Paper ID #41259Pass-Fail Grading of Technical Writing in a Material Science LaboratoryProf. John R. Rogers, Benedictine College Dr. John Rogers is a member of the Benedictine College School of Engineering faculty where he teaches courses in mechanical engineering including materials engineering laboratory, mechatronics, vibrations, and design. He earned a doctorate in mechanical engineering from Rensselaer Polytechnic Institute in 2003. He has a range of engineering and teaching experience. As an ocean engineer, he developed towed systems for underwater listening, and structures that reduce ship noise. As a structural
lab (Lichtenstein & Phillips, 2021).Significance of studyLaboratory experiences play an important role in connecting engineering students’theoretical concepts and practical knowledge (May et al., 2023; Yeter et al., 2023).Generally, the hands-on laboratory with machinery and a physical learningenvironment supports students’ active engagement during learning. However, the laterdevelopment of remote and virtual laboratories brings a more technology-basedexperimental environment. Student laboratories’ use experience and preferences areessential for current teaching methods and experimental environments' adaptivedevelopment. This study can provide students’ laboratory use experience andpreferences, the potential factors influencing their
. ReferencesAgustian, H. Y., Finne, L. T., Jørgensen, J. T., Pedersen, M. I., Christiansen, F. V., Gammelgaard, B., &Nielsen, J. A. (2022). Learning outcomes of university chemistry teaching in laboratories: A systematicreview of empirical literature. Review of Education, 10(2), e3360. https://doi.org/10.1002/rev3.3360Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratoryimplementations: Observations and findings. Journal of Computers in Education, 3(3), 329–351.https://doi.org/10.1007/s40692-016-0068-zAltmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmentedreality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical
wonderful and talented people at SCD’s Assessment and Research Laboratory to conduct research that informs and evaluates our practice of teaching and learning human-centered design in formal and informal learning environments. My Research focuses on studying students’ collaborative problem solving processes and the role of the teacher in facilitating these processes in STEM classrooms.Dr. Blake Everett Johnson, University of Illinois at Urbana - Champaign Dr. Blake Everett Johnson is a Teaching Assistant Professor and instructional laboratory manager in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. His research interests include experimental fluid mechanics
].Expectations for TAs:While research shows that TAs believe that content knowledge is the sole key to being aneffective teacher [14], students have a much different idea of what TAs should bring to the table.In a study of seven laboratory and lecture courses in environmental and water resourcesengineering, students were asked to rank what makes an effective TA from 17 categories ofintellectual excitement and interpersonal rapport developed by the American Society of CivilEngineers Body of Knowledge (ASCE-BOK) to describe effective teaching [22]. 21.3% ofstudents ranked fair grading practices as their first choice for what makes for an effective TAfollowed by explaining difficult concepts well (14.9%), coming to the classroom or laboratoryprepared (13.3
Paper ID #42444Why are we here? A Study of Student Perspectives on Attendance in a CombinedLecture and Laboratory CourseDr. Kara Bocan, University of Pittsburgh Kara Bocan is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Pittsburgh. Her primary focus is teaching with a secondary focus on engineering education research. She completed her PhD in Electrical Engineering and her BSE in Electrical Engineering and Bioengineering, both at the University of Pittsburgh. She currently teaches courses on introductory programming, data structures and algorithms, software
Paper ID #41990Design and Development of Survey Instrument to Measure Engineering DoctoralStudents’ Perceptions of Their Teaching PreparednessOmar Jose Garcia, University of Oklahoma Omar Garcia is an undergraduate Aerospace Engineering student at The University of OklahomaDr. Javeed Kittur, University of Oklahoma Dr. Kittur is an Assistant Professor in the Gallogly College of Engineering at The University of Oklahoma. He completed his Ph.D. in Engineering Education Systems and Design program from Arizona State University, 2022. He received a bachelor’s degree in Electrical and Electronics Engineering and a Master’s in
