instrumentation for combustion science, novel methods for environmental re- mediation, and microelectronics including surface acoustic wave (SAW) devices. In addition to teaching in the field of electrical engineering, he coordinates the senior engineering capstone program which is a multidisciplinary, two-semester course sequence with projects sponsored by industrial partners. Within this role, he focuses on industrial outreach and the teaching and assessment of professional skills. He received his Ph.D. and S.M. degrees from MIT in 2007 and 1999, respectively, and a B.S.E.E. degree from the University of Virginia in 1997.Dr. AMM Nazmul Ahsan, Western Carolina University Dr. Ahsan is currently an Assistant Professor in the
engineering (FE) exam. Thestudy presented in this paper details the approach taken to replace in-class quizzes with regularout-of-class homework assignments in an introductory engineering mechanics course. Theobjectives of the study were to: 1) provide students with a variety of problems to apply both newand previous knowledge; 2) encourage engagement with the course material outside of in-personlessons; and 3) teach students to reflect and self-assess their own learning. Eighteen homeworkassignments were added throughout the thirty-lesson course. Each assignment consisted of twoparts; practice problems from previous lessons and conceptual responses based on preparation forthe next lesson. At the beginning of each class, students were given the
Paper ID #34703Understanding Key Student Perspectives in an InterdisciplinaryFlex-model Sustainability Course as Compared to a Traditional In-personCourseDr. Tony Lee Kerzmann, University of Pittsburgh Dr. Tony Kerzmann’s higher education background began with a Bachelor of Arts in Physics from Duquesne University, as well as a Bachelor’s, Master’s, and PhD in Mechanical Engineering from the University of Pittsburgh. After graduation, Dr. Kerzmann began his career as an assistant professor of Mechanical Engineering at Robert Morris University which afforded him the opportunity to research, teach, and advise in numerous
, Coral Gables, FL, USA in 2012, and the Ph.D. degree in bioengineering from Clemson University, Clemson, SC, USA in 2017. She is a Lecturer and the Undergraduate Coordinator in the J. Crayton Pruitt Family Department of Biomedical Engineering with the University of Florida, Gainesville, FL, USA. She instructs the fresh- man level introduction course and the junior level cell culture laboratory course. As a doctoral student, she studied breast tissue engineering and was an Instructor for the Clemson University General Engineer- ing Program. She also participated in the NSF’s Innovation Corps for Learning (I-Corps L) program and was a research mentor through National Science Foundation’s Research Experience for
Paper ID #34189Engaging Students in Synchronous, Remote, or Hybrid First-YearEngineering CoursesDr. AJ Hamlin, Michigan Technological University AJ Hamlin is a Principal Lecturer in the Department of Engineering Fundamentals at Michigan Tech- nological University, where she teaches first-year engineering courses. Her research interests include engineering ethics, spatial visualization, and educational methods. She is an active member in the Mul- tidisciplinary Engineering and the Engineering Design Graphics Divisions of ASEE. For the Multidisi- plinary Division she has served as the Secretary/Treasurer, Program Chair, and
Paper ID #32829Introducing Communications to High School Students by Leveraging Zoomasa Communications PlatformProf. Curt Schurgers, University of California, San Diego Curt Schurgers is an Associate Teaching Professor in the UCSD Electrical and Computer Engineering Department. His research and teaching are focused on course redesign, active learning, and project- based learning. He also co-directs an undergraduate research program, Engineers for Explorations, in which undergraduates spearhead real-world engineering challenges that impact the world of exploration and resource conservation. Curt Schurgers received his B.S
Using Multimedia Case Studies to Teach Engineering Design”, Journal of Educational Multimedia and Hypermedia, 1994, 3(3/4): p. 351-376.[5] Regan, M. and Sheppard, S.D., "Interactive Multimedia Courseware and Hands-on Learning Experience: An Assessment Study", Journal of Engineering Education, 1996, 85(2): p. 123-130.[6] Chen, X., Kehinde, L.O., Zhang, Y., Darayan, S., Olowokere, D.O. and Osakue, D., “Using Virtual and Remote Laboratory to Enhance Engineering Technology Education”, American Society for Engineering Education Annual Conference, Vancouver, B.C. Canada, June 2011.[7] Murphy, T., Goeser, P.T., and Williams, C., “Analysis of Usage Statistics of MATLAB Marina - A Virtual Learning Environment
