
Paper ID #34908

Writing Triggers to Implement Business Rules in a Relational Database

Dr. Reza Sanati-Mehrizy, Utah Valley University

Reza Sanati-Mehrizy is a professor of Computer Science Department at Utah Valley University, Orem,
Utah. He received his M.S. and Ph.D. in Computer Science from the University of Oklahoma, Norman,
Oklahoma. His research focuses on diverse areas such as: Database Design, Data Structures, Artificial
Intelligence, Robotics, Computer Aided Manufacturing, Data Mining, Data Warehousing, and Machine
Learning.

Dr. Afsaneh Minaie, Utah Valley University

Afsaneh Minaie is a Professor and Chair of Engineering Department at Utah Valley University. She re-
ceived her B.S., M.S., and Ph.D. all in Electrical Engineering from University of Oklahoma. Her research
interests include gender issues in the academic sciences and engineering fields, Embedded Systems De-
sign, Mobile Computing, Wireless Sensor Networks, Nanotechnology, Data Mining and Databases.

c©American Society for Engineering Education, 2021

Writing Triggers to Implement Business Rules in a Relational Database

Abstract

Organizations have many business rules (constraints) to implement in their daily operations. This

is done mainly by action assertions traditionally implemented in procedural logic buried deeply

within user’s application program in a form that is virtually unrecognizable, unmanageable, and

inconsistent. This approach places a heavy burden on the programmer, who must know all the

constraints that an action may violate and must include checks for each of these constraints. An

omission, misunderstanding, or error by the programmer will likely leave the database in an

inconsistent state.

Entity Relationship (ER) model is a common conceptual database design tool used for relational

database design. To enforce the business rules, some business rules can be included in this ER

model in the form of constraints. However, including constraints in this graphical model is just a

reminder for the programmer to include them in his database implementation. The problem is that

constraint is very rigid and the database becomes programmer dependent and there is no grantee

that programmer will include them in his implementation.

An alternative solution for this problem is to implement the constraints in the form of triggers.

Trigger is a program and is more flexible than a constraint. Trigger has Event, Condition and

Action (ECA) property. When an event take place and consequently a condition becomes true, the

trigger takes action automatically and modifies the database as needed.

In this paper, we use the ER notation to represent some business rules (constraints) graphically for

a simplified university database and write triggers to implement them to ensure the consistency of

the data in the database.

Introduction

Database is a collection of data that organizations and businesses may use frequently. It is very

important that this date be valid and consistent as organizations and businesses’ life depends on

this data. To ensure the integrity and consistency of data in a database, the database designers need

to consider many rules called business rules or constraints. This is done mainly by action assertions

traditionally implemented in procedural logic buried deeply within user’s application program in

a form that is virtually unrecognizable, unmanageable, and inconsistent. This approach places a

heavy burden on the programmer, who must know all the constraints that an action may violate

and must include checks for each of these constraints. An omission, misunderstanding, or error by

the programmer will likely leave the database in an inconsistent state.

Some constrains can be specified during the definitions of attributes while the tables are being

created called column constraint like unique, primary key, null, not null, etc. Some other

constraints can be specified right after the definitions of attributes called table constraint like

foreign key, composite primary key, etc. But there are some constraints that can not be specifies

as column constraint or table constraint.

Entity Relationship (ER) model is a common conceptual database design tool used for relational

database design. To guarantee integrity and consistency of data in a database system, business

rules need to be enforced. To do so, some business rules [2] can be included in this ER diagram in

the form of constraints [1]. However, including constraints in this graphical model are just a

reminder for the programmer to be considered during the database implementation but it is better

to have them included. The problem is that constraint is very rigid and the database becomes

programmer dependent and there is no grantee that programmer will include them in his

implementation.

An alternative solution for this problem is to implement the constraints in the form of triggers.

Trigger is a program and is more flexible than a constraint. Trigger has Event, Condition and

Action (ECA) property. When an event take place and consequently a condition becomes true, the

trigger takes action automatically and modifies the database as needed.

In this paper, we use the ER notation to represent some business rules (constraints) graphically for

a simplified university database and write triggers to implement them to ensure the consistency of

the data in the database. This is a type of assignment that our students will do in our database class.