there are a myriad of reasonsthat instructors may decide to forgo live demonstrations, two common reasons for doing so arethat they doubt the effectiveness of live demonstrations, or that the time required to develop andimplement an effective demonstration prohibits instructors from utilizing them.As a result of the COVID-19 pandemic, instructors around the world were forced to adapt theircourses to be delivered remotely. While the vast majority of classes have returned to traditionalin-person formats, instructors retain the skills required to produce effective teaching videos. Ithas been shown that online laboratory activities can have some unique advantages [1]. Thispresents an opportunity for instructors to develop pre-recorded demonstration
Engineering at California Polytechnic State University, San Luis ObispoJohn Galisky, University of California, Santa BarbaraDr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for sev ©American Society for Engineering Education, 2024 WIP: Instructors’ Framing of their Instructional PracticeIntroductionThis WIP study stems from a larger project focused on the propagation of educationaltechnology in diverse instructional settings
is one of the difficult topics in thermodynamics. Due to its abstract concept andtheoretical nature, students could easily get lost during a typical PowerPoint lecture and found itdifficult to solve related problems in homework and exams. Even when students could follow thesteps to finish their homework, they felt challenged to connect the concept with real-lifeapplications. It showed that the passive learning format is not effective in teaching this subject. Toimprove the student learning, we added an active learning element in the lab portion of the courseby modifying some of the experiments. In many published conference papers, the active learninghas shown being effective in improving student learning. In this paper, we would like to
online, and in-person. The resulting data from approximately 200 consentingundergraduate mechanical engineering students in each of the synchronicity options (N > 600)showed that grades for certain lab experiences (i.e., early labs with high levels of skill-building)actually benefitted from an asynchronous online format, even above in-person offerings, while alater lab with deeper dives into specific skills produced better learning and ratings from studentswhen offered either in-person or synchronously online. The results of this investigation can benefitengineering educators, as well as those with interest in online physical labs in other disciplines.Keywords: Online Education, Laboratory Learning, Student ExperienceIntroductionSince the
-- and allowing it to guide one’s behaviorThe study of this domain focuses on determining what teaching practices produce the most positiveattitudes or connections to a concept and how feelings and behaviors change throughout theprocess of learning a concept/topic. This domain is harder to study and quantify since it is moreabstract compared to the cognitive domain. Also, it can be hard to separate positive feelingstowards the information and process of learning of a concept versus positive feelings created bygenerally positive social interactions during certain activities, such as during a laboratory session.Thus, our research aims to find general trends based on students' experiences, perceptions, and/orthoughts towards engineering classes and
naturally occurwithin social contexts (Lofland, 1971; Merriam & Tisdell, 2016). This approach assumes thatpeople’s values, attitudes, and behaviors are shaped by the social situation. Consequently,ethnographic researchers gather multiple types of qualitative data such as observations,interviews, and documentary evidence. This allows them to understand the context-dependentnature of people’s actions in naturalistic settings. Since the 1970s, educational research hasincreasingly adopted the ethnographic approach (Gordon et al., 2011; Green & Bloome, 2004).Its application spans various domains in education, including medical education (Reeves et al.,2013), second language teaching (Flowerdew & Miller, 1995), and social science education
[4]. This was found to better prepare students for lectureson new concepts, as well as give instructors more time to teach the new concept in class as theydid not need to review prerequisite knowledge with students [4]. Similarly, another study foundthat having more tutorials or example problems was helpful in engineering students'comprehension of math [12]. Other studies tested new e-learning practices and programs [5], [9-10]. They found that this style of learning was the best alternative during the COVID-19 pandemic;however, it also produced more confusion during certain laboratory activities [5], [10]. Recognizethat these studies were conducted before and during the pandemic, so newer studies may finddifferent results as online learning
