. Evidence that the students incorporated sustainability into theirconcept of civil engineering was also collected based on other course assignments. There issome evidence that female and minority students may be more likely to articulate the importanceof sustainability in the context of civil engineering, although more research is needed on thistopic due to the small numbers of female students in the class.BackgroundAll engineers should be familiar with the concept of sustainability. ABET lists sustainability asone of the constraints for engineering designs under Criterion 3 Program Outcome C.1 TheNational Academy of Engineering’s (NAE) The Engineer of 2020 report notes “Engineeringpractices must incorporate attention to sustainable technology, and
of Engineering Education, 1993.11. Paulik M. J., Krishnan M., “A Competition-Motivated Capstone Design Course: The Result of a Fifteen-Year Evolution”, IEEE Transactions on Education, vol. 44, 2001.12. Lumpp J., Jacob J., Smith S., Smith W., “BIG BLUE: A Multidisciplinary Capstone Engineering Design Project”, Proceedings of the 2006 ASEE Annual Conference & Exposition, 200613. Padir T, Rasaiah J.P., Worden A., Richards A., Claus J., Horrigan T., Lucarelli A., “A portable robotic workcell: Building robotics technology partnerships”, Proceedings of 2008 IEEE International Conference on Technologies for Practical Robot Applications, 2008.14. Mataric M.J., “Robotics Education for All Ages”, Proceedings AAAI Spring
, professional and life skills.IntroductionFacilitating professional development and mentoring for STEM (science, technology,engineering and math) students can be a challenge for programs but is important for students’ultimate success and satisfaction with their careers. A National Science Foundation S-STEMgrant allows our Midwestern comprehensive university to award scholarships to cohorts of 23students enrolled in one of the following majors: Mathematics; Computer Science; Biology;Information Technology; Electrical, Mechanical, Civil, and Computer Engineering; andElectronic, Manufacturing, Automotive and Computer Engineering Technology. Scholars canrenew their $5000 scholarships (which provides almost full tuition assistance) for up to a total ofthree
preferred answer as being a matter of taste, much like one’schoice of a preferred flavor of ice cream. Beyond that, the student begins to select andjustify answers using values consistent with their professional community.In the context of our Persistence outcome, the student would start at level one andprogress toward level 4. A student who lays in-between level 2 and level 3 would be ourgoal for the typical graduate. Level 2 is a minimal goal for a graduate. Level 4 isaspirational. These levels are:Level 1: Understands that technological change and development have both positive and negative impactsLevel 2: Identifies and evaluates the assumptions made by others in their description of the role and impact of engineering on
AC 2010-1278: INTRODUCING CRITICAL THINKING TO FRESHMANENGINEERING STUDENTSJames Lewis, University of Louisville James E. Lewis, Ph.D. is an Assistant Professor in the Department of Engineering Fundamentals in the J. B. Speed School of Engineering at the University of Louisville. His research interests include parallel and distributed computer systems, cryptography, engineering education, undergraduate retention and technology (Tablet PCs) used in the classroom.Jeffrey Hieb, University of Louisville Jeffrey L. Hieb, Ph.D. is Assistant Professor in the Department of Engineering Fundamentals at the University of Louisville, Louisville, Kentucky. His research interests include cyber security
AC 2010-567: THE IMPORTANCE OF PROBLEM INTERPRETATION FORENGINEERING STUDENTSGay Lemons, Tufts University Gay Lemons, Ph.D., is a post-doctoral research associate in Engineering Education at Tufts University. She received her Ph.D. in Educational Psychology from the University of Northern Colorado, her M.S. in Psychology, also from UNC, and her B.S. in Dance from the City University of New York. Her research interests include the cognitive processes of engineering design, gender issues in engineering, and creative self-efficacy.Adam Carberry, Tufts University Adam R. Carberry is a Doctoral Candidate in Engineering Education in the Tufts University Math, Science, Technology, and Engineering
AC 2010-2017: THREE PRACTICAL DEMONSTRATIONS IN BEEM PROJECTHuihui Xu, Rose-Hulman Institute of TechnologyXiaoyan Mu, Southeast Missouri State UniversityDeborah Walter, Rose-Hulman Institute of Technology Page 15.1266.1© American Society for Engineering Education, 2010 Three Practical Demonstrations in BEEM Project Abstract This paper presents three practical examples that have been created in the BEEM 1 (Biomedical and Electrical Engineering Methods) project at RoseHulman Institute of Technology. These examples are used to introduce respectively (1) Construction of a prototype electrocardiogram measurement system, (2) Use of inductance coils to perform as
