Paper ID #34487Exploring Values and Norms of Engineering Through Responsible Innova-tionand Critiques of Engineering CulturesDr. Rider W. Foley, University of Virginia Dr. Rider W. Foley is an assistant professor in the science, technology & society program in the De- partment of Engineering and Society at the University of Virginia. He is the principal investigator at University of Virginia on the ’4C Project’ on Cultivating Cultures of Ethical STEM education with col- leagues from Notre Dame, Xavier University and St. Mary’s College. He is also the co-leader of the ’Nano and the City’ thematic research cluster
Shaffer, Lipscomb UniversityDr. Elizabeth Buchanan, Marshfield Clinic Research Institute Elizabeth Buchanan PhD is Director of the Office of Research Support Services and Senior Research Scientist at the Marshfield Clinic Research Institute. For over twenty years, Elizabeth’s scholarship has focused on research ethics, compliance and regulations, specifically around Internet, social media, and big data research. In these areas, she has written guidelines for IRBs/REBs, contributed to the Secretary’s Advisory Committee to the Office of Human Research Protections (SACHRP) in 2013, and was co-author to the 2012 Association of Internet Researchers Ethics Guidelines. Elizabeth serves as faculty at the Fordham University’s
students’ understanding. Ethics, for example, is often taught in civilengineering through the use of case studies. Further, case studies offer an opportunity forinterdisciplinary discussions centered on human dignity and justice goals [8] and likewisedevelop empathy for the users impacted by the project. Empathy is increasingly beingrecognized for the central role it may play in connecting crucial inter- and intrapersonal skillswith enhanced abilities to understand and productively work in multidisciplinary environmentswith diverse stakeholder groups [9]. Finally, some professors may not feel comfortable directlydiscussing race and related topics within an otherwise technical classroom environment; casestudies allow the emphasis to be taken off of
, a midwestern STEM-focusedinstitution, received an internal grant to develop a class in research for undergraduates. Thisclass, which is designed to be offered online either for cohorts or for individual students as anindependent study, contains information and resources on a diverse range of issues such asmotivation for research, research ethics, planning a research project, conducting literaturesearches, experimental procedures, keeping lab documentation for various types of projects, dataanalysis, technical writing, intellectual property, and issues relevant to scoping out one’s ownresearch project.This paper will give the background for the course development, evaluation of the requiredcontent and decisions on structure and format, and
,feeding to their fear about saying the wrong thing.The disconnect between the two groups often results in explicitly marginalizing classroomenvironments, i.e., environments where students feel unwelcome from blatantly marginalizing ordiscriminatory behaviors [1]. The data demonstrates that faculty are interested in developingimplicitly inclusive classrooms but fear that their lack of expertise on these topics will lead tofailure and having a negative impact on students. However, students voiced strong support andinterest in having faculty discuss and teach about inclusivity and ethics in their engineeringclassrooms. To create implicitly inclusive environments, faculty are encouraged to acknowledgeand discuss such topics in their classes and
reference to critical thinking. (2) The CEBOK2 outcomes on contemporary issues and historical perspectives; public policy, business and public administration; and globalization were eliminated as stand- alone outcomes and incorporated within the CEBOK3 outcome on professional responsibilities. (3) The CEBOK3 added a stand-alone outcome on engineering economics. (4) Separate CEBOK2 outcomes on teamwork and leadership were combined into a single CEBOK3 outcome. (5) The CEBOK2 outcome on professional and ethical responsibility was split into two CEBOK3 outcomes; and the new stand-alone professional responsibilities outcome was expanded in scope, as noted in (2) above. (6) In recognition
cultural world views, and to display attitudes of curiosity, openness, and empathy (Intercultural Knowledge); 3. Use quantitative reasoning skills to make calculations, interpret data, communicate results, and evaluate an issue or solve a problem (Quantitative Literacy); 4. Recognize ethical issues when presented in a complex, multilayered (grey) context, to analyze cross-relationships among the issues, and to evaluate ethical perspectives and concepts, including his or her own (Ethical Reasoning); 5. Analyze complex issues that have varying positions and assumptions using information from credible sources, and to state positions, create new positions, and acknowledge other positions including
