Paper ID #39951THE Management of Learning Process in the Context of Modernization ofUndergraduate Programs at Universidade do Vale do Rio dos Sinos(UNISINOS)’S Polytechnical SchoolMr. S´ergio Klippel Filho, Universidade do Vale do Rio dos Sinos - UNISINOSAmanda Goncales KielingJana´ına BeckerVanessa Oerle Kautzmann, Universidade do Vale do Rio dos Sinos - UNISINOSDr. Fernanda Pacheco, UNISINOS Graduated in civil engineering from Universidade do Vale do Rio dos Sinos (2013), having attended a semester at Sungkyunkwan University, in South Korea. She received a Master’s degree in Civil Engineer- ing and a Doctorate in Civil
Paper ID #40058Work in Progress: Research on Engineering Students’ EpistemologicalBeliefs in Design Decision Making; Conceptual Issues and a NewMethodological ApproachDr. Trevion S Henderson, Tufts University Trevion Henderson is Assistant Professor of Mechanical Engineering at Tufts University. He earned his Ph.D. in Higher Education at the University of Michigan. ©American Society for Engineering Education, 2023 (WIP) Research on Engineering Students’ Epistemological Beliefs in Design Decision Making: Conceptual Issues and a New Methodological ApproachThis work-in-progress paper reports on an
Paper ID #39813Understanding Needs of Undergraduate Engineering Students Who ViewDegree Attainment as ”Transactional”Mr. Matthew S. Sheppard, Clemson University I earned my B.S. in Industrial Engineering and my M.S. in Mechanical Engineering; both at Clemson Uni- versity. I have several years’ experience as a Manufacturing Engineer supporting process improvements, machine design, and capital project management. Now, I have entered into the Engineering and Science Education PhD program at Clemson University with hopes of teaching hands-on engineering principles to students in Appalachia after graduation. The focus of my
Paper ID #39461Work in Progress: Investigating the Relationship between Active LearningStrategies in Engineering Courses and Students’ Sustainability BehaviorsTrevion S. Henderson, Tufts University Trevion Henderson is Assistant Professor of Mechanical Engineering at Tufts University. He earned his Ph.D. in Higher Education at the University of Michigan.OnKee Min, Tufts University Graduate student at Tufts University pursuing Masters of Science in Human Factors Engineering.Jessica Ostrow Michel ©American Society for Engineering Education, 2023 (WIP) Investigating the Relationship between Active Learning
Paper ID #38445Student Metacognitive Reflection on a Conceptual Statics QuestionDr. Lorena S. Grundy, Tufts University Lorena received her BSE from Princeton in 2017 and PhD from UC Berkeley in 2022, both in Chem- ical Engineering. She is currently an ASEE eFellows postdoctoral fellow at Tufts University, working with Professor Milo Koretsky. Her research interests are in systemic change in engineering education, particularly as pertains to assessment of teaching.Dr. Milo Koretsky, Tufts University Milo Koretsky is the McDonnell Family Bridge Professor in the Department of Chemical and Biological Engineering and in the
Paper ID #38456Identifying student and institutional factors related to the academicperformance and persistence of vertical transfer students pursuingbaccalaureate engineering technology degreesDr. Courtney S. Green, P.E., University of North Carolina at Charlotte Courtney S. Green, Ph.D., P.E. is a teaching assistant professor and academic advisor for the Office of Student Success and Development within Williams States Lee College of Engineering at the University of North Carolina at Charlotte. She holds an M.S. in Engineering and a Ph.D. in Educational Research, Measurement, and Evaluation from UNC Charlotte.Dr. Sandra Loree
Paper ID #39303A Gamification Framework for Exploratory Learning in Higher STEM Edu-cationDr. Yan Shi, University of Wisconsin - Platteville Dr. Yan Shi is currently a Professor in the Software Engineering Program at University of Wisconsin- Platteville. She received her PhD in Computer Science from The University of Texas at Dallas in 2011. Her research interests include software engineering, data engineering, machine learning and engineering education.Dr. Kyle S Horne, University of Wisconsin - PlattevilleYanwei Wu, UW Platteville ©American Society for Engineering Education, 2023 A
Paper ID #39592Open-ended Modeling Problems and Engineering IdentityDr. Jessica E. S. Swenson, University at Buffalo, SUNY Jessica Swenson is an Assistant Professor at the University at Buffalo. She was awarded her doctorate and masters from Tufts University in mechanical engineering and STEM education respectively, and completed postdoctoral work at the University of Michigan. Her current research involves examining different types of homework problems in undergraduate engineering science courses, the intersection of affect and engineering identity, and improving the teaching of engineering courses.Emma Treadway, Trinity
