toengage students in the practices of front-end design [4] supporting students throughout each lesson todevelop a strong understanding of stakeholder need while exploring the ill-structured, real-world issue ofwater conservation. Another central purpose of the curriculum was to help students draw connectionsbetween and leverage science, engineering, and social or community knowledge. The curriculumsupported students to explore this problem locally, understanding water conservation issues andchallenges in their own communities, to allow students to leverage funds of knowledge [12], [13] andtheir local expertise as they engaged in the process of front-end design. The summative assessment at theend of our series of lessons is an extended reflection
, social constructions and hierarchies, historical background, andsocioeconomic status among other social constructs. As Anzaldúa explored her ownupbringing and lived reality, she deconstructed those spaces she inhabited where she faceddiscrimination and ambiguity to imagine and (re)shape a third space where new realitiescould exist [16]. Through a process of self-reflexivity, Anzaldúa explains, Nepantla becomesa (re)imagined space rather than a dichotomy of worlds [16]. Anzaldúa claims that Nepantlasoften emerge through writing – the writing that comes from deep and critical reflection thateventually leads to a process that catalyzes transformation.Nepantla is also a way to explore the world through lived experience and engage indecolonial
specific goals were twofold: a) to providea reflective perspective on participants' institutional experiences related to gender, equality, androles within the School of Engineering, and b) to shed light on the challenges and barriersencountered in institutional life. Data was collected using the LEGO® Serious Play®methodology as an innovative and dialogic facilitation method. Twenty students and professorsparticipated. A phenomenological and qualitative analysis was conducted on the workshoprecordings to discern emerging perspectives. The results of the initial pilot workshops highlightthe significance that gender equality holds for both students and faculty within the realm ofuniversity education, as it is seen as the heart of institutional life
to comprehensively assess students'knowledge and attitudes about sustainability in engineering design, we employed three distinctmethods: self-developed questions and assignments. The survey, initiated with a statementsecuring participants' consent, focused on demographic details before delving into six open-ended questions gauging perspectives on sustainability, life cycle assessment (LCA), andsustainable design. Furthermore, the LCA reflection assignment served as a valuable component, providingdirect evidence of students' understanding of the significance of Life Cycle Assessment (LCA) inengineering designs. The thorough assessment of assignments focused on aspects such as theproduct's lifespan and its broader impacts, encompassing
real-world problem analysis into science-relatedsubjects using case study approaches. These approaches engage students with practicalissues, fostering sophisticated thinking, promoting reflection, integrating, applying priorknowledge, and developing self-management learning skills. In our university's ConstructionEngineering program, introducing case studies addressing real-world problems in thesisprojects in the first semester of 2017 significantly improved the graduation rate, rising from10% in 2016 to 25.9% by 2022. These enhancements across various performance metricsdemonstrate the efficacy of this methodology. This research employs a non-experimentalmixed-methods approach, utilizing surveys and interviews as primary data collection
use the lab manuals and other written or verbal instruction etc. We believethis led to clear instruction and student satisfaction with the overall experience.Course Under ConsiderationEngineering Electromagnetics is an undergraduate-level course at our university intended forElectrical Engineering students with Junior or Senior standing. The content primarily includeselectromagnetic wave propagation, transmission line propagation, voltage and currentwaveforms with multi-boundary reflections, Smith chart analysis, and application of Maxwell’sequations. The course is offered once a year with enrollment in recent years ranging between 30and 40 students. Over the last three years, we have tried to transition the course from a traditionallecture
. The self-assessment form can be found in Appendix A. In general, very few students are aware of ABETor of its student outcomes [11]. By having the students participate in the self-assessment processand reflect on their experiences, each student is able to identify outcomes which have not beenachieved and develop a plan to achieve all ABET outcomes prior to graduation. This proactiveself-assessment prompts students to identify weak points in their education and has the potentialto shape better student outcomes, filling all the ABET student outcomes and preparing studentsto be well-rounded engineers.[12]. The two senior semesters of IBL allow the students to directtheir learning and create their own learning experiences to address these