Background Information

Our University is a state institution with about 40,000 students. This university is located in Utah

County which has a population of over 430,000 residents. The Computer Science department at

Utah Velley University (UVU) offers a Bachelor’s Degree in Computer Science, a Bachelor’s

Degree in Computer Networking, a Bachelor’s Degree in Web Development, a Bachelor’s

Degree in Software Engineering, and a Master’s Degree in Computer Science. The Bachelor of

Science in Computer Science program was one of the first Bachelor of Science programs

implemented at UVU in 1993. The program’s goal has been to provide a quality program that

meets accreditation standards while providing the students with a skill set that allows them to

succeed in computing careers. The curriculum content for the Computer Science degree is based

on the 2001 ACM Curriculum Report. The Computer Science degree at UVU was accredited by

Accreditation Board for Engineering and Technology (ABET) in 2002 and currently has more

than 1,200 students. Students in this program take core courses until the first semester of their

junior year, when they begin choosing their electives for different specialization areas.

Database Engineering is a viable component of Software Engineering. In our Undergraduate

Computer Science Degree, there is only one database course where Relational, Object

Relational, Object-Oriented and Distributed Databases will be covered. Since the mission of this

University is to graduate students with high quality education prepared for the competitive job

market, as part of this course work, students work on a set of assignments and implement

one/two database(s) of their choice in teams. The contents represented in this paper is an

example of an assignment that student need to do in this course.

Entity Relationship for University Database

The following diagram (Figure 1) represents a simplified entity relationship for course assignment

of a university database.

 Figure 1: ER diagram for simplified for course assignment

The university has a number of faculty and offers a number of courses. The relationship qualify

indicates that a faculty is qualified to teach many courses but not all courses and there are many

faculty qualified to teach a course but not everyone. The relationship assign indicates that a

faculty will be assigned many courses to teach. In our university, a course is assigned to only one

faculty to teach. Therefore, the relationship assign is a one-to-many relationship.

Without considering any business rule, it is possible that a faculty be assigned to a course that he

is not qualified to teach and imaging what a disaster it will be. Also it will be possible that many

courses (more than 3) be assigned to a faculty to teach way beyond what he is supposed to teach.

To prevent such problems, two business rules (constraints) are expressed in this ER diagram,

assignConst and Up LIM 3 that the programmer needs to consider during implementation of the

underline database. UP LIM 3 indicates that maximum number of courses assigned to faculty can

not exceed 3. asssignConst indicates that when we want to assign a course to a faculty to teach,

we must make sure that on the date of assignment, the faculty is qualified to teach that course,

means the date of qualitied must precede the date of course assignment. Otherwise the

assignment should not take place.

These types of constraints can’t be implement as column constraint or table constraint mentioned

before. We will write triggers to enforce this type of constraints (business rules).

Why Triggers

An active database is one in which the DBMS monitors the contents in order to prevent illegal

states from occurring using constraints and triggers. However triggers are more flexible than

constraints and allow a greater variety of actions [3].

Column and table constraints are rigid and can be used only the way DBMS allows. Triggers are

flexible and can be written as needed. Triggers and routines are very powerful database objects

because they are stored in the database and controlled by the DBMS. The code required to create

them is stored in only one location and is administered centrally. This promotes stronger data

integrity and consistency of use within the database and code maintenance is simplified [4].

Both routines and triggers are blocks of procedural codes. Routines must be called to operate but

triggers will be executed automatically. Triggers have three parts Event, Condition and Action.

When an event such as INSERT, UPDATE or DELETE takes place and certain condition

becomes true, trigger will be executed (fired) automatically to take on action. Trigger can also

cascade, causing other triggers to fire [1]. So, a single action (request) by a client can cause a

series of integrity checks to be performed without too much network traffic. Trigger has many

applications, can be used to ensure referential integrity, enforce business rules, create audit trail,

replicate tables or activate a procedure [5]. Interested readers can get more information about

triggers in Oracle 11g at [6].

 Figure 2: Schema for the Above ER Diagram:

Figure 2 represents the schema for the ER diagram represented in figure 1. Faculty, Qualify and

Course become tables. Since the assign relationship is a one-to-many relationship, there is no

need for assign table. But the key of faculty table (FId) and date assigned are added to course

table. The programmer has created extra table temp to activate the triggers because in Oracle 11g

(used in this project), if the trigger is written on update of course table, it does not allow to

access the course table in the body of the trigger. But the actual course assignment is done by

updating the course table.

