course sequence over the 2021-2022 and2022-2023 academic years to determine the effect of EM-focused instruction and first-yeardesign projects on EM growth. We analyzed responses in a pre/post manner within theseacademic years and holistically analyzed across academic years. We used the cross-year analysisto address the impact of curricular changes. Finally, we provide implications and pedagogicalapproaches that can support the development of an EM in the future.2. BackgroundThe Ohio State University (OSU) partnered with KEEN in 2017 and has since integrated EMLacross several courses in its engineering curriculum. This initiative first began with the redesignof the First Year Engineering Program (FYEP) standard course sequence. Alterations to
in sustainable (bio-inspired) design helps them to understand the impacts oftheir decisions on the environment and natural resources and empowers them to make positivechanges. On the other hand, entrepreneurship enables students to learn how to spot, evaluate, andexplore opportunities, build a prototype, and test it to design a project that satisfies clients' needsand aesthetic preferences. Unfortunately, educational institutions and researchers lag, particularlywhen integrating an entrepreneurial mindset with green building. Thus, this study emerged toovercome this contemporary interdisciplinary challenge and prepare green entrepreneurs and T-shaped engineers.PURPOSE OR GOAL: This study aims to prepare future green entrepreneurs and T
materials science, the neuroscience of learning, humanitarian engineering, and undergraduate research involvement. ©American Society for Engineering Education, 2024 Implementing Entrepreneurial Minded Learning in a First-Year Seminar CourseEntrepreneurially minded learning (EML) was implemented in a first-year seminar course at ateaching-focused public institution in the Southeast United States. Entrepreneurial mindset (EM)is characterized by the Kern Entrepreneurial Engineering Network (KEEN)’s 3Cs, which arecuriosity, connections, and creating value. To assist the first-year students with the developmentof EM, a 7-week long project was developed and incorporated into the course
Ocean Engineering at ESPOL. Prof. Andrade has been working with these two communi�es for manyyears and has developed a strong rela�onship with the community members. The trip was made in lateMay 2023 with the course scheduled to be taught during the month of July 2023. In addi�on to Drs.Singh and Andrade, Dr. Jorge Duque and Prof. Eduardo Cas�llo, two professors in the mechanicalengineering department (where Dr. Singh was based during his Fulbright appointment at ESPOL). Prof.Duque had previously worked on a mechanical engineering project with the Barcelona community andProf. Cas�llo had experience with entrepreneurship, having started his own company.During the visit to the communi�es, Dr. Singh was introduced to community leaders as well
students to embrace uncertainty and view failure as a learning opportunity.Research also highlights the critical role of instructors in modeling risk-taking behavior,fostering an entrepreneurial mindset essential for innovation [18, 19]. Studies on risk assessmentand management [20, 21] and the impact of instructional frameworks on developing anentrepreneurial mindset [22, 23] emphasize the importance of active learning and project-basedapproaches in cultivating the skills needed for navigating the complexities of the engineeringprofession.Existing literature emphasizes the complexity of failure and its critical role in learning andinnovation. However, there remains a gap in empirical studies exploring the integration of failurejournaling in
Technology from the Technical University of Munich, with specializations in Mechanical Engineering, Innovation, Entrepreneurship, and Finance. She is also an alumna scholar of the entrepreneurial qualification program at Munich’s Center for Innovation and Business Creation (UnternehmerTUM). Professionally, Nada currently works as a Senior Corporate Strategy Manager at a SaaS company. Her student practical experiences include roles as venture capital investment analyst, startup strategy consultant and entrepreneurial coach, alongside being team lead for innovation projects in the automotive industry.Dr. Helen L. Chen, Stanford University Helen L. Chen is a Research Scientist in the Designing Education Lab in Mechanical
Engineering Technologycurricula specifically needs further attention. This gap highlights the need for enhancingentrepreneurship education in this field, considering the industry's demand for graduates whoare both technically skilled and entrepreneurially minded. This research explores theintegration of entrepreneurship into an Engineering Technology (ET) program, with a focus ona sustainable building course. It employs innovative educational strategies such as micro-moments, bisociation, virtual reality, entrepreneurial tasks, and a project-based approach todevelop real-world problem-solving skills. The effectiveness of this approach was assessedthrough a quantitative and qualitative survey to understand student perceptions. Findings revealstudents