you understand those concepts very well you won’t have to waste more time relearning it.” “Review your Physics II before you start the class.” “Do well in University Physics 2” Needs for Visualization “Bringing more visualization would be helpful.” “I would have preferred more visual aids, specifically animations of the fields.”Conditions and Constraints in Class EnvironmentThe class environment plays a pivotal role in fostering effective learning and holds significantimportance in shaping the educational experience for students. It is useful to clarify the classenvironment for both universities along with the constraints so that it reflects better howvisualization tools and trials work. Both institutions adopt typical university classes and
community workshop where members shareaccess to tools in order to produce physical goods” [5]. In a recent literature review, Mersanddefined a makerspace as “an area that provides materials and tools to encourage individuals orgroups to make things, to create new knowledge, or to solve problems” [6]. In educationalcontexts, makerspaces should provide access to defining elements of the Maker movement,including digital tools, community infrastructure, and “the maker mindset,” involving a positiveview of failure and focus on collaboration [7].While these definitions do not mention gender or race, they may reflect a bias of the predominantusers of makerspaces [8], as makerspaces have, at times, struggled to adequately serve a broadcommunity [9]. Rather
as reflected in ENGR350 projects; and (3) promotion of diversity inthe regional technology workforce.4. Second Year ResultsRecruitment, Retention, and DemographicsThe program began the [inaugural] 2022-23 academic year with ten scholars enrolled. Onescholar left the program after the fall 2022 semester due to academic difficulties. Two scholarsleft the program after the spring 2023 semester to attend other institutions. The program retainedseven students to begin the 2023-24 academic year. As shown in Table 2, the program has acapacity of twenty-four participants in the second year. Thus, recruiting for fall 2023 aimed tofill seventeen available seats.The recruiting campaign began with an email solicitation to students who had been accepted
for all students.Within the context of this project, the course redesign process is guided by a set of faculty-created standards for neuroinclusive teaching, known within the project as I-Standards; thesestandards have undergone multiple iterations to reflect the team’s understanding of current bestpractices. The standards were developed along with experts from the university’s Center forExcellence in Teaching and Learning and the School of Education. Anchored in a strengths-based approach to neurodiversity, the standards focus on three main areas: 1) building a cultureof inclusion, 2) instructional design and inclusive teaching practices, and 3) enhancingcommunication and supports for students [41]. The teaching and learning standards are
and retooling stated learning outcomes.PBL approaches across engineeringPBL is an instructional approach that platforms a student-centered classroom dynamic, andrequires teamed students to propose solutions for open-ended, discipline-specific problems andprocesses. Students produce results that can be assessed with outcome-based standards. As afinal project phase, students are invited to reflect on their problem-solving posture, identifyingopportunities and gaps in their knowledge [16]. As supported by findings in cognitive science,true learning requires higher energy cost for the brain. Connecting old and new informationsupports deeper integration, learning, and memory retrieval, a consolidation process that isstrengthened by self-reflection
by instructional designers at thePennsylvania State University to help ADDIE support diversity, equity, and inclusion in theclassroom [11]. In a way, it combines ADDIE with UDL while maintaining the easy-to-followprocess of course design.In the following descriptions below, the individual developing the lesson or course is referred toas the designer. The designer may also be the instructor of that course.Breaking Down Each LetterAnalyze - The designer defines the problem and establishes learning outcomes. The designer alsoassesses the existing knowledge and skills of learners, as well as the learning environment. • Introspection - The designer reflects on their personal and professional identity and worldview, considers classroom
courses are so rigorous that the cost of fully engaging intheir engineering courses is high.Consistent with existing literature that use multiple elements of value to investigate the nuancesin academic outcomes [28], [29], [32], this study uses items that both reflect intrinsic and utilityvalue. In addition to expectancy and value measures, several control variables are relevant to thisstudy of cognitive engagement. Specifically, we control for gender, race, ethnicity, familyincome, first generation status, and international student status in our regression models. We alsostudy the contribution of broad prior interests (to pursue engineering) as well as more specificintrinsic interests to self-efficacy, value, and ultimately to cognitive
exams are well written [2]. Even in the context of standardized testing ithas been found that student GRE scores compared to student written responses had a highcorrelation between the results [3]. Multiple-choice tests can be valid assessment instruments ifwritten correctly, which has led to many concept inventories being created in STEM, like theMechanics Diagnostic Test, Force Concept Inventory, Statics Concept Inventory, DynamicsConcept Inventory, and many others [2, 4, 5].Often MCT are used as pre-/post-tests to try to identify changes in learning. The quantitative resultsof these multiple-choice tests provide easy comparison data when looked at from a pre-/post-testanalysis, but the scores do not always adequately reflect a learning