Paper ID #38286Validity evidence for measures of statistical reasoning and statisticalself-efficacy with engineering studentsDr. Todd M. Fernandez, Georgia Institute of Technology Todd is a lecturer in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology. His research interests are engineering students beliefs about knowledge and education and how those beliefs interact with the engineeringDavid S. Ancalle, Department of Civil and Environmental Engineering, Kennesaw State University David S. Ancalle is a Lecturer in the Department of Civil and Environmental Engineering at Kennesaw
as a research assistant at an engineering lab on campus, where she conducted research on the molecular and cellular mechanisms of liver organogenesis. She has showcased her desire to positively impact the medical industry by volunteering at Flushing Medical Center in Queens, NY. Furthermore, she has served as a pharmacy technician where she supported phar- macological services and assisted patients. Esther is currently in her final year and is hoping to pursue her master’s degree while establishing a career in the biomedical engineering field.Dr. Jessica E. S. Swenson, University at Buffalo, SUNY Jessica Swenson is an Assistant Professor at the University at Buffalo. She was awarded her doctorate and masters from
chair of the Research in Engineering Education Network (REEN) and a deputy editor for the Journal of Engineering Education (JEE). Prior to joining ASU he was a graduate research assistant at the Tufts’ Center for Engineering Education and Outreach.Dr. Jean S. Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Associate Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology, postgraduate training in Computer Systems
graduate in May 2025. Her previous research includes studies in astrophysics, chemical and biological engineering, and engineering affect and identity. She wants to pursue a future career in aerospace engineering.Melissa Joan Caserto, University at Buffalo, The State University of New YorkMichelle Lee, Trinity University Michelle Lee is pursuing a B.A. in Mathematics and a B.S. in Computer Science at Trinity University. They are expected to graduate in 2025, after which they would like to pursue a Ph.D. in Mathematics.Dr. Jessica E. S. Swenson, University at Buffalo, The State University of New York Jessica Swenson is an Assistant Professor at the University at Buffalo. She was awarded her doctorate and masters from Tufts
. Her research interests center on interdisciplinary learning and teaching, technology-integrated STEM teaching practices, and assessment development and validation in STEM education.Dr. Daniel S. Puperi, The University of Texas at Austin Daniel is an assistant professor of instruction in the Department of Biomedical Engineering at the Uni- versity of Texas at Austin. Dan received a BS in aerospace engineering from Purdue University and then worked at NASA Johnson Space Center for 15 years before pursuing a PhD in Bioengineering from Rice University. In 2016, Dan graduated from Rice and began teaching four design/laboratory courses required for all undergraduate BME students at UT Austin.Thomas E. Lindsay, The University
, Texas A&M University Blaine is currently a graduate student earning his Ph.D. in Educational Psychology with an emphasis in Research, Measurement, and Statistics at Texas A&M. His research is primarily focused on issues of equity in STEM education.Camille S. Burnett, Prairie View A&M University Camille S. Burnett, Ph.D., ACUE, is Assistant Professor of Mathematics Education and Director of the SMaRTS (Science, Mathematics, Reading, Technology, and Social Studies) Curriculum Resource Lab in the Department of Curriculum and Instruction at Prairie View A&M University. She has almost 20 years of combined experience in the K-12 and higher education settings. She is also the principal investigator for
students’ learning. The students were also encouraged to ask questions and interactwith their peers.InstrumentsThis study comprised multiple data sources: an open-ended questionnaire, classroomobservation, and an S-STEM survey. The open-ended questionnaire consisted of five questionsdesigned to probe students to share their experiences of the problem-based learning environment.The students were provided the opportunity to address their likes and dislikes regardingengineering learning through PBL and describe the strategies they used to solve each problemscenario [10]; [34].Classroom observations were conducted throughout the duration of the study. The commentsentailed the teacher and the students. The implementation of the lessons, pedagogy, and
, he completed his MSc Degree in Construction Management from Istanbul Technical University in 2019. For his MSc thesis, he focused on the integration of Building Information Modeling (BIM) in facilities management. Before joining MSU, he worked as a research & teaching assistant at ITU from 2017 to 2021.Andreana Louise RoxasDr. Kristen Sara Cetin P.E., Michigan State University Dr. Kristen S Cetin is an Associate Professor at Michigan State University in the Department of Civil and Environmental Engineering.Dr. Annick AnctilGeorge Berghorn, Michigan State UniversityRyan Patrick Gallagher ©American Society for Engineering Education, 2023 Developing and Evaluating a Virtual Training