’ pursuit to ”do good.” Marie received her B.S. in mechanical engineering and international studies from Rose-Hulman Institute of Technology and M.S. and PhD in science and technology studies (STS) from Virginia Tech. She also earned a graduate certificate in human-centered design (HCD) from the Interdisciplinary Graduate Education Program at Virginia Tech. Marie’s interest in values and engagement in professional cultures also extends to innovation and its experts.With Matthew Wisnioski and Eric Hintz, Marie co-editedDoes America Need More Innovators?(MIT Press, 2019). This project engages innovation’s champions, critics, and reformers in critical participation.Dr. Aneesha Gogineni, Saginaw Valley State University
on gene expression. He has a keen interest in new educational models especially in the area of innovation, experiential learning, and project-based learning. He currently serves as program director for the University of North Dakota’s Biomedical Engineering program and is actively developing an Innovation Based Learning methodology.Ryan Striker, University of North Dakota Ryan Striker is a life-long learner. Ryan has two decades of professional experience designing embedded electronic hardware for industrial, military, medical, and automotive applications. Ryan earned his BS and PhD in Electrical Engineering and his MS in Systems Engineering. He now teaches Biomedical Engineering at the University of North Dakota
engineeringfundamentals.IntroductionMore than ever, the world needs innovative products, services and organizations to help societymove forward. Those who will design these advances often seek opportunities in college to bothdevelop and test new ways to solve problems in ever-growing ecosystems and new engineeringapplications. Though engineering programs often excel at teaching technical capabilities,communication, leadership, teamwork and project-based learning activities gain less attention. Inaddition, engineering programs typically lack a structured method to apply entrepreneurialthinking to their studies, where questions of financial viability, social usefulness and potentialdemand for their engineering solutions are integrated into their coursework. Therefore, co
]. 2. Sustainability and climate change (S/CC) topics. S/CC problems have recently been coming to the forefront as problems that need to be urgently addressed. Given the important role engineers play in transportation, manufacturing, design, and other areas relevant to S/CC, it is important for engineering students to be exposed to these topics throughout their studies. o Within S/CC topics, the concept of circularity (as in the circular economy) is discussed and included as a requirement for student projects. In this course and in this paper, circularity is referred to as Cradle to Cradle (C2C), based on the book by McDonough and Braungart [3]. The C2C approach promotes a
training in active learning methodologies at the three campuses of the School of Engineering (Santiago, Vi˜na del Mar and Concepci´on, Chile). She authored several manuscripts in the science education area, joined several research projects, participated in international conferences with oral presentations and key note lectures and serves as referee for journals, funding institutions and associations. ©American Society for Engineering Education, 2024 Relationship Among Entrepreneurial Intention and Entrepreneurial Competency Development: A Study on Perceptions Through Engineering Students.AbstractEntrepreneurial intention and entrepreneurial competencies are two
Paper ID #43559Developing Engineering Identity Through StoryDr. Michelle Marincel Payne, Rose-Hulman Institute of Technology Dr. Michelle Marincel Payne is an Associate Professor in the Civil and Environmental Engineering at Rose-Hulman Institute of Technology. She earned her Ph.D. in Environmental Engineering from the University of Illinois at Urbana-Champaign, her M.S. in Environmental Engineering from Missouri University of Science and Technology, and her B.S. in Nuclear Engineering from the University of Missouri-Rolla (same school, different name). At Rose-Hulman, Michelle is leading a project to use story to help