Paper ID #41180Exploring the Evolution of Engineering Doctoral Students’ Academic andCareer Goals in the First Year of Graduate SchoolGabriella M. Sallai, Pennsylvania State University Gaby Sallai is currently a graduate student in the Mechanical Engineering department at Penn State. She is working under Dr. Catherine Berdanier in the Engineering Cognitive Research Laboratory (ECRL) studying the experiences of engineering graduate students. She received her Bachelor’s degree from Franklin & Marshall College in Physics and Women & Gender Studies.Catherine G. P. Berdanier, Pennsylvania State University Catherine
Paper ID #42187Developing a Human-Centered Engineering Design Self-Assessment SurveyMr. Alexander Pagano, University of Illinois at Urbana - Champaign Alex Pagano is a PhD student studying engineering design. His work is focused on the early phases of design and the use of human-centered design or design thinking as a teaching tool. Alex holds a BS in Materials Science and Engineering from University ofMs. Taylor Tucker Parks, University of Illinois at Urbana - Champaign Taylor Parks is a research fellow in engineering education at the Siebel Center for Design. She earned her bachelor’s in engineering mechanics and master’s
to investigating the experiences of Latina/o/x and Black students in engineering. Her scholarship is particularly focused on the relationship between the language and cultural practices of communities and engineering practices. Through her research, teaching, service and mentoring, she supports traditionally underrepresented students who experience a cultural mismatch between the ways of knowing and speaking in their communities and those in engineering. In addition to her work on culturally relevant learning through emerging technologies, Greses uses mixed methodologies to investigate the strengths multicompetent individuals, whose lives exist between languages and/or cultures, might be able to contribute to
Paper ID #44335Shifting Views in Changing Times: Towards a Mixed Methods Study ExaminingFaculty and Student Perceptions on Engineering EthicsProf. Bradley J. Sottile, The Pennsylvania State University Brad Sottile is Assistant Teaching Professor of Computer Science and Engineering, and Aerospace Engineering in The Pennsylvania State University’s College of Engineering, School of Electrical Engineering and Computer Science. ©American Society for Engineering Education, 2024 Shifting Views in Changing Times: Towards A Mixed Methods Study Examining Faculty and Student Perceptions on Engineering
, Georgia Institute of Technology Yiming Guo is pursuing a Master of Science degree in Electrical Engineering at the Georgia Institute of Technology. He received his Bachelor of Science degree at University of California, Los Angeles. His primary interests involve machine learning and circuit design.Dr. Ying Zhang, Georgia Institute of Technology Dr. Ying Zhang is a Professor and Senior Associate Chair in the School of Electrical and Computer Engineering at Georgia Tech. She is the director of the Sensors and Intelligent Systems Laboratory at Georgia Tech. Her research interests are centered on systems-level interdisciplinary problems across multiple engineering disciplines, with AI-enabled personalized engineering
analysis, we used mainly categorical response tallies and descriptive statisticsto identify portions of the survey with the most potential for follow-up study and hypothesisgeneration. We also performed a thematic analysis on free-response data to help support thesenext-steps ideas. A first trained annotator coded the full dataset and a second rater coded 10% ofthe data. The resulting Cohen’s kappa was 0.70, which indicates a substantial level of inter-raterreliability.Results and DiscussionOverall, the results show little difficulty accessing current course materials, as well as low levelsof interaction with peers and the teaching team during Ecampus coursework, as further detailedbelow. These realities of Ecampus coursework interactions are
modeling: applications using mplus. Chichester, UK: John Wiley & Sons, Ltd, 2012.[22] C. Payne and K. J. Crippen, “A structural model of student experiences in a career‐ forward chemistry laboratory curriculum,” J. Res. Sci. Teach., Apr. 2023, doi: 10.1002/tea.21860.