, DC, pp. 1– 77, 2012.[5] National Research Council, “Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops,” The National Academies Press, Washington, DC, 2011. Accessed on 13 June 2016 from http://www.nap.edu/catalog.php?record_id=13099[6] T. A. Litzinger and L. R. Lattuca, “Translating Research into Widespread Practice in Engineering Education,” in A. Johri and B. Olds. (Eds.), Cambridge Handbook of Engineering Education Research, Cambridge University Press, New York, pp. 375–392, 2014.[7] S. Zappe, K. Hochstedt, E. Kisenwether, & A. Shartrand, “Teaching to innovate: Beliefs and perceptions of instructors who teach
educators achieve this much-needed broader vision.References[1] M. E. Cardella, “Early childhood engineering: Supporting engineering design practices with young children and their families,” presented at the NARST 2020 Annual International Conference, Portland, OR, Mar. 2020. [Online]. Available: https://www.researchgate.net/publication/340234317_Early_Childhood_Engineering_Supp orting_Engineering_Design_Practices_with_Young_Children_and_Their_Families[2] National Academies of Sciences, Engineering, and Medicine, Science and engineering in preschool through elementary grades: The brilliance of children and the strengths of educators. Washington, DC: National Academies Press, 2021, p. 26215. doi: 10.17226/26215.[3] S. A
(3–5). Teacher with student team. Teams Students act across or between teams. Teacher with multiple teams. Class Students act as whole class. Teacher with whole class. Code Student Action or Teacher (Instructor) Action Answer Answer question(s) posed by other(s). Ask Ask question(s) and wait for other(s) to answer. Discuss Talk back and forth (more than one question and answer). Speak Talk by one person with no interaction. Manage Pass out or collect papers, assign groups, take attendance. Distracted Distracted or off task. Watch/Listen Watch or listen (e.g., to lecture or presentation). Work Write, take notes, work on
gratefully acknowledge the alumni participants in this study and the contributions ofour research team. Finally, we acknowledge the generous support of this work from theHasso Plattner Design Thinking Research Program.References1. National Academy of Engineering, U. S. (2004). The engineer of 2020: Visions of engineering in the new century. Washington, DC: National Academies Press.2. Wigner, A., Lande, M., & Jordan, S. S. (2016). How can maker skills fit in with accreditation demands for undergraduate engineering programs?. In 2016 ASEE Annual Conference & Exposition.3. Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. John Wiley & Sons.4. ABET Student Learning Outcomes, Retrieved from
definition highlights the depth and complexity of successful mentoring. After a close review of theliterature, we opted for sticking to [31]’s identification of 4 latent variables that were validated by [32] in 2009 forthe College Student Mentoring Scale. The variables underlying the mentor-protégé relationship at the collegiatelevel involve (a) Psychological and Emotional support, (b) Degree and Career Support, (c) Academic SubjectKnowledge Support, and (d) the Existence of a Role Model. While more testing is needed to validate theseconstructs in a variety of settings, it provides an important starting point for a contextually sensitive mentoringstudy. A definition with this level of theoretical specificity can be helpful for assessing program
missed some important articles published before 2017, which could haveprovided some more critical insights into this study. A potential direction for future researchwould be exploring the use of all social media platforms in engineering and its impact on studentlearning.REFERENCESThe articles included in the preliminary review are marked with an asterisk (*).[1] N. S. Hawi and M. Samaha, "The relations among social media addiction, self-esteem, and life satisfaction in university students," Social Science Computer Review, vol. 35, no. 5, pp. 576-586, 2017.[2] I. C. Drivas, D. Kouis, D. Kyriaki-Manessi, and F. Giannakopoulou, "Social Media Analytics and Metrics for Improving Users Engagement," Knowledge, vol. 2, no. 2, pp
based learning environment. She was previously an engineering education postdoctoral fellow at Wake Forest University supporting curriculum development around ethics/character education.Dr. Diana Bairaktarova, Virginia Tech Dr. Diana Bairaktarova is an Assistant Professor in the Department of Engineering Education at Virginia Tech. Through real-world engineering applications, Dr. Bairaktarovaˆa C™s experiential learning research spans from engineering to psychology to learning ©American Society for Engineering Education, 2023 Empathy and mindfulness in design education: A literature review to explore a relationshipAbstractLearning to design in undergraduate