bootcamp. Some studieshave suggested the I-Corps model has several potential benefits within undergraduate education,but more research is needed to elucidate the features of I-Corps that are most valuable at theundergraduate level.In this study, we developed a new Entrepreneurial Bioengineering elective course for junior andsenior undergraduate engineering students that models various aspects of the I-Corps program.The course introduces entrepreneurship, business model canvas, and lean start-up principles tothe students with a focus on medical device customer discovery and technologycommercialization. Students work in teams to form project ideas, interview customers, testbusiness model hypotheses, and present their discoveries. The goal of this
uncertain future that lies ahead. Evidence suggests thatproficiency in innovation, critical thinking, complex problem-solving, and effectivecommunication positions students for success in sustainable engineering careers [2-4]. However,a prevalent culture of risk aversion among students stifles exploration into unchartedtechnological territories, thereby limiting their comprehensive academic growth [5].In response to these challenges, this paper presents an evaluative study of an inventive, multi-disciplinary, project-based course known as "Innovation Through Making." This course isdesigned to blend the foundational Engineering Sciences (ES) curriculum with anEntrepreneurial Mindset, thereby endowing students with critical knowledge and
Paper ID #41551MBL (Mastery-Based Learning) Supports a Normalization of Failure as anEssential Part of LearningDr. Kurt M. Degoede, Elizabethtown College Professor of Engineering and Physics, Elizabethtown College. His research interests in biomechanics include developing clinical instruments for rehabilitation and human performance. Dr. DeGoede teaches upper-level undergraduate mechanical engineering using mastery-based assessment models and project-based learning, design courses, and first-year multidisciplinary courses.Dr. Brenda Read-Daily, Elizabethtown College Dr. Brenda Read-Daily is an Associate Professor of
ofinterdisciplinarity and stakeholder engagement. We will close with both a section on “lessonslearned” throughout this process, as well as a section on the “deliverables” that have emergedfrom this process thus far. These ‘deliverables’ tie to benefits that, we believe, will enhancecareer preparation for students.theories of interdisciplinaritySeveral theories could have supported our work on developing a program in SocialEntrepreneurship. We are aware of the literature suggesting that theories of community-engagement (Tekic et al., 2022; Wallerstein et al. 2020), and even collaborative building () couldhave been used to guide this project. However, the development of this project was madepossible by a grant from funders who have a particular interest in
, INSPIRES, and two annual Project Showcases. Magda is the Principal Investigator of the Texas A&M University I-Corps Site grant and has been active in promoting entrepreneurship both at the local and national level. Member, Institute for Engineering Education & Innovation. ©American Society for Engineering Education, 2024Work in Progress: The missing link in I-Corps Entrepreneurship Engineering Education at a Southwestern InstitutionAbstractEntrepreneurship education has made its way at most engineering institutions. Lean methods andthe I-Corps culture have gained notoriety and momentum across the United States. At aSouthwestern institution, designated as an I-Corps
fields [4], [5], [6].In recent years, course-based undergraduate research experiences (CUREs) have been gainingpopularity as a way to engage undergraduate students in authentic scientific inquiry on a largescale [7]. While CUREs have many similarities to traditional laboratory courses or courseresearch projects, the work students do as part of a CURE is framed in a fundamentally differentway. Research projects within CUREs ideally have direct and indirect impact on the broaderscientific community and offer students the opportunity to share study findings with externalstakeholders [8]. Consequently, CUREs represent an overlap between the triumvirate of studentlearning, stakeholder impact, and promotion of a faculty’s research program.In this work
effectiveness of COIL, as previous studies have shown it to promoteintercultural competency but noted its dependence upon adequate pre-training to contextualizethe cross-cultural experience [2], [9], [10].Herein, we describe the initiation and initial stages of our cross-institutional project to answer: 1)How do international experiences influence undergraduate science and engineering students’EM, and 2) How does the international experience modality (i.e., study abroad or COIL) impactdevelopment of EM?Team formation:Team members initially met during the Networking, Ideation, and Collaboration (NIC) workshop[11] offered by APA-ENG (March 29-31, 2023). The NIC workshop is an intensive, nine hourworkshop that provides participants with foundational