using active andcollaborative learning pedagogical approaches. For the course project, the first-year studentswere required to design a 65,000 ft2 community park on a brownfield site in Charleston, SC, witha $5,000,00 budget for site cleanup and redevelopment. A few assessments were implemented,including weekly summary reports, poster creation, presentations, peer evaluation on teamwork,reflection assignment, and a survey. This paper discusses the redesign of the course through thebackward design approach, the implementation of project-based learning, and the assessment ofactivities. Additionally, it provides insights into its implementations in other institutions.BackgroundEML has emerged as a relevant educational approach fostering an
learn. For example, according to the Carnegie Initiative on the Doctorate, a well-structured program should be purposeful (i.e., programmatic requirements and elements should be aligned with specific goals). It should also be created by a process of iterative individual and collective reflection, transparent (i.e., collectively understood by the faculty and graduate students), and accessible (i.e., elements can be evaluated in terms of their contribution in achieving the purposes of the program) (Golde et al., 2006).● A cascading mentorship model works well, in which members of research groups receive mentorship from more senior members and provide it to more junior members (Feldon et al., 2019).● Institutional
to enhance Hispanic/Latino transfer student success. ©American Society for Engineering Education, 2024 Investigating Motivation and Self-Regulated Learning for Students in a Fundamental Engineering CourseAbstractMotivation and self-regulated learning (SRL) are two interconnected constructs that are criticalfor student learning, especially for those in challenging fundamental engineering courses such asThermodynamics. Each of these elements are integral to the learning process and typicallyimpact one another, as fostering motivation can lead to improved self-regulatory skills. SRL isdescribed as a cyclical process where students plan, set goals, monitor learning, and reflect tofurther plan
inquiries and discussions have brought to light several issues with thereliability and validity of SETs as the primary measure of teaching quality. There is mountingevidence that end-of-semester evaluations are biased and represent an imperfect measure of aninstructor's performance. They may not accurately reflect the true quality of teaching, or at thevery least, they are unfair [6], [7], [8].Transitioning from traditional paper-based surveys to electronic ones in higher education, whilecost-effective, presented certain drawbacks, particularly in terms of significantly reducedresponse rates, which led to skepticism about the validity and reliability of SETs [9], [10].The limitations of SETs have led to continuous calls for a more comprehensive and
populated by male students. Among the faculty members present was the First-Year Engineering Programs Coordinator, who posed questions about the program and soughtsuggestions on how OWISE and other faculty members could enhance and support their first-year experience.The students expressed positive reflections on their first year but highlighted certain aspects ofthe course that felt intimidating. Many shared their experiences of entering classespredominantly composed of male students, feeling overwhelmed and uncertain about where tosit—a notable departure from their high school environments. Additionally, they conveyedfeelings of under-confidence and intimidation, particularly when dealing with fabricationequipment used in the courses. There was a
curriculum needs to support students' development of representational fluencybetter.Appropriately integrating sociotechnical design problems into the curriculum can supportstudents' development of engineering skills, practices, and conceptual understanding whilealso learning design [14], [15]. Sociotechnical problems are design problems that includesocial and technical constraints [16], [17]. Addressing sociotechnical problems reflects theprofessional workplace in which engineers typically address and solve engineering problemsthat merge social and technical constraints [8], [16], [18]. By exploring the students'representational practices and skills, we can design appropriate scaffolds that support them indeveloping expertise. This research aims to
necessitate covering aspects from adiverse range of topics, including fundamentals of digital design, computer architecture, parallelprogramming, and systems thinking. Although such concepts naturally intersect within thediscipline of computer engineering, structural considerations within our master’s programs anddisparate prior knowledge within our cohort entail students inherently experience the subject asinterdisciplinary in nature. This presents numerous challenges in subject design but offers anopportunity for developing interdisciplinary competencies and an appreciation for otherdisciplinary ways of thinking. Based on instructor observations while teaching, we reflect on thesuccesses and shortcomings in the subject’s design that impact
timeline that reflects theresearcher’s tenure at the university. At this level, faculty members can tailor meaningful projectsfor researchers over a set period. The last and broadest level of participation is short-termengagement through undergraduate and graduate courses. For short-term engagement, studentsparticipate in community-based class projects for one semester or can take elective courses thatoffer community-based research. With short-term engagement, students apply concepts ofcommunity-based research. This participatory approach serves as an opportunity for students toconduct research and advance into mid-term engagement opportunities (Figure 1). These levels ofengagement provide a more diverse audience that is engaged in community-based
