and computer science disciplines. Additionally,ethics is an important part of education in other disciplines, including medicine and law.Movements for teaching ethics across the curriculum emerged in these fields before comparablemovements in engineering that became more common in the early 2000’s.Integration of ethics across the engineering and computer science disciplines remains isolated,with examples most common in biological and biomedical engineering. It is possible that,despite the availability of ethics workshops and other resources, many teachers of engineeringand computer science are limited in their ability to fit ethics into their classes. After all,engineering statics or circuits do not immediately present themselves as easy
Brook University, and SUNY Office of Provost. He received A.T. Yang award for the best paper in Theoretical Kinematics at the 2017 ASME Mechanisms and Robotics Conference and the MSC Software Simulation award for the best paper at the 2009 ASME International Design Engineering Technical Conferences (IDETC) . He is the recipient of the Presidential Award for Excellence in Teaching by Stony Brook University and the winner of the 2018 FACT2 award for Excellence in Instruction given to one professor from the entire SUNY system. He also received the 2021 Distinguished Teaching Award from the American Society of Engineering Education (ASEE) Mid-Atlantic Division. He has been twice elected as a member of the ASME
University of New York, New Paltz Wenyen (Jason) Huang, huangj18@newpaltz.edu, is Assistant Professor of Mathematics Education in the Department of Teaching and Learning at SUNY-New Paltz. Jason has a particular interest in utiliz- ing technology for enhancing student’s understanding and improving teacher’s instruction in the STEM classroom. He is a former high school mathematics teacher.Graham Werner, State University of New York, New Paltz Graham Werner is an Assistant Lecturer, who teaches engineering labs and lectures for the Division of Engineering Programs at SUNY New Paltz. He primarily develops curriculum for mechanical engineering laboratory courses and is interested in promoting STEM education in local K-12
Exposition, 2017.[28] J. O. Hamblen and G. M. E. van Bekkum, “An embedded systems laboratory to support rapid prototyping of robotics and the Internet of Things,” IEEE Transactions on Education, vol. 56, no. 1, 2013.[29] X. Zhong and Y. Liang, “Raspberry Pi: An effective vehicle in teaching the Internet of Things in computer science and engineering,” Electronics, vol. 5, no. 56, 2016.[30] V. Galluzzi, C. A. Berry, and Y. Shibberu, “A multidisciplinary pilot course on the Internet of Things: Curriculum development using lean startup principles.” ASEE Annual Conference and Exposition, 2017.[31] L. O. Kehinde, O. T. Ayodele, O. O. Akintade, and K. O. Olawale, “Development of a module to teach basic concepts of interfacing and
, Dr. Reustle’s research focuses on community-level consequences for shifts in species-interactions due to (1) climate change and environmental perturbations (i.e., drought/flood, high intensity storm-events), (2) changes in predator/parasite field (i.e., reason for and consequences of changes in abundance of predator(s) and parasites), and (3) changes in sensory regime and behavior (i.e., changes in the visual or chemosensory profile; altered fear response to predators and/or parasites). Dr. Reustle’s research intersects with and has expanded into habitat restoration and assessment where Dr. Reustle is interested in restoring habitat and ecosystem services. Dr. Reustle incorporates field and laboratory studies at
discusses onesuch course.This paper continues by providing a brief literature review. It then discusses the substance of thecourse, followed by a discussion of a textbook on shipbuilding, repair and conversion. The useof guest lecturers is discussed, and student survey data is reviewed. Finally, conclusions aredrawn, and acknowledgements are made.Literature ReviewThe author completed a diligent attempt to review the literature on engineering education inshipbuilding. The google scholar tool was used with search terms including “shipbuilding” and“teaching” or “learning” or “education.” Only a limited number of relevant articles resulted,with most focusing on teaching a single topic or using a specific method.Examples in published information
Paper ID #39297Building Research Self-efficacy in Undergraduate Students throughAuthentic Research ExperiencesDr. Robin Lynn Nelson, University of Texas at San Antonio College of Engineering and Integrated Design at the University of Texas at San Antonio. With a Ph.D. in Interdisciplinary Learning and Teaching with a cognate in Instructional Technology and MA in Education with a concentration in Instructional Technology, her research interests lie in the intersection of active learning, broadening participation, and supporting pre-service teachers, instructors, and mentors in their classrooms and educational programming