, pp. 151–185, 2011.[6] Elementary science teachers’ sense-making with learning to implement engineering design and its impact on students’ science achievement[7] C. M. Cunningham and G. J. Kelly, “Epistemic Practices of Engineering for Education,” Science Education, vol 1010, no. 3, pp. 486–505, 2017.[8] T. J. Moore, A. W. Glancy, K. M. Tank, J. A. Kersten, K. A. Smith, and M. S. Stohlmann, “A Framework for Quality K-12 Engineering Education: Research and Development,” Journal of Pre-College Engineering Education Research (J-PEER), vol. 4, no. 1, 2014.[9] American Society for Engineering Education and Advancing Excellence in P12 Engineering Education. Framework for P-12 Engineering Learning, 2020
demographics are in Bolton [14] forthe early-career sample and Miskioğlu et al. [6] for the mid-to-late career sample. Allparticipants self-identified as women or men in an open-response text box.Data Collection is also described in detail in prior work [6], [14]. All interviews followed thesame previously tested protocol [1], [6], [14]. This protocol includes three main interviewsections: expertise, decision making, and intuition. In this paper, we are only interested in theintuition section of the interviews.Table 1 Pseudonyms categorized by years of experience with gender identity, racial/ethnicidentity, and degree discipline(s); tables adapted from Miskioglu et al. [6] and Bolton [14] Level of Reported Reported Years of
to be an important part of the life and activity of the class”. This definitionpresents SB as a unidimensional construct, which can be measured as a general SB.Alternatively, Freeman et al. [3] view SB as a multidimensional construct encompassing classbelonging, university belonging, professors’ pedagogical caring, and social acceptance,suggesting that measuring SB should be approached by asking questions that correspond to eachof these dimensions. Given the diversity of conceptual definitions of SB, it is reasonable toanticipate the presence of multiple measurement instruments for this construct. For example,Goodenow’s Psychological Sense of School Membership [PSSM] was created to measure ageneral SB, while William et al.’s Higher Education
this, we quantify thecomplexity of the example problem as 26. We could choose to use other network centralitymeasures and an investigation into their suitability will be conducted in the future. Thehorizontal shear equation computation node is the most “central” to the computation, with adegree centrality of 5. Figure 3a-d: (a) Digraph of the correct solution. Steps to the two-part correct solution start at the "reaction forces" node. Solid circles show target nodes for achieving the two-part solution to the problem. (b) Student 1’s solution with solid and dotted circles showing parts of the solution achieved and unachieved, respectively. (c-d) Student 2’s and 3’s solutions, respectively, with dotted circles showing both
) conveniently suggested a 3-factor model, the three factorsaligned only partially with the three dimensions of Fila et al.’s [19] engineering for, with, and aspeople framework. The first factor, which contained items focused on students’ generalengineering attitudes (i.e., sense of belonging in engineering, academic self-confidence and self-efficacy, and attitudes toward persisting and succeeding in engineering), fits well with theengineering as people dimension. This dimension takes into account that engineers areindividuals who have their own skill sets and experiences in engineering, which contributes totheir feelings of belonging because there are certain values and skills that are more acceptablethan others [31, 58]. A diminished sense of
mental illness: an exploration of their experiences and challenges,” in 2019 IEEE Frontiers in Education Conference (FIE), 2019, pp. 1–5.[2] J. Meickle, “Beyond burnout: Mental health and neurodiversity in engineering,” 2018.[3] C. L. Taylor, A. Esmaili Zaghi, J. C. Kaufman, S. M. Reis, and J. S. Renzulli, “Divergent thinking and academic performance of students with attention deficit hyperactivity disorder characteristics in engineering,” J. Eng. Educ., vol. 109, no. 2, pp. 213–229, Apr. 2020.[4] C. L. Taylor and A. E. Zaghi, “Leveraging divergent thinking to enhance the academic performance of engineering students with executive functioning difficulties,” Thinking Skills and Creativity, vol. 45, p. 101109, Sep. 2022.[5] L
of growth mindsets than their White peers,yet they also reported lower levels of fixed mindsets [13]. Said differently, Ge et al.’s [13] cross-sectional study showed that White engineering students demonstrate a higher predispositiontowards a growth mindset and a higher predisposition towards endorsing a fixed view of theirabilities. An exploratory study aimed at understanding the relationship between students’engineering identity and mindsets longitudinally found that both a fixed and a growth mindsetwere positive predictors of identity [14]. However, the authors did acknowledge that there may bemoderating effects not considered in the model, such as course difficulty, that may also helpexplain the positive relationships [14]. The studies