. In doing so, he focuses on Engineering education policies and practices in teaching learning processes, assessments, laboratories and practical internships. Mr. Halkiyo has been teaching different Civil En- gineering courses at Bule Hora University, Ethiopia, where he also served as a department head, and conducts various research and community projects. American c Society for Engineering Education, 2021 Powerful Change Attends to Power RelationsIntroduction & BackgroundWhile changing engineering departments to become more inclusive and equitable is a commongoal, research repeatedly confirms that such change is rare. Notably, change efforts
National Laboratory. He served as Department Chair from 2011-2019, and currently serves as the Director of Diversity, Equity, and Inclusion for his department. American c Society for Engineering Education, 2021 A DEI Task Force within a Mechanical Engineering DepartmentMotivation and BackgroundThe events and movements of 2020 have put into stark relief the fact that most academicinstitutions are not doing enough to address issues of diversity, equity, inclusion, and accessamong undergraduates. More specifically, these topics are often considered tangential to coreengineering topics, and are therefore relegated to breadth requirements for coverage, if at
Manufacturing (MMEM) at California State University Chico in 2015 as an Assistant Professor. Dr O’Connor teaches a myriad of courses including: Dynamics, Materials, Thermodynamics, Machine Design, and Vibrations. In addition, he is the faculty advisor to both Chico State Rocketry and SAE Mini Baja student clubs. American c Society for Engineering Education, 2021 Switching Gears in Machine Design; A Focus Toward Technical Writing Skills in Lieu of a Hands-On Semester Design and Fabrication ProjectAbstractIn light of the recent global pandemic, many universities have decidedly transitioned to fullyonline. The obvious consequence being that technical hands-on
University in Flint, Michigan. There, he also served as the program director for Entrepreneurship Across the University. Prior, Doug was the Director of Research & Development for Digisonix Incorporated. His disciplinary specializations include signal processing, acoustics, and wireless communications.Dr. Heather Dillon, University of Washington Tacoma Dr. Heather Dillon is Professor and Chair of Mechanical Engineering at the University of Washington Tacoma. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining academia, Heather Dillon worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer.Dr. Mark L
funds of knowledge into their teaching without sometimes beingaware of it. However, there were certain institutional barriers that prevented its fullimplementation in the curriculum. These results indicate that although teachers see thesignificance of funds of knowledge in engineering, the teachers and teaching practices are stillembedded in a deficit-oriented educational structure that may prevent some of these changesfrom occurring.IntroductionWith the emergence of the Next Generation Science Standards [1], middle school teachershave been called to integrate engineering into their classes. However, there has been littlediscussion on how middle school teachers can be supported to effectively adopt instructionalpractices that combine both asset
. The final project deliverables include submittinga formal project report documenting the design/fabrication process, flow charts, schematics, andresults and discussion. The students were also required to demonstrate their project, make a formalPowerPoint presentation, and compete against mechanical and civil engineering projects. Thestudents were required to sign the code of conduct and document each team members’ contributionto each project with details of their executed tasks. The students very much enjoyed working in ateam environment.2. Research methodology Teaching and learning engineering education processes are strongly determined bypractical exercises, experiments, and laboratory classes. Engineering students learn by doing
Paper ID #33070A University-designed Middle School Remote Summer Engineering AcademyMrs. Zahraa Krayem Stuart, Stony Brook University Zahraa Krayem Stuart received Bachelor of Engineering in Electrical Engineering from Stony Brook University in 2016. In 2017, she joined the PhD program in Electrical Engineering Statistical Signal Processing. Zahraa designs, develops, and instructs engineering teaching laboratories for both high school and middle school students since 2016.Dr. Monica Bugallo, Stony Brook University M´onica F. Bugallo is the Vice Provost of Faculty Affairs and Diversity, Equity & Inclusion and Professor