for practice and policy to facilitate femaleparticipation in Science, Technology, Engineering, and Mathematics (STEM). Page 15.436.2Introduction and BackgroundThe nation’s public two-year colleges play a critical role in providing access to education beyondhigh school. Referred to as community colleges, these institutions are comprehensive in natureand offer diverse curriculum including developmental education, liberal arts, career and technicaleducation, and lifelong learning (Cohen & Brawer, 2008)5. The transfer function, in particular,provides students with the opportunity to pursue the first two-year of their general
https://engineering.purdue.edu/EPICS/(EPICS) – begun at Purdue in 1995Illinois Institute of Technology - 1995 http://ipro.iit.edu/Interprofessional Projects (IPRO)Design for the Other 80% (D80) – Michigan http://www.mtu.edu/d80/Tech since 1996University of Michigan Ann Arbor - http://www.engin.umich.edu/societies/pts/ProCEED/Program for Civic Engagement inEngineering Design (ProCEED) c. 2000Service-Learning Integrated throughout a http://slice.uml.edu/College of Engineering (SLICE) – UMassLowell begun in 2004Humanitarian Engineering Program – http://humanitarian.mines.edu/Colorado School of MinesHumanitarian Engineering and Social http://www.engr.psu.edu/eceEntrepreneurship Program – Penn
. A. High. A Pilot Study for Creativity Experiences in a Freshman Introduction to Engineering Course. 2003 ASEE Annual Conference and Exposition.4. K. F. Reardon. A Project-Oriented Introduction to Engineering Course. 2001 ASEE Annual Conference and Exposition.5. F. J. Rubino. Project Based Freshman Introduction to Engineering Technology Course. 1998 ASEE Annual Conference.6. G. Wight, R. D. Friend, J. Beneat, and W. Barry. Project-Based Introduction to Engineering for Freshmen Students. 2008 ASEE Annual Conference and Exposition.7. H. A. Canistraro, P. Katz, J. Girouard, A. Lankford, and J. Dannenhoffer. A New Approach to the Introduction to Technology Course at a Four Year College of Engineering
. Dr. Capece received his B.S. degree in Mechanical Engineering from Tennessee Technological University, M.S. in Mechanical Engineering from MIT, and Ph.D. from Purdue University. He has held his current position since July 1999.Keith Rouch, University of Kentucky Keith E. Rouch, P.E., has been a professor at the University of Kentucky for the past 25 years, following 19 years with Allis-Chalmers Corp, and served as department chair of Mechanical Engineering for twelve years. During 1996, he was Interim Director of the Center for Robotics and Manufacturing and Associate Dean for Research in the College of Engineering. He is a Fellow of the American Society of Mechanical Engineers
, as consumers make technology a critical role inevery part of their lives. Computer software engineers make much of it possible…”. On January5, 2010, the Wall Street Journal reported that CareerCast.com had identified Software Engineeras number 2 in its list of best jobs in the United States in 2009, based on five criteria:environment, income, employment outlook, physical demands, and stress.2 It seems as thoughevery week there is some incident reported in which people were inconvenienced or harmed bysoftware failures. Clearly, development of programs that provide the kinds of education andtraining needed to produce the software engineers who will develop high quality reliablesoftware is very important for the future of our society.Software
localfood pantry, a city hall building, a community health center, as well as for areas of the university.Other examples of S-L integration include sophomore kinematics, sophomore materials, juniorfluids, junior circuits, senior microprocessor, senior design of machine elements, senior capstonedesign, as well as freshmen introduction to engineering courses (Kazmer, Duffy, Barrington, &Perna, 2007) (Kazmer & Johnston, 2008) in which 420 students divided into teams, to design andbuild energy transformation technology displays for a history center that is part of a national parkvisited by 60,000 middle school students annually.Over 100 community partners have been involved with the SLICE projects (http://slice.uml.edu).Some of the community
, capstone designprojects usually either require a massive learning curve to build on previous systems or arerelegated to relatively simple designs, many of which are repeated year after year. This paperdescribes the educational experience gained through design and construction of an R2D2 replicafrom the Star Wars™ movies. The initial project incorporates basic radio control as well assimple autonomous navigation and limited user interface with the capability for futureexpansion. The modular design is intended to allow future capstone groups to add innovativenew features as well as novel applications of well established technologies. In addition to beinga motivational project for senior-level engineering students, it is also a marketing tool for
AC 2010-707: CLASSIFICATION AND ASSESSMENT OF PROJECTS INCOMPUTER ENGINEERINGDick Blandford, University of Evansville Dick Blandford is the department chair of the Department of Electrical Engineering and Computer Science at the University of Evansville. He received a PhD in EE from the University of Illinois.Christina Howe, University of Evansville Christina Howe is an assistant professor of Electrical Engineering at the University of Evansville. She received a PhD in EE from Vanderbilt University.Anthony Richardson, University of Evansville Tony Richardson is an associate professor of Electrical Engineering at the University of Evansville. He has a PhD in EE from Duke UniversityDavid