Using Oracle Data Base Management System (DBMS), the corresponding tables have been

created by the following SQL queries:

Queries to create tables

Note: From now-on Fac_Assn5 means Faculty

 Crse_Assn5 means Course

 Qual_Assn5 means Qualify

 Temp_Assn5 meand Temp

CREATE TABLE Fac_Assn5 (

FacId CHAR(20),

FName CHAR(20),

CONSTRAINT FacId_pk PRIMARY KEY (FacId)

);

CREATE TABLE Crse_Assn5 (

CrseId CHAR(20),

CName CHAR(20),

FId CHAR(20),

assn_Date DATE,

CONSTRAINT CId_pk PRIMARY KEY (CrseId),

CONSTRAINT Crsae_FId_fk FOREIGN KEY (FId) REFERENCES Fac_Assn5(FacId));

CREATE TABLE Qual_Assn5 (

FId CHAR(20),

CId CHAR(20),

qual_Date DATE,

CONSTRAINT FId FOREIGN KEY (FId) REFERENCES Fac_Assn5(FacId),

CONSTRAINT CId_fk FOREIGN KEY (CId) REFERENCES Crse_Assn5(CrseId));

CREATE TABLE Temp_Assn5 (

FId CHAR(20),

CId CHAR(20),

assn_Date DATE,

CONSTRAINT assn_FId_fk FOREIGN KEY (FId) REFERENCES Fac_Assn5(FacId),

CONSTRAINT assn_CId_fk FOREIGN KEY (CId) REFERENCES Crse_Assn5(CrseId));

Queries to populate tables

INSERT ALL

INTO Fac_Assn5 VALUES ('F0001', 'John Mckormick')

INTO Fac_Assn5 VALUES ('F0002', 'Ashley Tall')

INTO Fac_Assn5 VALUES ('F0003', 'Henry Rockered')

INTO Fac_Assn5 VALUES ('F0004', 'Frank Tisdally')

INTO Fac_Assn5 VALUES ('F0005', 'Lenny Merch')

INTO Fac_Assn5 VALUES ('F0006', 'Jane Languitch')

INTO Fac_Assn5 VALUES ('F0007', 'Becca Brite')

INTO Fac_Assn5 VALUES ('F0008', 'Luna Smith')

INTO Fac_Assn5 VALUES ('F0009', 'Shawn Hart')

INTO Fac_Assn5 VALUES ('F0010', 'Donald Forest')

INTO Fac_Assn5 VALUES ('F0011', 'Lucy Grey')

INTO Fac_Assn5 VALUES ('F0012', 'Melissa Makey')

INTO Fac_Assn5 VALUES ('F0013', 'Sam Sworenson')

INTO Fac_Assn5 VALUES ('F0014', 'Kylie Burnard')

INTO Fac_Assn5 VALUES ('F0015', 'Lane Burtford')

 SELECT * FROM DUAL;

INSERT ALL

INTO Crse_Assn5 (CrseId, CName) VALUES ('1111', 'Math 1060')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1112', 'Physc 3000')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1113', 'CS 2810')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1114', 'CS 3270')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1115', 'Physc 2050')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1116', 'Math 2600')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1117', 'Math 3680')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1118', 'ART 1000')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1119', 'ART 1010')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1120', 'CS 4060')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1121', 'Math 4030')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1122', 'ART 3070')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1123', 'Physc 2030')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1124', 'Physc 1010')

INTO Crse_Assn5 (CrseId, CName) VALUES ('1125', 'CS 3070')

 SELECT * FROM DUAL;

INSERT ALL

INTO Qual_Assn5 VALUES ('F0001', '1111', TO_DATE('10.05.2012','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0002', '1112', TO_DATE('03.11.2005','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0003', '1113', TO_DATE('13.09.2008','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0004', '1114', TO_DATE('06.07.2015','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0005', '1115', TO_DATE('05.05.2002','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0006', '1116', TO_DATE('06.03.2016','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0007', '1117', TO_DATE('07.06.2001','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0008', '1118', TO_DATE('01.11.2006','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0009', '1119', TO_DATE('02.09.2009','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0010', '1120', TO_DATE('12.04.2007','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0011', '1121', TO_DATE('15.05.2010','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0012', '1122', TO_DATE('25.05.2010','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0013', '1123', TO_DATE('20.06.2011','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0014', '1124', TO_DATE('02.08.2012','DD.MM.YYYY'))

INTO Qual_Assn5 VALUES ('F0015', '1125', TO_DATE('06.09.2005','DD.MM.YYYY'))

SELECT * FROM DUAL;

INSERT ALL

INTO Temp_Assn5 (CId) VALUES ('1111')

INTO Temp_Assn5 (CId) VALUES ('1112')

INTO Temp_Assn5 (CId) VALUES ('1113')

INTO Temp_Assn5 (CId) VALUES ('1114')