Paper ID #44131WIP: Developing Collaborative Entrepreneurship Competencies for TechnicalMajorsBlanca Esthela MoscosoDr. Miguel Andres Guerra, Universidad San Francisco de Quito Miguel Andres is an Assistant Professor in the Polytechnic College of Science and Engineering at Universidad San Francisco de Quito USFQ. He holds a BS in Civil Engineering from USFQ, a M.Sc. in Civil Engineering in Construction Engineering and Project Management from Iowa State University, a Ph.D. in Civil Engineering with emphasis in Sustainable Construction from Virginia Tech, and two Graduate Certificates from Virginia Tech in Engineering
design courses or project work courses,those easily encompass teamwork, leadership, and creativity.” This is supported by research thatsuggests that problem-based learning, which is used in design courses, allows for simultaneousprofessional and technical skill development [12]. One of the participants noted how coupled theskills can be together and hard to assess them separately. EF added: So I think that those (communication) are some of the more important soft skills that are a little bit difficult to assess. And I find that they’re difficult to assess because they’re difficult to decouple from the technical content. Meaning if someone is going to do a great job presenting awful technical work, it’s very difficult
led by one of the co-authors (BR) who has a background in theatre wherethey have served as a director, writer, and performer in a variety of different artistic projects.The topic of the workshop was “source media,” and a demonstration of how different sourcemedia can serve as inspiration for innovation the way the practicing artists use source media asinspiration for their theatrical performances for “devised theatre”. Devised Theatre is a type oftheatre that focuses on creation. In a traditional performance process, the content of the work hasalready been created at the start of the process. In a devised work, the ensemble starts with theother collaborators on the project and from there creation of a performative work begins.In this workshop
based on the depth of cultural immersion and the diversity of travelexperiences.Future WorkIn our study, the artistic creativity of the research participants was demonstrated through adrawing while their innovation was evaluated by a self-rated measure. In our future work, weenvision assessing research participants’ term projects for innovation demonstrated through theirwork. This would provide us with more comparable measures for artistic creativity andinnovation self-efficacy attributes. Our future focus group with the research participants willexplore the portion of states that they reported having visited that they also lived in. This canhelp us better understand the relationship between the lived experiences of the participants withtheir
& Viable Business Models, Multicultural, and Social Consciousness. This e-portfolio includes but is not limited to undergraduate research, projects, and high-impact experiences that can be leveraged to pursue future academic and professional careers. ombining e-portfolios with an interdisciplinary approach to education scenarios allows us toCperform the analysis of our cohort's growth in varied ways. Previous cohorts were tasked with the performance of a pre-and post-program survey as well as a traditional reflection essay[2]. Extrapolating on that idea and the engineers' inherent drive for innovation, in this 2023 cohort we elevated the research design by adding concept maps to assess student
Finals Week (no class) Impact Portfolio * indicates content delivered by a guest speaker Table 1. Course lecture topics and assignment overview.Most weeks, students were prompted to complete a warm-up at the beginning of class withinstructions projected in the front of the classroom. Similarly, the last five minutes of manyclasses were reserved for an individual cool down activity. Students were asked to write theirresponses in the provided course workbook. Table 2 provides an overview of some of theseactivities. Week Warm-up Cool Down Futurist activity by imagining the impact
activity. A) Completed concept map B)Unfinished concept map The second phase of the project delved deeper into entrepreneurial mindset. In this phase,groups created concept maps including features of the clippers, clippers stakeholders, andadditional products that could also be used to cut branches. In their concept maps, studentsconnected features of the clippers, such as ease of use, cost, and number of parts, to stakeholders,such as customers, retail partners, and manufacturer, with words that described how the featurecreated value for the stakeholders, like expects, delights, not interested in, or detracts. Studentsalso had the opportunity to include on their concept map additional products that could be usedfor the same purpose and