. degree in Robotics and Automation (2000), from the University of Pisa, Italy. He has also worked at the Industrial Control Centre, Strathclyde University, UK, (1995) and at the Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, USA (1999). From 2000 to 2008 he served as faculty in the Flight Control Group at the Department of Aerospace Engineering , West Virginia University. His research at WVU involved system identification, sensor fusion, fault tolerant systems, machine vision, and adaptive and nonlinear control, especially applied to UAVs. He joined the Mathworks in 2009, where he currently works as a Technical Evangelist for the west coast area.Srikanth
, or Blackboard, 6) hosting anOrientation at ASU specifically for engineering transfer students, 7) managing a Fulton TransferCenter where engineering transfer students and their CC cohorts can study together and get thesupport needed to survive, and 8) working with (especially new) transfer students for success andlearning through a (time-tested) “career shaping” academic scholarship workshop program. Thisproject is funded through a grant from NSF’s STEP Program (#0856834).I. IntroductionComputer science, engineering, and mathematics (CSEM) are essential to the continuedscientific advancement and technological development of the United States. Recent governmentstudies have concluded that the future economic well being of our nation will be
are formed, the early design stages, prototyping and test, oralpresentations, and conference attendance for the last two years. The students’ evaluationmethods and outcomes assessments are also presented. Finally, the problems and challenges inthe Senior Design course are discussed. Overall, this “new and improved” Senior Design coursehelps students to develop many skills which were not previously developed. As one example ofa successful student project, “Sense-o-matic Cane: Ungrounded Detection for the Blind” wonSecond Place in Technology and Engineering at the 2008 HBCU-UP National Researchconference.IntroductionThe Computer Engineering Program at the Virginia State University, a small Historically BlackColleges and Universities (HBCU), was
AC 2010-2088: INCREASING SUSTAINABILITY ENGINEERING IN EDUCATIONAND RESEARCHConnie Gomez, University of Texas at El Paso Dr. Connie Gomez is an Assistant Professor in the Department of Mechanical Engineering at the University of Texas at El Paso. Her research areas include designing biodegradable tissue scaffolds for bone regeneration and designing medical and assistive robotics.Heidi Taboada, University of Texas at El Paso Dr. Heidi Taboada is an Assistant Professor in the Department of Industrial, Manufacturing and Systems Engineering at the University of Texas at El Paso. Her research interests include Multiple Objective Optimization, System Reliability Analysis and Optimization
technologies, and a well educated,globally distributed global workforce represent significant challenges to the status quo ofU.S. engineering and engineering education. Meeting these challenges requires atransformation of how engineering is taught. Strong domain knowledge and technicalexpertise no longer make a well-rounded engineer; the rapid pace of change in scienceand engineeringalso requires high levels of ingenuity and adaptivity. Learning scientistsdescribe these dual capabilities as “adaptive expertise” (AE). Adaptive experts areinnovative: they are able to creatively leverage their experience and perform well in noveland fluid situations. They are also efficient: they apply their core taxonomic knowledgeappropriately and expeditiously. Common
AC 2010-245: RECONNECTING CHEMICAL ENGINEERING STUDENTS WITHTHE PHYSICAL WORLDLarry Glasgow, Kansas State UniversityDavid Soldan, Kansas State University Page 15.1018.1© American Society for Engineering Education, 2010 Reconnecting Chemical Engineering Students with the Physical WorldAbstract There is ample evidence of a growing disconnect between chemical engineeringstudents and the physical world. This chasm is being created by social and technologicalchanges; in particular, the proliferation of microprocessor-based “virtual experiences” forchildren and adolescents has had an inhibiting effect upon their opportunities to
course offerings. Before starting Millaworks, Ms. Miller was the director of marketing at Analytical Graphics, Inc. (AGI) for more than 11 years. AGI produces software for national security and space professionals to analyze and visualize land, sea, air, and space assets.© American Society for Engineering Education, 2010 Prior to AGI, Ms. Miller was a mechanical design engineer working on Space Shuttle and International Space Station microgravity combustion experiments at NASA-Glenn Research Center (formerly NASA-Lewis Research Center) in Cleveland, OH. She began her career at Equitable Gas Company in Pittsburgh, PA, supporting new gas technology initiatives including
