of programming, and students have no time to 

absorb and practice what they have learned.  This assignment gives these students valuable 

experience, programming with functions, loops, and arrays - the most fundamental of 

programming skills. 

 

 

Student Feedback 

 

Only anecdotal feedback exists, in the form of informal personal comments and comments made 

in lab reports and teaching evaluations.  In general, student comments fall into two categories.  

First (and by far more vocal), are the students who complain that “This is not a programming 

class, so why am I required to write programs?”  To some extent, I see this attitude as validation 

of my belief that the students need more programming practice, not less.  In fact, many of these 

students later come back to me and tell me how much more confidence they have concerning 

programming after the assignment.  Much of their initial resistance stems from their lack of 

confidence and practice.  As they discover that the problem is relatively simple to solve, that 

resistance fades. 

 

Second, and more importantly, students in general seem to feel that they have a better 

understanding of the underlying scheduling concept.  I have used the pre-written MOSS
1
 

simulator in previous OS classes, but never in the same class as student-written simulations, so I 

have no way of directly comparing the level of understanding.  My overall impression as a 

teacher is that the students generally did not gain as much understanding from the pre-written 

simulator as from writing a simulation from scratch.  The process of actually writing the 

algorithms forces the students to study the inner workings of the algorithm in much greater 

detail. 

 P
age 9.1432.7



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition Copyright 

© 2004, American Society for Engineering Education 

Conclusion 

 

Many further applications of student-written simulation programs exist.  In my Operating 

Systems class, I use this technique for demonstrating page replacement (memory allocation) 

algorithms.  I also use this method in Computer Architecture for demonstrating the benefits of 

pipelined CPU operation.  In both of these cases, the benefits have been as pronounced as for the 

process scheduling application. 

 

Some other applications include the following.  In Operating Systems, a simulation program 

could demonstrate the concepts of file allocation and disk fragmentation.  In Computer 

Networks, such a project could be used to demonstrate such concepts as network routing 

computations (such as Dijkstra’s Algorithm), network address computations, timesharing 

simulations, etc.  The possibilities are virtually endless. 

 

When studying Computer Science or Computer Engineering, many concepts exist which are very 

simple conceptually, but difficult to demonstrate practically.  The writing of simulation programs 

to demonstrate these concepts is the best way I have yet found for making these ideas accessible 

to the students. 
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