2006-37: AUTOMATION LABORATORY DEVELOPMENT ENHANCESSTUDENT LEARNINGDavid Farrow, University of Tennessee-Martin David Farrow is an Assistant Professor at the University of Tennessee at Martin. He received B.S. and M.S. degrees in Mechanical Engineering and a Ph.D. degree from the University of Texas at Arlington in 1989, 1990, and 1995, respectively. Dr. Farrow has taught courses in solid modeling, mechanical vibrations, automatic controls, automated production systems, and instrumentation and experimental methods at the University of Tennessee at Martin for three and a half years.Robert LeMaster, University of Tennessee-Martin Robert LeMaster is an Associate Professor at the University of
2006-544: AUTOMATED ROBOTIC WORKCELL DESIGN TOOLKIT -PRELIMINARY EVALUATIONSheng-Jen Hsieh, Texas A&M University Sheng-Jen (“Tony”) Hsieh is an Associate Professor and member of the Graduate Faculty at Texas A&M University, College Station, TX. He holds a joint appointment with the Department of Engineering Technology and the Department of Mechanical Engineering and is a Halliburton Faculty Fellow for 2005-2006. His research interests include intelligent manufacturing system design, virtual instrumentation, thermal profiling for process and product characterization, and simulation and modeling. He is also the Director of the Rockwell Automation Laboratory, a state-of-the-art
2006-545: COGNITIVE SUPPORT FOR LEARNING PLC PROGRAMMING:COMPUTER-BASED CASE STUDIESSheng-Jen Hsieh, Texas A&M University Sheng-Jen (“Tony”) Hsieh is an Associate Professor and member of the Graduate Faculty at Texas A&M University, College Station, TX. He holds a joint appointment with the Department of Engineering Technology and the Department of Mechanical Engineering and is a Halliburton Faculty Fellow for 2005-2006. His research interests include intelligent manufacturing system design, virtual instrumentation, thermal profiling for process and product characterization, and simulation and modeling. He is also the Director of the Rockwell Automation Laboratory, a state-of
2006-721: MANUFACTURING LABORATORY LEARNING MODULES ONCAD/CAM/CMM AND ROBOTICSR. Radharamanan, Mercer University Dr. R. Radharamanan is a Professor of Industrial and Systems Engineering in the Department of Mechanical and Industrial Engineering at Mercer University in Macon, Georgia. He has twenty-eight years of teaching, research, and consulting experiences. His previous administrative experiences include: President of International Society for Productivity Enhancement (ISPE), Acting Director of Industrial Engineering as well as Director of Advanced Manufacturing Center at Marquette University, and Research Director of CAM and Robotics Center at San Diego State University. His primary
. Page 11.455.1© American Society for Engineering Education, 2006 Development of a Comprehensive Industrial Controls Course in a Manufacturing Engineering ProgramBackgroundThis paper illustrates efforts and their outcomes for re-design of an industrial controlscourse. The course, Device Control, has been taught in this ABET accreditedundergraduate manufacturing engineering program since the inception of the program notso long ago. The course has been mainly taught as a PLC (Programmable LogicController) based controls course with a major experiential learning component includingproject-based laboratories for design of automated machinery. Students have been wellexposed to PLC’s and PLC-based control applications.The course
diagrams: interpretation skills • Mechanical properties: laboratory experiments on tension test, impact test, hardness, heat treatment • Materials selection: study of common objects and designs – cups and saucers, cutlery, door knobs, skate boards, bicycles, cars, etc. • Failures: fracture generated from different tests Some topics such as phase diagrams and atomic bonding are very important, but theyare complex to teach and not easy for students to understand. Theses, of course, requiremore time, effort and homework problem sets to get the message across. As a result, it isnot always possible to appropriate equal amounts of teaching time and assessment tasksto meet all of the ABET outcomes listed for the course
feedbacksurvey, “One thing I would like to suggest is that all of the students here are not studyingengineering. So don’t assume we are all the same.” Table 1 shows the disciplines from which therecent semesters’ students came from.Students are also quite different in their prior knowledge of manufacturing. In a mid-termfeedback survey, one student wrote “You may have presented the material too easily to us. We(students) generally need a little more in depth.” In the same feedback survey, other studentsrequested that “Don’t move quite so fast.” Some students have years of working experience inmanufacturing environment, while some have never been on any manufacturing floor. There is alab course, “Manufacturing processes laboratory” (IMSE 251), associated
(e.g., that on metal processing). Each course is conceived as a modular presentation offocused product engineering, applicable materials description, relevant process science,operational modeling and analysis, and description of representative machine tools. Each wouldalso include an appropriate laboratory component. tio in er ng uc ng ine eri n eer ing g
”1 state: “It is said that there is nothing so practical as goodtheory. It may also be said that there’s nothing so theoretically interesting as goodpractice.” Marquardt2 in his “Harnessing the Power of Action Learning” states “...allforms of action learning share the elements of real people resolving and taking action onreal problems in real time and learning while doing so.” This is what our educational approach to engineering technology education has been allabout. To address these issues, we create laboratory problems, institute engineering coopprograms, and do capstone projects, all to get students exposed to “real world problems”.These are all excellent approaches and should be applied wherever practical. There areproblems associated