Oklahoma State University. Right now, Mohammad is working in the Electrical and Computer Engineering Department at the University of Texas Rio Grande Valley (UTRGV) as a Lecturer 2. He started this position in the fall of 2022, right after he got his Ph.D.Dr. R Ryan Dupont, Utah State University Dr. Dupont has more than 35 years of experience teaching and conducting applied and basic research in environmental engineering at the Utah Water Research Laboratory at Utah State University. His main research areas have addressed soil and groundwater bioDr. David K. Stevens, Utah State University ©American Society for Engineering Education, 2023 Assessing Engineering Students' Behavioral Engagement and
-doctoral fellowship at Lawrence National Laboratory focusing on com- putational analysis for nonlinear seismic analysis of Department of Energy nuclear facilities and systems. After joining SFSU in 2016, she established an active research lab at SFSU with a diverse group of under- graduate and Master’s level students. For her engineering education research, she is interested in exploring how to use technology such as virtual reality and 3D printing to enhance student engagement. She is an active member of ASCE, ASEE, and SEAONC.Shah Rukh Humayoun, San Francisco State UniversityKhanh NguyenYongjian Pan ©American Society for Engineering Education, 2023 Reinforcing Human-Technology Interaction Theory
, and Relational Algebra and SQL. MarkUs is aplatform that allows students to submit their code for feedback, testing, and grading. However, asignificant drawback of both these solutions is that there is no way for course staff to monitor thetime spent by students on their programming labs. This lack of monitoring allows students toallocate excessive time towards programming labs, adversely impacting their other coursework.To address this challenge, Lab Container offers a comprehensive platform for creating andcompleting programming labs while simultaneously enabling course staff to track studentprogress and time spent on labs to prevent over-investment of time in programming labs.A Better Learning and Teaching ExperienceTo create a better
Paper ID #38464Tips for Creating a Functional Personal Knowledge Management System inAcademiaDr. Rebecca Marie Reck, University of Illinois, Urbana-Champaign Rebecca M. Reck is a Teaching Associate Professor of Bioengineering at the University of Illinois Urbana- Champaign. Her research includes alternative grading, entrepreneurial mindset, instructional laboratories, and equity-focused teaching. She teaches biomedical instrumentation, signal processing, and control systems. She earned a Ph.D. in Systems Engineering from the University of Illinois Urbana-Champaign, an M.S. in Electrical Engineering from Iowa State
, testing its movements, andpicking up/dropping off/transporting objects using the Workcell. The laboratory work wascarried out by the students in groups of two. The school of engineering provided completesupport in terms of equipment and software required for the program.The weekly plans of the robotics program are shown in Table 2. Students worked onAutonomous Vehicle for four times (12 hours), Robotics modeling for five labs (15 hours), andeight labs for VEX Robot (24 hours). One of the challenging factors that we encountered wasfaculty involvement. Since the participating faculty already had a full teaching load during theSummer, it was difficult to arrange lab content in a way that was both meaningful and coherent.As a result, the program
Paper ID #39229Engagement in Practice: Better Preparing Students for Community-EngagedEngineering by Restructuring an Academic Program, Minor, and Curricu-lumDr. Kristen M. Conroy, The Ohio State University Dr. Kristen Conroy has a PhD in Biological Engineering from Ohio State University. Her main area of fo- cus is sanitation. She has worked with partner organization, UNiTED, to teach courses where engineering students focus on collaborative projects in Kpando, Ghana. She also teaches the Food, Agricultural and Biological Engineering Capstone, Energy in Biological Systems, and the Introduction to Humanitarian Engineering
;M University’s NUA2NCED Laboratory. His research focuses on hydrofoil boat design and developing unconventional educational applications for STEM students. Zach’s aerospace passions include logistic support, system integration, and aerospace business development. He has applied these interests as a ConOps Develop- ment intern with Fulcrum Engineering, LLC as well as a Integrated Logistics Support Management intern with Lockheed Martin. ©American Society for Engineering Education, 2023 Dissolving Interdisciplinary Barriers in STEM Curriculum Through Unconventional Hydrofoil Boat Educational Lab at the College Undergraduate LevelAbstractAs educational
Purdue University. Her research program investigates how model-based cognition in Science, Technology, Engineering, and Mathematics (STEM) can be better supported by means of expert tools and disciplinary practices such as data science computation, modeling, and simulation. In 2015 Dr. Magana received the National Science Foundation’s Faculty Early Career Development (CAREER) Award for investigating modeling and simulation practices in undergraduate engineering education. In 2016 she was conferred the status of Purdue Faculty Scholar for being on an accelerated path toward academic distinction. And in 2022, she was inducted into the Purdue University Teaching Academy, recognizing her excellence in teaching