INTO Temp_Assn5 (CId) VALUES ('1115')

INTO Temp_Assn5 (CId) VALUES ('1116')

INTO Temp_Assn5 (CId) VALUES ('1117')

INTO Temp_Assn5 (CId) VALUES ('1118')

INTO Temp_Assn5 (CId) VALUES ('1119')

INTO Temp_Assn5 (CId) VALUES ('1120')

INTO Temp_Assn5 (CId) VALUES ('1121')

INTO Temp_Assn5 (CId) VALUES ('1122')

INTO Temp_Assn5 (CId) VALUES ('1123')

INTO Temp_Assn5 (CId) VALUES ('1124')

INTO Temp_Assn5 (CId) VALUES ('1125')

SELECT * FROM DUAL;

 Faculty Course

 list of courses to be assigned

Triggers

Updating tables when faculty gets assigned to teach a course

UPDATE Temp_Assn5 SET FId = 'F0010', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1111';

UPDATE Crse_Assn5 SET FId = 'F0010', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1111';

UPDATE Temp_Assn5 SET FId = 'F0003', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1112';

UPDATE Crse_Assn5 SET FId = 'F0003', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1112';

UPDATE Temp_Assn5 SET FId = 'F0002', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1113';

UPDATE Crse_Assn5 SET FId = 'F0002', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1113';

UPDATE Temp_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1114';

UPDATE Crse_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1114';

UPDATE Temp_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1120';

UPDATE Crse_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1120';

UPDATE Temp_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1117';

UPDATE Crse_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1117';

UPDATE Temp_Assn5 SET FId = 'F0013', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1115';

UPDATE Crse_Assn5 SET FId = 'F0013', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1115';

UPDATE Temp_Assn5 SET FId = 'F0005', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1115';

UPDATE Crse_Assn5 SET FId = 'F0005', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1115';

UPDATE Temp_Assn5 SET FId = 'F0015', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1116';

UPDATE Crse_Assn5 SET FId = 'F0015', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1116';

UPDATE Temp_Assn5 SET FId = 'F0014', assn_Date = TO_DATE('05.09.2014') WHERE CId = '1115';

UPDATE Crse_Assn5 SET FId = 'F0014', assn_Date = TO_DATE('05.09.2014') WHERE CrseId = '1115';

UPDATE Temp_Assn5 SET FId = 'F0004', assn_Date = TO_DATE('03.02.2015') WHERE CId = '1116';

UPDATE Crse_Assn5 SET FId = 'F0004', assn_Date = TO_DATE('03.02.2015') WHERE CrseId = '1116';

UPDATE Temp_Assn5 SET FId = 'F0011', assn_Date = TO_DATE('09.11.2017') WHERE CId = '1118';

UPDATE Crse_Assn5 SET FId = 'F0011', assn_Date = TO_DATE('09.11.2017') WHERE CrseId = '1118';

UPDATE Temp_Assn5 SET FId = 'F0009', assn_Date = TO_DATE('04.09.2010') WHERE CId = '1119';

UPDATE Crse_Assn5 SET FId = 'F0009', assn_Date = TO_DATE('04.09.2010') WHERE CrseId = '1119';

UPDATE Temp_Assn5 SET FId = 'F0007', assn_Date = TO_DATE('01.10.2009') WHERE CId = '1121';

UPDATE Crse_Assn5 SET FId = 'F0007', assn_Date = TO_DATE('01.10.2009') WHERE CrseId = '1121';

UPDATE Temp_Assn5 SET FId = 'F0008', assn_Date = TO_DATE('11.07.2008') WHERE CId = '1122';

UPDATE Crse_Assn5 SET FId = 'F0008', assn_Date = TO_DATE('11.07.2008') WHERE CrseId = '1122';

UPDATE Temp_Assn5 SET FId = 'F0015', assn_Date = TO_DATE('05.06.2012') WHERE CId = '1123';

UPDATE Crse_Assn5 SET FId = 'F0015', assn_Date = TO_DATE('05.06.2012') WHERE CrseId = '1123';

UPDATE Temp_Assn5 SET FId = 'F0006', assn_Date = TO_DATE('02.10.2015') WHERE CId = '1124';

UPDATE Crse_Assn5 SET FId = 'F0006', assn_Date = TO_DATE('02.10.2015') WHERE CrseId = '1124';

UPDATE Temp_Assn5 SET FId = 'F0007', assn_Date = TO_DATE('09.05.2016') WHERE CId = '1125';

UPDATE Crse_Assn5 SET FId = 'F0007', assn_Date = TO_DATE('09.06.2016') WHERE CrseId = '1125';

Operations Failed

UPDATE Temp_Assn5 SET FId = 'F0004', assn_Date = TO_DATE('03.02.1999') WHERE CId = '1114';

UPDATE Crse_Assn5 SET FId = 'F0004', assn_Date = TO_DATE('03.02.1999') WHERE CrseId = '1114';

The above course assignment failed because the faculty is not qualifies to teach course 1114.