interdisciplinary Individual Ph.D. Program (see bit.ly/uwiphd), Ryan is now a Postdoctoral Research Associate at Texas Tech University. He currently facilitates an interdisciplinary project entitled ”Developing Reflective Engineers through Artful Methods.” His scholarly interests include both teaching and research in engineering education, art in engineering, social justice in engineering, care ethics in engineering, humanitarian engineering, engineering ethics, and computer modeling of electric power and renewable energy systems.Dr. Jeong-Hee Kim, Texas Tech University Jeong-Hee Kim is Chairperson and Professor of Curriculum Studies and Teacher Education in the De- partment of Curriculum and Instruction at Texas Tech University
. Students in thisoption will learn how to apply the tools required to solve problems and mitigate new risks.Students pursuing the Cybersecurity option will be marketable and prepared for future-proofemployment in the areas such as below: Information security analyst: responsible to design and implement security systems to protect an organization’s computer infrastructure from cyber-threats. Data security analyst: responsible to safeguard an organization’s computer systems and networks by developing strategies and maintaining security to ensure that an organization’s networks has no security breach. Penetration tester: is an ethical hacker responsible for testing Information Technology / Operations
andconducting research from locations in time zones around the globe. The learning goals for thiscourse were developed such that students who participated in the course would: • Learn about research mentoring styles and build skills for communicating about goals and expectations with research mentors • Examine and apply time management skills for balancing academic, research and personal goals during college • Gain an understanding of the structure of research literature and develop skills for identifying and organizing appropriate references within their field of research • Explore methods for documenting and disseminating research results in engineering • Learn about ethical practices for research, and be able to articulate key
toreally grapple with the material effects that environmental contamination can have forcommunities who live in environmental sacrifice zones. Using these concepts in the classroomcan pull students into deep conversations about ethics and responsibility and emphasize the needfor more far-reaching visions of technical communication and community engagement, likethose explored in recent work on Socially Responsible Engineering [5].In this paper, we focus particularly on what we call systems theories and material vibrancy andenchantment theories. For each of these, we offer a synopsis of several key insights, texts, andimplications. Then, we show the utility of the approach in question to advance importantpedagogical goals related to ethics and
Ethics at Boston College. His research is in contemporary environmental issues and their religious, ethical, and political resonances. He is currently at work on a manuscript focused on John Muir, the famed nineteenth-century American conservationist and founder of the Sierra Club, and Muir’s influence on conceptions of the sacred in modern American religious consciousness. Dr. Powell’s research also examines the intersection of race, religion, and environment. American c Society for Engineering Education, 2021 Integrating history and engineering in the first-year core curriculum at Boston College1. IntroductionIn What
, makers, designers, and technologists. Currently, she is part of a team setting up the Human-Centered Engineering program at Boston College. American c Society for Engineering Education, 2021 Critical perspectives on teaching design in first-year engineeringIntroductionTo engineer is to bring science and technology into a society filled with competing economic,ethical, and political influences. Yet still, engineering programs teach technical content asseparate from their historical, social, and economic contexts, which creates a duality betweenthe technical and social (Cech, 2014; Faulkner, 2000; Leydens & Lucena, 2017). As studentslearn and practice
, with a service learningEngineering Ethics and Professionalism course, and allows students to work on service learningprojects for a local community organization in the summer. The design projects, with theirinevitable need to revisit design choices, teach students to build grit and learn from mistakesthrough the iterative process of design, build, and test. It also builds their engineering identity, asthey see themselves more as real-world problem solvers. The service learning aspect enablesstudents to see the impact of their engineering abilities on their local community and motivatesthem to persevere through the challenges and rigor of engineering degree programs. Theteamwork, peer mentorship, and faculty interaction required to carry out
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors 3. an ability to communicate effectively with a range of audiences 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and
- gineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a significant number of journal articles and book chapters on these topics. Dr. Barry is the 2020 recipient of ASEE’s National Outstanding Teaching Award.Major David Carlson P.E., United States Military Academy Major David Carlson is an instructor of Civil Engineering in the Department of Civil and Mechanical En- gineering at the United States Military Academy, West Point, NY. He was commissioned as an Engineer Officer from the U.S
civil breadth of the PE exam has fourteen out of 40 questions relevantto construction in the areas of site development, project planning, means/ methods, andconstructions codes totaling 35% of the breadth exam. When considering further the 40questions in a concentration area, other than construction, the required knowledge in constructionaccounts for approximately 18% of the whole exam. Inclusion of topics such as ethics andprofessional practice, engineering economics, environmental regulations, materials, earthwork,and volume computations in a construction course can significantly increase the percentagesreported above. The construction topics required by the National Council of Examiners forEngineering and Surveying are listed in Table A-4 of
) to achieve the mission and meet accreditation requirements: Our students upon graduation: 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors 3. an ability to communicate effectively with a range of audiences 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of
served as Program Chair, Associate Chair or Major Chair. The alumnigraduation year ranged from 1971 to 2019. These alumni are currently participating in diversecareers, including entrepreneurship, as employees of engineering firms, academia, graduatestudies, business analysis and management consulting, pharmaceutical science and law.Data Collection and AnalysisData was collected through semi-structured interviews with faculty members and alumni. Thestudy protocol was approved by the appropriate university research ethics board. The interviewswere conducted on Zoom, due in part to the Covid-19 Pandemic, and were subsequentlytranscribed by the research team. The faculty interviews were analyzed using open coding; codeswere developed based on
fruitful user experience [2], ethics and scrutiny on socialeffects [3], and communication and collaboration skills [4]. This initiative, a straightforwardreading assignment, reaching outside the obvious subject matter, fits into none of those categories.This paper suggests the benefits that it can confer in an introductory computing course.The SceneThe Computer Science First-Year Seminar (FYS) is one of about 60 such seminars acrosscampus. The university studies (general education) program requires incoming freshmen andother first-year students to take one from this selection of seminars on different subjects, notnecessariy in their major field if they are among the few who have chosen a major already. Theunderlying FYS goal, teaching these high
a professor at the University of Colorado Boulder in the Department of Civil, Envi- ronmental, and Architectural Engineering (CEAE) and Director for the Engineering Plus program. She has served as the Associate Chair for Undergraduate Education in the CEAE Department, as well as the ABET assessment coordinator. Professor Bielefeldt was also the faculty director of the Sustainable By Design Residential Academic Program, a living-learning community where students learned about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity
presentation slides completed bystudent groups within the three eligible chemical engineering sections. We measured studentachievement of three learning outcomes, referred to as Criterion 1, 2, and 3, by customizing arubric previously developed for evaluating undergraduate research assignments [16]. Criterion 1,“Evaluate Information Sources Critically,” measures students’ ability to select a variety ofappropriate information sources as part of their projects. Criterion 2, “Use InformationEffectively,” measures students’ ability to synthesize multiple information sources within theirpresentations, as well as their use of in-text citations to bolster their claims with evidence.Criterion 3, “Use Information Ethically,” measures students’ ability to
education through teaching methods, policies, and culture change.Dr. Andrew O. Brightman, Purdue University at West Lafayette (COE) Andrew O. Brightman serves as Assistant Head for Academic Affairs and Associate Professor of Engi- neering Practice in the Weldon School of Biomedical Engineering. His research background is in cellular biochemistry, tissue engineering, and engineering ethics. He is committed to developing effective ped- agogies for ethical reasoning and engineering design and for increasing the diversity and inclusion of engineering education.Prof. Patrice Marie Buzzanell, Purdue University at West Lafayette (COE) Patrice M. Buzzanell is Professor and Chair of the Department of Communication at the