laboratory experiences are less available, including extended school closuresdue to current circumstances or other uncontrollable events, such as natural disasters [7].However, the benefits of these lab kits to grade-school students could extend beyond abnormalcircumstances. They could be used to add increased variety and depth to homework assignments,allowing the educational benefits of lab science to be realized outside of the classroom and thetime and procedural restrictions of in-class labs. Drawing inspiration from the work of Pinnell etal. [8] on engineering challenges for students that utilized fixed sets of materials, the lab kitscould also be tailored to serve as a vehicle for STEM outreach that motivates students to becomemore interested
-02R, 2007.[7] “COVID-19 Protocol,” NJIT Makerspace, Sep. 08, 2020.https://www.njitmakerspace.com/covid-19-protocol.[8] K. A. A. Gamage, D. I. Wijesuriya, S. Y. Ekanayake, A. E. W. Rennie, C. G. Lambert, andN. Gunawardhana, “Online Delivery of Teaching and Laboratory Practices: Continuity ofUniversity Programmes during COVID-19 Pandemic,” Education Sciences, vol. 10, no. 10, p.291, Oct. 2020, doi: 10.3390/educsci10100291.[9] J. Li, J. Ramos_Salas, and C. Li, “Experience of Teaching Introduction to ElectricalEngineering with an Online Platform,” East Lansing, Michigan, Jul. 2020, p. 8, [Online].Available: https://strategy.asee.org/35758.[10] N. Kapilan, P. Vidhya, and X.-Z. Gao, “Virtual Laboratory: A Boon to the MechanicalEngineering Education
incoming freshmen cope with first year mathematics classes. She developed teaching modules to improve students’ learning in mathematics using technology.Dr. M. Javed Khan, Tuskegee University Dr. M. Javed Khan is Professor and Head of Aerospace Science Engineering Department at Tuskegee University. He received his Ph.D. in Aerospace Engineering from Texas A&M University, M.S. in Aero- nautical Engineering from the US Air Force Institute of Technology, and B.E. in Aerospace Engineer- ing from the PAF College of Aeronautical Engineering. He also has served as Professor and Head of Aerospace Engineering Department at the National University of Science and Technology,Pakistan. His research interests include experimental
engineering, there were concerns about how social distancing, especially in laboratory exercises,would affect accreditation. The engineering and technology accrediting board, ABET, issued informationrelatively early about changes due to COVID-19. ABET determined short-term changes due to COVIDwould not need to be reported (ABET, 2020). In addition to concerns about having in-person classes andlab exercises, another concern expressed was how to communicate online in ways that are as effectiveas in person. Universities were prompted to provide additional faculty support for teaching and someeven identified some “hacks” that could be used for a graphical interface (University of Nevada Reno,2020). Other lessons learned include better ways to grade
focuses on contemporary, cul- turally relevant, inclusive pedagogical practices, industry-driven competency development in engineering, and understanding the experiences of Latinx and Native Americans in engineering from an asset-based perspective. Homero has been recognized as a Diggs Teaching Scholar, a Graduate Academy for Teach- ing Excellence Fellow, a Diversity Scholar, a Fulbright Scholar, and was inducted in the Bouchet Honor Society. American c Society for Engineering Education, 2021 Engineering Ethics in Engineering Design Courses: A Preliminary InvestigationAbstractEngineering design entails countless
Paper ID #33690Impact of Flipped Classroom Model on High-workload and Low-incomeStudents in Upper-division Computer ScienceDr. Alberto Cureg Cruz, California State University, Bakersfield Dr. Cruz is an Assistant Professor of Computer Science, Principal Investigator of the Computer Percep- tion Laboratory (COMPLAB), and board member of the Center for Environmental Studies (CES) at the California State University, Bakersfield (CSUB). He received the B.S in Electrical Engineering from the University of California, Riverside (UCR) in 2008 and the Ph.D. in Electrical Engineering from UCR in 2014 as a Fellow of the NSF
the Poly- mers Division, studying polymers in microelectronics applications. His research projects at the University of Idaho center on thin-films based on hybrid materials, including silicates, polyoxometalates, and dia- mondoid polymers with funding from sources including the National Science Foundation, the Office of Naval Research, the Semiconductor Research Corporation, and the Donors of the American Chemical Society Petroleum Research Fund.Dr. Brian K. Johnson P.E., University of Idaho Brian K. Johnson received his Ph.D. in electrical engineering from the University of Wisconsin-Madison in 1992. Currently, he is a Distinguished Professor and Schweitzer Engineering Laboratories Endowed Chair in Power
Paper ID #32895The Mechanics of SUCCESS: How Non-Cognitive and Affective Factors Re-lateto Academic Performance in Engineering MechanicsDr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in