UPDATE Temp_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CId = '1122';

UPDATE Crse_Assn5 SET FId = 'F0001', assn_Date = TO_DATE('04.10.2016') WHERE CrseId = '1122';

The above course assignment failed because the faculty has reached the limit 3.

Additional Queries to Show Content of Tables after Course Assignments

SELECT F.FName, F.FacId FROM Fac_Assn5 f;

SELECT F.FName, F.FacId, c.CName FROM Fac_Assn5 f INNER JOIN Crse_Assn5 c ON c.FId = f.FacId;

SELECT F.FName, F.FacId, c.CrseId, a.assn_Date FROM Fac_Assn5 f, Crse_Assn5 c,

Temp_Assn5 a WHERE f.FacId = c.FId AND c.CrseId = a.CId;

SELECT F.FName, F.FacId, c.CrseId, a.assn_Date, q.qual_Date FROM Fac_Assn5 f,

Crse_Assn5 c, Temp_Assn5 a, Qual_Assn5 q

WHERE f.FacId = c.FId AND c.CrseId = a.CId AND c.CrseId = q.CId;

SELECT F.FName, F.FacId, c.CrseId, a.assn_Date, q.qual_Date FROM Fac_Assn5 f,

Crse_Assn5 c, Temp_Assn5 a, Qual_Assn5 q

WHERE f.FacId = c.FId AND c.CrseId = a.CId AND c.CrseId = q.CId

AND f.FacId = 'F0009';

SELECT F.FName, F.FacId, c.CrseId, a.assn_Date, q.qual_Date FROM Fac_Assn5 f,

Crse_Assn5 c, Temp_Assn5 a, Qual_Assn5 q

WHERE f.FacId = c.FId AND c.CrseId = a.CId AND c.CrseId = q.CId

AND c.CName LIKE '%CS%';

SELECT F.FName, F.FacId, c.CrseId, a.assn_Date, q.qual_Date FROM Fac_Assn5 f,

Crse_Assn5 c, Temp_Assn5 a, Qual_Assn5 q

WHERE f.FacId = c.FId AND c.CrseId = a.CId AND c.CrseId = q.CId

AND c.CName LIKE '%ART%';

Conclusion

In this paper, we have used the ER Diagram to represent some business rules graphically at

conceptual level in a relational data model to enforce database consistency. The constraints that

have been represented in this paper have so far focused on the relationships between entities and

could be characterized as existence constraints. These constraints make sure that faculty will be

assigned only courses that he/she is qualified to teach and he/she will not be assigned more than 3

courses to teach. Triggers are written for course assignments and have been tested to make sure

these constraints will not be violated. Yet, business rules are not limited to only these types of

constraints. The future of this work will be to examine other types of constraints to ensure that

there is a method of representing and enforcing the other type of constraint.

Our students in our database course get a number of hands-on assignments of this kind. They find

them a little bit challenging but they really enjoy doing this kind of work.

References:

1. J. A. Hoffer, M. B. Prescott and F. R. McFadden, “Modern Database Management”, Seventh Edition,

Prentice Hall, 2005.

2. A. Perkins, “Business Rules = Meta Data”, the proceedings of the: Technology of Object-Oriented

Languages and Systems, IEEE, 2000.

3. Catherine M. Ricardo, “Database Illuminated”, Third Edition, Jones & Bartlett Learning, 2017.

4. Mullins C. S. 1995, “The procedural DBA.” Database Programming & Design 812 (December): 40-45.

5. Rennhackkamp, M 1996, “Trigger Happy.” DBMS9,5 (May): 89-91, 95.

6. “Using Triggers and Compound Triggers in Oracle 11g”, https://dbanotes.com/using-triggers-and-compound-

triggers-in-oracle-11g-3ebb050867cc.

https://dbanotes.com/using-triggers-and-compound-triggers-in-oracle-11g-3ebb050867cc
https://dbanotes.com/using-triggers-and-compound-triggers-in-oracle-11g-3ebb050867cc