students’ suits) among members of this REU community, including students and facultyresearchers as well as key staff and teaching faculty who can be key points of contact and guidance for studentsnavigating these challenging career and academic learning curves.C. Individual Interviews Findings from our analysis of individual interviews revealed undergraduate participants’ experiences in thesummer research internship programs further developed their engineering identity. Notably, participantsdescribed feeling more comfortable in research lab settings and confident in their ability to progress in theirengineering programs. Another common theme was participants’ appreciation for the opportunity to engagehands-on with research. Specifically, they
Edinburgh Panting Yu earned a master’s degree in education from the University of Edinburgh, Scotland. As a STEM teacher, she plays an integral role in Dr. Yeter’s Research Team, bridging academic research with daily educational practice. Panting brings expertise in educational and practical studies, providing a unique perspective on STEM+C teaching and educational innovation.Jiafei Wang, The Education University of Hong Kong Jiafei Wang is a master student majoring in STEM Education at The Education University of Hong Kong. He actively participates in Dr. Yeter’s Research, focusing on projects related to engineering education and computational thinking. Drawing on his experience as a mechanical engineer, Jiafei’s
would consistently come home from work covered in grease and grime after climbing bodily into machines to fix them. He shares a promise with his grandfather, now departed, that he will continue to innovate, contribute, and revolutionize industry through engineering and teaching. His world view that can be summed up in two statements: ”Just because it works, doesn’t mean in can’t be better.” – Shuri, Black Panther and ”First, think. Second, believe. Third, dream. And finally, dare.” – Walt Disney. He obtained a Bachelor of Science in Industrial and Systems Engineering from North Carolina State University while a part of the Accelerated Bachelors-Master’s program. He proceeded to finish his master’s at North Carolina
involve individual students working in faculty research laboratories with one-on-onementoring, typically spanning one or more semesters, although the activities and mentoringstyles may vary. Due to limited capacity, UREs are often competitive and have selection criteriasuch as grades, test scores, and previous experience or performance based in a class [19].In contrast, CUREs have a structured curriculum and are open to a broader range of students,placing higher demands on mentors to guide multiple students [18]. Duration is a critical factorin both UREs and CUREs, influencing outcomes significantly [18]. UREs and CUREs differ inselectivity, duration, setting, mentoring approaches, and associated costs. Notably, Burt andcolleagues [19] delve into
Paper ID #41602Characterizing Teamwork Dynamics and Computational Model-Based Reasoningin Biomedical Engineering ProjectsAbasiafak Ndifreke Udosen, Purdue University Abasiafak Udosen is a professional Mechanical Engineer in Nigeria and a doctoral research scholar at ROCkETEd laboratory, Purdue University, United States. He earned a B.Eng in Mechanical Engineering and an M.Eng in Energy and Power Engineering both in Nigeria. Over the years he has had the privilege of teaching courses such as Thermodynamics, Measurement and Instrumentation, Engineering Metallurgy, System Design, and Quantitative research methods at the
participants in this paper. It is this closeness to similar lived realities that Iwas able to build the confianza to conduct the research. Driven by my own experiences in theUnited States and Mexico, my teaching and scholarly work seek to promote and incorporatesocial justice issues in the engineering curricula, primarily the development of criticalconsciousness in engineering to nurture engineers’ ability to meaningfully engage with thesesocial justice issues. It was through my own self-reflexivity as a materials engineer workingon different projects around the world and asking “what is engineering for and who does itbenefit?” that I started to become more critical of the world around me and work towarddeveloping my own critical consciousness or
Paper ID #43928Promoting Equity and Cognitive Growth: The Influence of an AuthenticLearning Assignment on Engineering Problem-Solving SkillsDr. Boni Frances Yraguen, Vanderbilt University Boni Yraguen is an Instructional Consultant with the Vanderbilt Center for Teaching. Boni is passionate about engineering education. She has led and participated in various educational studies on the impact of student reflections, authentic learning assignments, the use of technology in the classroom, and graduate education.Elisa Koolman, University of Texas at Austin Elisa is a Ph. D. student at the University of Texas at Austin. They
pollinators. His educational research interests include effective teaching techniques for enhancing engineering education, global engineering and international perspectives, thinking and working in multi-, inter-, and transdisciplinary ways, cyberlearning and cyber-environments, service and experiential learning, mentoring, peer-mentoring, teaming and collaborative learning.Prof. Reginald F. Hamilton, Pennsylvania State UniversityDr. Catherine L. Cohan, Pennsylvania State University Catherine Cohan, Ph.D. has been a research psychologist for over 20 years. Her areas of expertise include engineering education, retention of underrepresented students, measurement, and assessment. She is currently an Assistant Research Professor
Paper ID #41514Use of Theories in Extended Reality Educational Studies: A Systematic LiteratureReviewDr. Kimia Moozeh, Queen’s University Kimia Moozeh is a research associate at Queen’s university in Engineering Education. Her PhD dissertation at University of Toronto explored improving the learning outcomes of undergraduate laboratories. Her research interests are lab-based learning, online learning and metacognition.Dr. Paul Cameron Hungler P.Eng., Dr. Paul Hungler is an assistant professor in the Department of Chemical Engineering and Ingenuity Labs at Queenˆa C™s University. Prior to starting his current position, Major