. Justine reflected on times when she did not trust herinstincts, stating, “The most important thing is to not give up on that instinct. There’s a reasonyou feel that way.”Acknowledging Pressure to Go Along Just like pressure in a liquid or gas may be used by a professional engineer to exert forcein a mechanical system, pressure may be used by a leader to encourage compliance with anunethical directive or request. Of course, pressure in a liquid or gas may be easier to measure andevaluate than the human mind when under stress. Participants emphasized the importance oftheir awareness of what actions others had taken to apply pressure and how they were feelingunder that pressure, both as a means to respond appropriately and to avoid
through auspices ofthe National Academies.backgroundThe practice of engineering is more than the application of scientific, mathematical, andtechnical knowledge to design, develop, build, and maintain devices, systems, structures, andprocesses. It is a creative endeavor with profound cultural, ethical, and social dimensions, andwith the great potential to do good or harm, however intentionally or unintentionally.While it may seem as though considerations of such non-technical aspects of engineering are arelatively recent concern, they have in fact long been on the minds of practitioners [1]. Indeed, aset of papers published in 1922 put forward some remarkably modern-sounding concepts.Alexander Graham Christie, a Johns Hopkins University
: 10.1007/s11948- 017-9910-6.[10] J. Haidt, The Righteous Mind. New York: Vintage Press, 2012.[11] J. D. Greene, Moral Tribes: Emotion, Reason, and the Gap between Us and Them. New York: Penguin Books, 2014.[12] M. H. Bazerman and A. Tenbrunsel, Blind Spots: Why We Fail to Do What’s Right and What to Do about It. Princeton: Princeton University Press, 2012.[13] R. F. Clancy, “The Ethical Education and Perspectives of Chinese Engineering Students: A Preliminary Investigation and Recommendations,” Sci. Eng. Ethics, vol. 26, no. 4, pp. 1935–1965, Aug. 2020, doi: 10.1007/s11948-019-00108-0.[14] B. Keysar, S. L. Hayakawa, and S. G. An, “The Foreign-Language Effect,” Psychol. Sci., 2012, doi: 10.1177
; in31 Utilitarianism engineering, choices are made with the majority's best interests in mind. Emotional intelligence is essential for moral leadership and handling Emotional32 emotionally charged circumstances, playing a significant role in Intelligence (EQ) engineering ethics. Ensuring that the benefits of engineering decisions are distributed33 Social Justice fairly, address equality and inclusion, and consider the wider social implications for a more just and equitable society. An ethical philosophy that highlights the intrinsic obligations and34 Duty Ethics
.” This canon in itself is ablatant example of how NSPE seeks to propagate business professionalism through ethics,especially considering how overwhelmingly the clients and employers of engineers they areobliged to be faithful agents or trustees of are the state and large corporations. They claim that“experience has demonstrated, beyond any reasonable doubt, that an engineer with a union-minded attitude cannot and does not regard his relations with his employer as that of a faithfulagent or trustee.” The BER offers no support for this claim besides a vague reference to“experience” that falls apart when evidenced by the largely business unionist history ofengineering unions. Even taking their claim on face value, the orientation is not
and willing to investthe effort to develop these skills. Institutions can and should consider ways to encourage andcreate time for this practice.ConclusionThis work demonstrates how connections between philosophical ethical theories can be madewith practical engineering ethics codes. It is valuable for students to learn both of these and to beable to connect them with each other. The engineering ethics curriculum can be designed withthis student learning outcome in mind from the larger EAC concept down to the smaller detailsin individual assignments as demonstrated in this case with the introduction to engineering codesof ethics within an intermediate-level design class.AcknowledgmentsJust as the shared nature brings out the best of the
Paper ID #42851Examining the Characteristics and Traits of Young Engineers’ Moral ExemplarsMr. Darius Grandvil Carter, San Francisco State University I am the middle child of African American Darius Carter and Filipina Geraldine Goyena Carter. As a child I loved space and planets, as I grew older I enjoyed making spaceships and machines out of lego. After highschool I decided to go to San Francisco State University where I am a 4th year studying Mechanical Engineering. I have been working with Dr. Stephanie Claussen in the Engineering Ethics Lab for 1 year where I have been working on a research paper studying the moral
their teams on challengingproblems also promotes psychological safety in their teams [4].With these thoughts in mind, we began to be curious about the state of psychological safety andstudent engineering teams. This work in progress builds upon two pilot studies presentedpreviously and expanded to include data from additional universities [5,6]. In addition to beingcurious about benchmarking the psychological safety of student engineering teams, we were alsocurious to understand if we can improve psychological safety on underperforming teams. Each ofthe universities participating in this study provides leadership or teaming development training tostudents in some way. Therefore, we are curious if these efforts lead to improvements