public university in thesouthwest. Eight of the instructors were male, and three of the instructors were female. All ofthe instructors were experienced engineering educators at the university. Many of theparticipants have been at the university for many years. All of the participants agreed toparticipate in the study and were observed teaching typical lessons.AnalysisDuring the observations, special attention was given to 1) teaching strategies (introductoryactivities, technology, etc.), 2) collaborative opportunities for learning (group work, whole classdiscussion), 3) knowledge building (connections to other course content, upcoming events, andfuture careers), and 4) teacher directed activity (giving instructions, guidance, and info
, reinforcing its use in the core course) LEGO-based robots in order to solve a variety of engineering problems. Some of the assignments include catapult trajectory aiming, racing path-following robots, robotic basketball, robotic art, and digital scanning.• In the Acoustic Technologies in Object and Fault Detection and Classification10 project, students apply acoustic and ultrasonic technologies to collect data, classify materials, detect flaws or damage, nondestructively evaluate material characteristics of products and structures, and construct and destructively evaluate reinforced concrete beams. MATLAB was heavily used in this project and was related to the vibration analysis in the core course
. They do mention that a unit on the confluence ofscience and spirituality is particularly significant for students, since we seem to beaccelerating into an ever more technological age. Classroom discussions aroundquestions such as: “How do we make meaning of transcendent spirituality in atechnological age?” and “How do individuals reconcile traditional systems of belief withan increasingly complex and comprehensive knowledge of science?” are suggested.12Fortunately, much has been written in an effort to bring understanding, evenreconciliation, to the fields of science/engineering and spirituality. As an example, I havefound some success using Guy Consolmagno’s book entitled God’s Mechanics: HowScientists and Engineers Make Sense of Religion.13
filled by instructors from other faculties who do notcontribute to the engineering program. By integrating a communications instructor into afirst year program, and specifying three distinct but complementary roles for saidinstructor, S____ School of Engineering has created an atypical, but beneficial position,one that ensures a high quality of instruction for students and a stronger, more focusededucational team.Bibliography1. Universities surveyed include University of Toronto, University of Alberta, University of Western Ontario, University of Waterloo, University of British Columbia, MIT, California Institute of Technology, Texas A&M, Michigan State and others.2. Wikoff, K., Friauf, J., Tran, H., Reyer, S., Petersen, O
, 29 March 2002.6. Brainard, J., “Make Engineering a Liberal Art With Social Relevance, Report Suggests,” The Chronicle of HigherEducation, http://chronicle.com/article/Make-Engineering-a-Socially/326, December 14, 2007.BibliographyBordogna,1. et al, “Manufacturing and Engineers’ Education", Issues in Science and Technology, 7, no.1 (fall1990): 20(3).Booth, W., "Curriculum Sparks Debate at MIT", Science, 236, (1987): 1515(2).Filho, M., "Humanist Education for the Lives of Today’ Engineers", IEEE Communications, 30, no.11 (1992): 72 (3).Florman, S., "Learning Liberally", Prism, 3, no.3 (1 993):18(5).Kirkely, 1.L., "Our Industry Could Lead a Liberal Arts Renaissance", Datamation, 29, no.3 (1993): 29.Kranzberg, M., "Educating the Whole Engineer
worked for an international accounting firm in both their Houston and New York City offices, and he practiced tax and corporate law in Austin, Texas. Dr. Koehn is a member of the American Institute of Certified Public Accountants, Texas Society of Certified Public Accountants, and the State Bar of Texas. Page 15.827.1© American Society for Engineering Education, 2010 Knowledge of Contemporary Issues Held By Engineering StudentsAbstractThe Accreditation Board for Engineering and Technology (ABET) has ruled that students shouldhave a knowledge of contemporary issues. Today, engineering is conducted on a global scale
AC 2010-627: SCALE DEVELOPMENT FOR ENGINEERING MODELINGSELF-EFFICACYTuba Yildirim, University of PittsburghMary Besterfield-Sacre, University of PittsburghLarry Shuman, University of Pittsburgh Page 15.1050.1© American Society for Engineering Education, 2010 An Engineering Modeling Self-Efficacy (EMSE) ScaleAbstractSelf-efficacy is defined as personal judgments of one’s capabilities to organize and executecourses of action to attain designated goals. Self-efficacy is shown to be a significant predictor ofacademic performance, academic motivation, students’ participation in activities, rate of solutionof arithmetic problems, and use of learning strategies. Students with
arethinking about purpose.Bibliography1 Criteria for Accrediting Engineering Programs,” October 31, 2009, ABET Inc.2 “University Relations: Desired Attributes of an Engineer,” Boeinghttp://www.boeing.com/educationrelations/attributes.htms3 Clooney, E., Alfrey, K., and Owens, S., “Critical Thinking in Engineering and Technology Education: A Review,”Proceedings of the 2008 American Society for Engineering Education Annual Conference and Exposition, ASEE4 Worldwide CDIO Initiative. https://www.cdio.org, January 20095 Agrawal, Pradeep K. “Integration of Critical Thinking and Technical Communication into UndergraduateLaboratory Courses.” Proceedings of the 1997 American Society for Engineering