contribute to environmental challenges.Fig. 6. Example of the progression of a STEELS T&E standard across grade bands.When examining the standards, the committees also placed an increased emphasis on safety inregard to engineering design considerations and laboratory practices. The committees believedthis was important due to the essential making and doing aspect of T&E education, the increasedpopularity of interdisciplinary makerspaces and Fab Labs in schools [17], and the rise in out ofcontent area educators being tasked with teaching engineering practices [18-20]. A contentanalysis by P-12 safety specialists determined the
and enhancing the thermophysical properties of synthetic oils. This was the first demonstra- tion of the work ever done in this field and resulted in broad environmental and cost benefits, especially in energy storage and heat transfer applications. She has more than three years of experience teaching ther- mofluidic, mechanical design, and solid and structure courses and supervising senior capstone projects collaborating with industries such as Saint-Gobain, Klein Tools, and Parker. She also has served in lead- ership roles at the Society of Women Engineers and STEM advisory task force to represent diversity and inclusion and improve student success and retention for underrepresented students
the Information Technology space and around two and a half years of experience in the Energy Technol- ogy space. He is currently pursuing Ph.D. in Energy Systems, at the School of Electrical Engineering and Telecommunications, UNSW. His research interests include energy management, power system analysis, and renewable integration.Dr. Jayashri Ravishankar, University of New South Wales A/Prof Jayashri Ravishankar is a Scientia Education Fellow and Associate Dean (Education) in the Fac- ulty of Engineering at the University of New South Wales (UNSW), Sydney. Her teaching and research interests include power system modelling, analysis and control, renewable energy integration, smart grids and micro grids. Jayashri has
Keble, New, University, and Harris Manchester Colleges, was College Lecturer for New College and a Senior College Lecturer in Engineering Science for Keble College. He taught approximately 75% of the core degree topics, as well as human physiological measurement laboratory classes for medical students. ©American Society for Engineering Education, 2023 Work-In-Progress: Improving Student-Instructor Relationships and Help- Seeking through Office HoursIntroductionStrong relationships between students and their instructors have an undisputed link to positivestudent outcomes such as retention, motivation, sense of belonging, and academic achievement[1]. These observations are
, labs, and discussion sections [1], [2]. LAs also attend a pedagogy seminar where theylearn about responsive teaching and active learning. Previous research has investigated LAs’impacts on improving undergraduate courses and student outcomes [3]. Studies related to LAsand their impacts on social justice have focused on applying quantitative critical race theory toevaluate the impact of LAs on reducing learning gaps between dominant and historicallymarginalized students [4] and on classroom equity [5]. A greater understanding of LAs’conceptions of status and how they navigate dismantling status differences in the classroomwould support this work.This study utilized thematic analysis [6] to characterize how LAs construct the idea of statuswithin
Paper ID #37350Educating the Workforce of the 21st Century through Smart ManufacturingSystems in the ClassroomsRoya Salehzadeh, University of Alabama Roya Salehzadeh obtained her B.Sc. degree in mechanical engineering from Urmia University, Iran, in 2010, and her M.Sc. degree from Amirkabir University of Technology (AUT), Tehran, Iran, in 2013. She is currently pursuing a Ph.D. in mechanical engineering from the Advanced and Intelligent Manufacturing Systems Laboratory at the University of Alabama, Tuscaloosa, AL, USA. Ms. Salehzadeh’s research interests are focused on human-robot interaction, automation, and
damitht6@my.yorku.ca, a.d.n50@hotmail.com, mjadidi@yorku.caKEY WORDS: Virtual Reality, Engineering Education, Earth systems, Experiential EducationABSTRACT:Learning complex engineering concepts in varying fields, from learning how to prototype a circuit on a breadboard all the way tolearning about the complex geological features that make up well known terrains, require hands-on experience as well as accessto sophisticated equipment. In the former situation, many educational institutions can afford lab equipment such as electroniccomponents and large laboratory workplaces. However, there are instances where purchasing expensive equipment for learningis not a viable option. In the latter case, learning about the geological features of a place such