anembedded model, engineering programs can curate courses that directly prepare students forengineering professional skills. As Downey explains, “The bottom line: the contemporarychallenge to produce global engineers is not about how to cram more skills into the minds andbodies of engineers in the same amount of time. It is to make engineers better problem definersand problem solvers by integrating into engineering routines questions about what engineers arefor and what engineering is for in the first place” [2]. Implementing a Problem Definition andSolution model helps to negotiate fundamental engineering professional skills, namelycollaborating with experts and non-experts, as well as accounting for alternative outcomes forvarying stakeholders [5
Paper ID #42120Navigating the Mystery: An Approach for Integrating Experiential Learningin Ethics into an Engineering Leadership ProgramDr. James N. Magarian, Massachusetts Institute of Technology James Magarian is a Sr. Lecturer with the Gordon-MIT Engineering Leadership (GEL) Program. He joined MIT and GEL after nearly a decade in industry as a mechanical engineer and engineering manager in aerospace/defense. His research focuses on engineering workforce formation and the education-careers transition.John M. Feiler, Massachusetts Institute of TechnologyLeo McGonagle, Massachusetts Institute of Technology Leo McGonagle
ispossible to apply this definition to AI to a select subset in the category termed Theory of MindAI. The distinction between phenomenal consciousness and access consciousness would appearto be the difference between AI capable of decision-making, and one that is self-aware. Currenttechnology already exists for AI to automatically shut off in close proximity to humans, or tosignal malfunction that might pose a safety threat, for example, as part of common designpractice in the field of engineering safety [26, p 798]. Further studies might include specific casestudies of Theory of Mind AI demonstrating examples of collective identity altruistic behavior.While speculative future popular culture writings tend to lean heavily toward a dystopian futureof
documentation can be captured. His current research is focused on developing higher reliability Technical Language Models (TLMs) which are essentially knowledge-graph backed LLMs that can pinpoint where information was drawn from within a complex information environment. He also works toward improving CS education, broadening participation in computing, and incorporating ethics into CS education. ©American Society for Engineering Education, 2024 A Directed Question based Framework for Teaching and Learning Ethics: A tool but also a Memorable Framework that Students can take Forward into their Professional Practice Udayan Das
help transition engineersdevelop into ethical and equity-minded professionals while adapting successfully to theirchanging roles and responsibilities, we need to understand how early career engineers experienceand perceive issues related to ethics and equity in their workplace. This understanding will allowfor the development of a comprehensive educational curriculum, professional developmentinitiatives, and leadership skills, for personal and professional growth. This study presents the findings from research carried out by interviewing 13 early careerengineers from diverse engineering disciplines across North America, delving into theireducational backgrounds, current work projects, and challenges related to professional ethics
Paper ID #43795Pedagogy of Engagement: Exploring Three Methods in an Engineering Ethicsand Professionalism CourseJessica Wolf, University of British Columbia Jessica Wolf is a PhD student in the Department of Mechanical Engineering at UBC. Her research focuses on equity issues in engineering education, particularly looking at the impacts of engineering outreach programs on historically marginalized groups in STEM.Gayatri Gopalan, University of British Columbia Gayatri Gopalan is a PhD student in the Department of Curriculum and Pedagogy in the Faculty of Education at the University of British Columbia. Her research
Paper ID #43704A Student-Led Ethics Deep Dive, Discussion, and Content-Generation EthicsAssignment in Computer Science & Engineering CapstoneDr. Tracy Anne Hammond, Texas A&M University Dr. Hammond is Director of the Texas A&M University Institute for Engineering Education & Innovation and also the chair of the Engineering Education Faculty. She is also Director of the Sketch Recognition Lab and Professor in the Department of Computer Science & Engineering. She is a member of the Center for Population and Aging, the Center for Remote Health Technologies & Systems as well as the Institute for Data
Paper ID #44216Application of African Indigenous Knowledge Systems to AI Ethics Researchand Education: A Conceptual OverviewKerrie Danielle Hooper, Florida International University Kerrie Hooper is currently an Engineering and Computing Education Ph.D. student at Florida International University. She obtained her Bachelor of Science in Computer Science from the University of Guyana in 2019 and then worked for two years in the industry as a Data Analyst & Systems Administrator, before pursuing her doctoral degree. Her research interests are in AI ethics, responsible technology in education, women’s careers in computing