Praxis Award in Professional Ethics from Villanova University in 2010, and the IEEE Barus Award for Defending the Public Interest in 2012. His paper on lead poisoning of children in Washington D.C., due to elevated lead in drinking water, was judged the outstanding science paper in Environmental Science and Technology in 2010. Since 1995, undergraduate and graduate students advised by Dr. Ed- wards have won 23 nationally recognized awards for their research work on corrosion and water treatment. Dr. Edwards is currently the Charles Lunsford professor of Civil Engineering at Virginia Tech, where he teaches courses in environmental engineering ethics and applied aquatic chemistry. American
problem definition, multiple interconnectedproblems, consequences difficult to imagine, let alone characterize, and riddled with ideological,political, and cultural conflict. Climate change looms large as an example of a social mess thatengineers will need new capacities to effectively confront.The capacities engineers need include many attributes long discussed within the LiberalEducation/Engineering and Society Division of ASEE and echoed in the NAE Engineer of 2020report at the turn of this century: creativity, leadership, communication, lifelong learning, ethics,resiliency, and flexibility. There is increasing recognition that we additionally need to grow ourcapacity for holistic systems (or systems-of-systems) thinking, data-informed
’ moralbehaviors. It postulates a developmental path toward a post-conventional/principled decision-making guided by generally accepted ethical principles and the equal consideration of others inall aspects. In contrast, Gilligan [14] explicates that connectivity and relations with othersemerge as a powerful axis in women’s moral development; integration of responsibility andcare—rather than universalizable ethical guidelines and equal consideration of others—characterizes the first significant transition in women’s developmental process. Feminist scholars attest that knowledge is fundamentally grounded in people’s experience[15]; given that women experience a different lifeworld from that of men, their knowledge andways of knowing also
studentsat the University of Michigan are here because they want to make the world a better place.Subsequently, the module asks students to consider engineering from a number of angles,including perspectives from junior and senior level engineering students that reinforce the socialdimensions of engineering. The module familiarizes students with the ABET criteria and theNSPE code of ethics [13], [15], while highlighting the ways in which these emphasize theimportance of engineers developing in social areas. Upon completing the module, students havebeen confronted with the idea that social engagement and the analysis of the social impacts ofengineering decisions is a core part of what a practicing engineer should do.Design & Decision
Infrastructure Inequities: A Pilot StudyAbstractAs social justice issues facing our nation continue to be placed in the foreground of everydaylife, it is important to understand how undergraduate civil engineering students perceive andunderstand relations between social justice and our infrastructure systems. Additionally, as morecivil engineering undergraduate programs increase the emphasis on ethics and equity issues intheir curricula, we must also seek to understand students’ awareness of their influence, as civilengineering professionals, to improve infrastructure systems that contribute to injustice andinequity.This paper presents findings from a pilot study conducted as part of an NSF-funded grantimplementing cultural and curricular changes in a
: 1) Self, 2) Interpersonal, 3) Team, and 4) Organizational/Societal. • Common themes in curriculum consisted of leadership theory, practice and reflection, team building exercises, seminars by industry leaders, leadership capability assessments, and student leader coaching, all with continuous improvement of curricular components. • Leadership learning outcomes were measured by: 1) Effective leadership, 2) Synthesis and problem solving, 3) Practical competence and 4) Change agility. • Consistent with the trends in industry, topics such as Ethics [16], Systems Thinking [17,18,19], Innovation [20] and Peer Coaching [21] have gained emphasis in the leadership curricula
they believe each engineering undergraduate degreeprogram should be able to cultivate in their students, including: (a) an ability to apply knowledgeof mathematics, science and engineering, (b) an ability to design and conduct experiments, aswell as to analyze and interpret data, (c) an ability to design a system, component, or process tomeet desired needs within realistic constraints such as economic, environmental, social, political,ethical, health and safety, manufacturability, and sustainability, (e) an ability to identify,formulate, and solve engineering problems, and (g) an ability to communicate effectively (ABETCriterion 3. Student Outcomes (a-k)). We argue that all of these skills are essential componentsof the argumentation process