during the undergraduate years. In order to achieve it, only academiccounselling is not enough; it needs a more intimate ‘mentoring’ for both incoming Freshmen andoutgoing Senior undergraduates. During the present crisis of COVID-19 and in the post-COVID-19scenario thereafter in engineering education, when online instructions are rapidly replacing in-presencelectures at the undergraduate level, mastery learning is even more important in order to avoidprofessional limitations, and in the long run of lifelong learning, professional obsolescence.Key words: concentration, COVID-19, online instructions and lab experiments, academic counselling vs.mentoring.IntroductionIn one of the Indian epics, Mahabharata [1], the master archer, Drona, was teaching
Reserve University, and the University of Michigan at Ann Arbor. At Kettering, Prof. Kumon teaches introductory and upper-level physics courses, does research with undergraduates in physics and ultrasonics, supervises co-op and research theses, and coordinates the medical physics program and student physics clubs. He has also been a recent chair and co-chair of a Flint area faculty learning community on engaging undergraduate students in research.Gabrielle Feeny, American c Society for Engineering Education, 2021 Development of an Online Course in Research for Undergraduate StudentsAbstractThis Work in Progress paper will cover the development of an online course
Paper ID #33483Work in Progress: Synergy of Visualization and Experiment inUndergraduate Engineering Electromagnetics CourseDr. Yang Victoria Shao, University of Illinois Urbana-Champaign Yang V. Shao is a teaching assistant professor in electrical and computer engineering department at Uni- versity of Illinois Urbana-Champaign (UIUC). She earned her Ph.D. degrees in electrical engineering from Chinese Academy of Sciences, China. Dr. She has worked with University of New Mexico before joining UIUC where she developed some graduate courses on Electromagnetics. Dr. Shao has research interests in curriculum development
strategies in the statics classroom. Currently, Dr. Cutler works as an assessment and instructional support specialist with the Leonhard Center for the Enhance- ment of Engineering Education at Penn State. She aids in the educational assessment of faculty-led projects while also supporting instructors to improve their teaching in the classroom. Previously, Dr. Cutler worked as the research specialist with the Rothwell Center for Teaching and Learning Excellence Worldwide Campus (CTLE - W) for Embry-Riddle Aeronautical University.Dr. Swaroop Ghosh, Penn State Swaroop Ghosh received the B.E. (Hons.) from IIT, Roorkee, India, the M.S. degree from the University of Cincinnati, Cincinnati, and the Ph.D. degree from Purdue
,preparing future agricultural educators to meet the needs of a diverse array of learners in their classes. Sheteaches coursework in curriculum design, laboratory teaching practices, and teaching methods in agricul-tural education. Central to all of Dr. LaRose’s work as an educator and a scholar is an effort to addressinequities in agricultural education curriculum, program design, and recruitment practices. American c Society for Engineering Education, 2021 Value of Experiential Experiences for Diverse StudentPopulations within Engineering Disciplines: A Work in ProgressAbstractTraditional admissions processes at top institutions predominately utilize standardized test scoreswhen
at the University of Washington, Seattle. Her research interests in engineering education focus on the role of self-efficacy, belonging, and other non- cognitive aspects of the student experience on engagement, success, and persistence and on effective methods for teaching global issues such as those pertaining to sustainability. American c Society for Engineering Education, 2021 Industry-University Capstone Design: How did students adapt to the COVID-19 pandemic?AbstractA 2015 survey of 256 institutions from the US revealed that 70% of their capstone programswere funded by industry and government sponsors. This indicates the
engineering identity and identity construct development with an emphasis on recognition.Dr. Ann-Marie Vollstedt, University of Nevada, Reno Ann-Marie Vollstedt is a teaching assistant professor for the College of Engineering at the University of Nevada, Reno. Dr. Vollstedt completed her dissertation at the University of Nevada, Reno, which focused on exploring the use of statistical process control methods to assess course changes in order to increase student learning in engineering. Dr. Vollstedt teaches courses in engineering design as well as statics and runs the Engineering Freshmen Intensive Training Program. She is the recipient of the F. Donald Tibbitt’s Distinguished Teaching Award, the Paul and Judy Bible
Paper ID #32722It’s a Context Gap, Not a Competency Gap: Understanding the Transitionfrom Capstone Design to IndustryDr. Marie C. Paretti, Virginia Polytechnic Institute and State University Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and