different passives, sensors, andperipherals to the MKR Motor Carrier, including resistors, potentiometers, FSRs, motors, servos,encoders, accelerometers, Hall-effect sensors, ultrasonic sensors, infrared reflectance sensors,and photoresistors.Software DesignThe Arduino MKR was programmed to establish a wireless access point and await commandsover UDP from an external device (e.g., a student running MATLAB on a laptop or classroomdesktop). The MKR remains waiting, responding to commands as they are received.When a command is received to read from a peripheral device or a GPIO pin, for example, theArduino responds with the value. Several data streams have been established to facilitate datatransfer when several different data values are needed, which
design and manufacturing. Chijhi is a teaching assistant in the College of Engineering Education, instructing the Transforming Ideas to Innovation I & II courses, which introduce first-year students to the engineering profession using multidisciplinary, societally relevant content.Dr. Robert P. Loweth, Purdue University Robert P. Loweth (he/him) is a Visiting Assistant Professor in the School of Engineering Education at Purdue University. His research explores how engineering students and practitioners engage stakeholders in their engineering projects, reflect on their social identities, and consider the broader societal contexts of their engineering work. The goals of his research are 1) to develop tools and
, quantitative and qualitative approach to fully comprehendwhat happens holistically during the immersion experience. The goal should be not just to collectobjective data with validated psychometric instruments such as the IDI, but rather to obtain morenuanced insights into the students’ study abroad experience and processing of their sojournsabroad through qualitative analysis of student reflections. Similarly, Cohen et al [10] argue thatsolely relying on quantitative assessment may not bring to light important nuances of thecomplex experience abroad. Likewise, Streitwieser and Light [11] call for placing emphasis onindividual student perceptions and reflections. Most recently, Mu et al [12] have shown thatimportant insights can be gained when zeroing
,reflection notes writing, fits the objectives of the present study of finding whether the machinelearning-based data analysis resulting in similar and usable results as compared with the analysisresults from the inductive process of the grounded theory. Raised as a theory-construction methodthat takes data as the basis for theories to emerge, grounded theory has a unique fit with themachine learning-based analysis approach in that both are inductive in nature.Machine learning (ML)-based or mixed approachesPreviously researchers have conducted ML-based analysis on the sentiment of financial newsreports or labeled information of survey questions [7]. Sentiment analysis is a classification taskthat can be handled by manual labeling of a small set of
processes. Students worked in groups tocreate 3D parts with cultural or historical perspective. Students searched for art forms, traditions, socialhabits, and rituals from the chosen cultural background or a significant time in history and used it asinspiration to create unique CAD designs and then 3D printed models. Students were required to incorporatethe best DfAM practices required to successfully design a part using additive manufacturing. Each studentgroup prepared a poster that was shared in a gallery walk [17]. Everyone explored the variety of culturallyand historically inspired projects during the gallery walk and self-reflected on the information in an essay.Students were encouraged to include thoughts on unconscious bias, norms, habits
scenarios, students are trained to apply engineering ethics knowledge to practice.Implement educational reform in the form of debate competitions, and conduct engineeringethics debate competitions in various engineering ethics course teaching classes. Practical activities not only fully leverage the leading role of teachers, but also reflect thesubjectivity of students. Student debaters can gain a deeper understanding of the basic concepts,principles, guidelines, moral values, public safety obligations, social responsibilities, and otherelements of engineering ethics from different perspectives through discussions and in-depthanalysis of the topic. This can enhance moral awareness, cultivate moral emotions, and regulatemoral behavior. Under the
It has been well established that for adult learning to occur, motivation and reflection must be present[19]. To achieve intrinsic motivation, the learner must have a sense of autonomy, competence, and afeeling of belonging [20]. Educators play a multifaceted role in promoting those needs by activelyfacilitating inclusive and engaging learning experience while tailoring their approach to meet the diverseneeds of adult learning, thereby promoting autonomy and competence[21]. When learners collaborate ona PBL assignment, intrinsic motivation can either be enhanced or disturbed. The determinant factors ofintrinsic motivation level in this case are self-evaluation, attitude of the learning about education, and theimportance of goals [19]. When