Paper ID #39857Commonality of Failure Modes in New Engineering Program DevelopmentProf. David Robert Bruce, University of Ottawa, Canada Dr. Bruce has a passion for technology development with a focus on empowering society through altering perception and perspective by including new ways of looking at engineering.Dr. James Borrelli, Stevenson UniversityGennifer Smith, University of San FranciscoDr. Michael G. Lerner, Earlham College Michael Lerner is a computational biophysicist and convener of the Department of Physics, Engineer- ing and Astronomy at Earlham College. He teaches introductory, intermediate and advanced courses
Undergraduate Teaching twice. He has published one book and more than 165 book chapters, scholarly journal papers, and refereed conference proceedings. He has supervised more than 20 Ph.D. and MS students to completion during his tenure, and taught more than thirty (30) different courses related to computer and engineering technology. He is active in several professional societies and editorial boards and is a senior member of IEEE and ASME and ASEE and AHSIE.Prof. Amir Abtahi, Florida Atlantic University Amir Abtahi (B.M.E., 19’72, University of Minnesota, and M.S., 1975, and Ph.D. 1981, MIT) teaches an array of fundamental and applied engineering courses in the Department of Ocean and Mechanical Engineering at FAU. With a
students and graduate students (lab projectmodule): This module will develop students an ability of formulating standard operatingprocedure (SOP) and facilitating the SOP to new standard, if there is no standard dealing with aspecific AM project. A project in a laboratory class will be used to cover the topics on AMlightweight part design, manufacturing, and testing. Students will design lightweight part (suchas lattice or topology optimized structure), practice fabricating AM parts, and performmechanical testing of the AM lightweight parts, using the AM laboratory. Due to the geometricalcharacteristics, AM lightweight part requires specific test protocols to develop an appropriatedatabase of engineering design properties, including specimen
, epistemologies, assessment, and modeling of student learning, student success, student team effectiveness, and global competencies He helped establish the scholarly foundation for engineering education as an academic discipline through lead authorship of the landmark 2006 JEE special reports ”The National Engineering Education Research Colloquies” and ”The Research Agenda for the New Dis- cipline of Engineering Education.” He has a passion for designing state-of-the-art learning spaces. While at Purdue University, Imbrie co-led the creation of the First-Year Engineering Program’s Ideas to Inno- vation (i2i) Learning Laboratory, a design-oriented facility that engages students in team-based, socially relevant projects. While
Edition, Brigham Young University Press, 1995.6. L. E. Ortiz and E. M. Bachofen, “An Experience in Teaching Structures in Aeronautical, Mechanical and Civil Engineering, Applying the Experimental Methodology,” 2001 American Society for Engineering Education Annual Conference & Exposition Proceedings, Session 2526.7. M. Abdulwahed and Z. K. Nagy, Applying Kolb’s Experiential Learning Cycle for Laboratory Education, Journal of Engineering Education, July 2009, pp. 283-294.8. D. A. Wyrick and L. Hilsen, “Using Kolb’s Cycle to Round out Learning,” 2002 American Society for Engineering Education Annual Conference and Exposition Proceedings, Montreal, Canada, June 17-19, 2002. Session 2739.9. T. S. Harding, H.-Y. Lai, B. L. Tuttle, and
for ten years. She also served as an adjunct faculty in the Engineering Technology Program at Triton College in River Grove, IL for seven years.Mr. Nagash Clarke, University of Michigan Nagash Clarke is a doctoral student at the University of Michigan working with Dr. Joi-Lynn Mondisa. In his research, he examines mentoring and its particular implications for minoritized populations, as well as white male allyship in STEM higher education. He received a Bachelor’s in Chemistry from Pace University and Masters degrees in both Chemical Engineering and Engineering Education Research from the University of Michigan. He teaches chemistry at Washtenaw Community College. ©American Society for
B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing model-eliciting activities in mechanical engineering courses, inquiry-based learning in mechanics, and design projects to help promote adapted
, Dr. Alexandra Coso Strong works and teaches at the intersection of engineering education, faculty development, and complex systems design. Alexandra completed her graduate degrees in Aerospace Engineering from Georgia Tech (PhD) and Systems Engineering from the University of Virginia (UVa). Prior to attending Georgia Tech, Alexandra received a bachelor’s degree in aerospace engineering from MIT and a master’s degree in systems engineering from the University of Virginia. Alexandra comes to FIU after completing a post- doctoral fellowship at Georgia Tech’s Center for the Enhancement of Teaching and Learning (CETL) and three years as a faculty member at Olin College of Engineering in Massachusetts. Alexandra’s